SlideShare a Scribd company logo
1 of 1
Download to read offline
Design	
  of	
  a	
  2-­‐DOF	
  Ankle	
  Prosthesis	
  Using	
  Variable	
  Posi9on	
  
Locking	
  Mechanisms	
  	
  
Alexander	
  Folz 	
  Advisor:	
  Dr.	
  Joseph	
  Schimmels 	
  Marque<e	
  University	
  
PROBLEM	
  
An	
   esFmated	
   159,000	
   TransFbial	
   (below	
   the	
   knee)	
  
amputaFons	
   were	
   performed	
   in	
   the	
   United	
   States	
   in	
  
the	
   year	
   19961.	
   Prostheses	
   available	
   to	
   these	
  
individuals	
   include	
   passive	
   opFons	
   (affordable	
   but	
  
limited	
   performance)	
   and	
   acFve	
   opFons	
  
(electromechanical	
   energy	
   generaFon	
   but	
   oVen	
   not	
  
financially	
  feasible).	
  Due	
  to	
  constraints	
  related	
  to	
  each	
  
style,	
  neither	
  is	
  an	
  ideal	
  soluFon.	
  	
  
INTRODUCTION	
  
This	
   is	
   the	
   moFvaFon	
   to	
   develop	
   a	
   new	
   soluFon,	
   a	
  
passive	
  device	
  that	
  yields	
  energy	
  return	
  characterisFcs	
  
through	
   the	
   conversion	
   of	
   translaFonal	
   energy	
   along	
  
the	
   leg	
   into	
   rotaFonal	
   energy	
   about	
   the	
   ankle	
   joint.	
  
However,	
  Fming	
  of	
  the	
  capture	
  and	
  release	
  of	
  energy	
  
must	
   be	
   considered.	
   This	
   is	
   the	
   novel	
   porFon	
   of	
   the	
  
design	
   and	
   also	
   how	
   it	
   differs	
   from	
   previous	
   design	
  
generaFons.	
   In	
   previous	
   generaFons,	
   two	
   key	
   Fming	
  
principles	
  were	
  as	
  follows:	
  
1.  A	
   mid-­‐stance	
   deflecFon	
   technique	
   was	
   employed	
  
to	
  store	
  translaFonal	
  energy	
  
2.  Timing	
  of	
  energy	
  storage	
  was	
  based	
  on	
  the	
  ankle	
  
kinemaFc/kineFc	
  profiles	
  (as	
  seen	
  in	
  Figure	
  1)	
  
However,	
  these	
  facets	
  of	
  the	
  design	
  were	
  found	
  to	
  be	
  
undesirable	
  based	
  upon	
  human	
  subject	
  tesFng	
  for	
  the	
  
following	
  reasons:	
  
1.  Subjects	
   found	
   a	
   sudden	
   mid	
   stance	
   deflecFon	
   to	
  
be	
  jarring	
  
2.  Issues	
   in	
   the	
   consistency	
   of	
   energy	
   storage	
   and	
  
release	
   occurred	
   due	
   to	
   a	
   user’s	
   ankle	
   profiles	
  
varying	
  from	
  stride	
  to	
  stride	
  
These	
  issues	
  will	
  be	
  addressed	
  in	
  the	
  next	
  generaFon	
  
prosthesis	
  through	
  the	
  use	
  of	
  the	
  following	
  principles:	
  
1.  DeflecFon/energy	
   storage	
   will	
   occur	
   early	
   in	
   the	
  
stance	
  cycle	
  (as	
  seen	
  in	
  Figure	
  4)	
  
2.  Timing	
  of	
  energy	
  storage	
  and	
  release	
  will	
  be	
  based	
  
on	
   the	
   maxima/minima	
   of	
   angle	
   kineFc	
   and	
  
kinemaFc	
  profiles	
  (i.e.,	
  d·∙/dt	
  =	
  0)	
  
Other	
  design	
  aspects	
  to	
  be	
  addressed	
  are	
  as	
  follows:	
  
1.  Decreased	
  weight	
  relaFve	
  to	
  previous	
  generaFons	
  
2.  Increased	
  durability	
  
OBJECTIVES	
  
NATURAL	
  ANKLE	
  BEHAVIOR	
  
TIMING	
  STRATEGY	
  
§  ConFnue	
  to	
  iterate	
  opFmizaFon	
  procedure	
  within	
  
mechanical	
  (space,	
  available	
  spring	
  rates,	
  etc.)	
  
constraints	
  
§  Complete	
  conceptual	
  3D	
  model	
  of	
  opFmized	
  ankle	
  
design	
  
§  Detail	
  design	
  and	
  drawing	
  generaFon	
  
§  Prove	
  feasibility	
  of	
  early	
  stance	
  deflecFon	
  to	
  capture	
  
linear	
  energy	
  
§  Must	
  result	
  in	
  net	
  posiFve	
  rotaFonal	
  work	
  
§  Timing	
  of	
  energy	
  storage	
  and	
  release	
  based	
  solely	
  on	
  
maxima/minima	
  of	
  ankle	
  profiles	
  
§  Safely	
  usable	
  by	
  a	
  250	
  lb.	
  individual	
  
§  Lower	
  weight	
  than	
  previous	
  generaFons	
  
§  Customizable	
  for	
  a	
  mulFtude	
  of	
  users	
  and	
  deflecFon	
  
sejngs	
  
A	
   parametric	
   model	
   of	
   the	
   prosthesis	
   was	
   developed	
  
and	
   simulated	
   using	
   MATLAB.	
   Using	
   a	
   quasi-­‐staFc	
  
model,	
  inputs	
  and	
  outputs	
  are	
  as	
  follows:	
  
1.  Inputs	
  
a)  Leg	
  Force	
  [N]	
  
b)  Ankle	
  Angle	
  [Rad]	
  
2.  Outputs	
  
a)  Ankle	
  Moment	
  [Nm]	
  
b)  Leg	
  DeflecFon	
  [mm]	
  
Over	
  the	
  course	
  of	
  the	
  stance	
  cycle,	
  there	
  exists	
  two	
  
key	
   moments	
   in	
   regards	
   to	
   energy	
   store	
   and	
   release	
  
and	
  they	
  are	
  as	
  follows:	
  
1.  Maximum	
  leg	
  force	
  (3),	
  in	
  Figure	
  1:	
  
a)  Timing	
   mechanism	
   for	
   translaFonal	
   energy	
  
storage	
  
b)  Ensures	
  early	
  stance	
  leg	
  deflecFon	
  
2.  Maximum	
  ankle	
  angle	
  (5),	
  in	
  Figure	
  1:	
  
a)  Timing	
  mechanism	
  for	
  rotaFonal	
  energy	
  release	
  
b)  Ensures	
  reliable	
  energy	
  release	
  when	
  compared	
  
to	
   use	
   of	
   arbitrary	
   ankle	
   angle	
   as	
   Fming	
  
characterisFc	
  
In	
  Figure	
  1	
  and	
  2,	
  several	
  key	
  moments	
  in	
  the	
  stance	
  cycle	
  are	
  idenFfied	
  on	
  each	
  plot:	
  Heel	
  Strike	
  (1),	
  Foot	
  Flat	
  (2),	
  
Maximum	
  Leg	
  Force	
  (3),	
  Heel	
  Off	
  (4),	
  Maximum	
  Ankle	
  Angle	
  (5)	
  and	
  Toe	
  Off	
  (6).	
  Using	
  Figure	
  2,	
  it	
  is	
  possible	
  to	
  find	
  
the	
  rotaFonal	
  work	
  done	
  by	
  the	
  ankle	
  by	
  integraFng	
  (either	
  analyFcally	
  or	
  numerically)	
  to	
  find	
  the	
  area	
  within	
  the	
  
curve.	
  For	
  a	
  natural	
  ankle,	
  the	
  work	
  done	
  is	
  18.47	
  J	
  for	
  the	
  average	
  127	
  lb.	
  individual2.	
  
Figure	
  1:	
  Ankle	
  kineFc/kinemaFc	
  profiles	
  as	
  a	
  funcFon	
  of	
  Fme,	
  stance	
  phase2	
  
MODELING	
  
FUTURE	
  WORK	
  
CITATIONS	
  
Figure	
  3:	
  Modeled	
  ankle	
  performance	
  compared	
  to	
  natural	
  ankle.	
  	
  
CONCLUSIONS	
  
To	
  conclude,	
  modeled	
  results	
  proved	
  that	
  it	
  is	
  feasible	
  
to	
   use	
   an	
   early	
   stance	
   deflecFon	
   to	
   capture	
   linear	
  
energy.	
  Using	
  a	
  rudimentary	
  opFmizaFon	
  method,	
  the	
  
modeled	
  prosthesis	
  was	
  able	
  to	
  achieve	
  25.46%	
  of	
  the	
  
work	
  output	
  of	
  a	
  natural	
  ankle	
  (4.77	
  Joules)	
  for	
  15	
  mm	
  
of	
  leg	
  deflecFon.	
  
Figure	
  4:	
  DeflecFon	
  along	
  the	
  leg	
  axis.	
  Note	
  that	
  bulk	
  of	
  deflecFon	
  occurs	
  early	
  in	
  
stance	
  
WEIGHT	
  MINIMIZATION	
  
Work	
  for	
  this	
  objecFve	
  will	
  stem	
  in	
  two	
  direcFons:	
  
1.  Material	
  SelecFon:	
  In	
  previous	
  generaFons,	
  bulk	
  of	
  
materials	
  used	
  were:	
  
a)  Aluminum	
  6061	
  (Strength/Density	
  =	
  4.1e5	
  in)3	
  
b)  Steel	
  1018	
  (Strength/Density	
  =	
  2.2e5	
  in)	
  3	
  
To	
   decrease	
   material	
   weight,	
   Aluminum	
   7075	
  
(strength/density	
   =	
   7.5e5	
   in)	
   3	
   will	
   be	
   used	
   where	
  
feasible.	
  
2.  Linear	
  moFon	
  mechanism	
  analysis:	
  	
  
a)  Large	
  contributor	
  to	
  overall	
  weight	
  of	
  device	
  
b)  CompleFng	
   thorough	
   stress	
   analysis,	
   a	
   smaller	
  
model	
  was	
  selected	
  
c)  Weight	
  of	
  component	
  reduced	
  by	
  25.8%	
  
Figure	
  2:	
  Natural	
  Ankle	
  Torque-­‐Angle	
  Curve2.	
  
[1]:	
  Owings,	
  M.,	
  and	
  Kozak,	
  L.	
  J.,	
  1998.	
  “Ambulatory	
  and	
  inpaFent	
  procedures	
  in	
  the	
  united	
  
states,	
  1996”.	
  Vital	
  and	
  Health	
  StaFsFcs,	
  Series	
  13(139),	
  p.	
  24.	
  	
  
[2]:	
  Winter,	
  David	
  A.	
  Biomechanics	
  and	
  Motor	
  Control	
  of	
  Human	
  Mo5on.	
  New	
  Jersey:	
  John	
  
Wiley	
  &	
  Sons,	
  2009	
  
[3]:	
  All	
  strength	
  and	
  density	
  values	
  courtesy	
  of:	
  Mcmaster.com	
  
PRELIMINARY	
  RESULTS	
  

More Related Content

Viewers also liked

Fracture Project Report (2)
Fracture Project Report (2)Fracture Project Report (2)
Fracture Project Report (2)Harshada Patil
 
Client Choice Awards 2016 Dr George Beaton Keynote Address
Client Choice Awards 2016 Dr George Beaton Keynote AddressClient Choice Awards 2016 Dr George Beaton Keynote Address
Client Choice Awards 2016 Dr George Beaton Keynote AddressGeorge Beaton
 
ECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLS
ECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLSECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLS
ECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLSSarwan Pal
 
Jessica Resume reinvented
Jessica Resume reinventedJessica Resume reinvented
Jessica Resume reinventedJessica Parker
 
Workshop on Knowledge Retention Strategies and Skills for Knowledge Workers
Workshop on Knowledge Retention Strategies and Skills for Knowledge WorkersWorkshop on Knowledge Retention Strategies and Skills for Knowledge Workers
Workshop on Knowledge Retention Strategies and Skills for Knowledge Workers2016
 
Государственным Трудовым резервам - 75 лет
Государственным Трудовым резервам - 75 летГосударственным Трудовым резервам - 75 лет
Государственным Трудовым резервам - 75 летTCenter500
 

Viewers also liked (9)

Fracture Project Report (2)
Fracture Project Report (2)Fracture Project Report (2)
Fracture Project Report (2)
 
Test
TestTest
Test
 
Client Choice Awards 2016 Dr George Beaton Keynote Address
Client Choice Awards 2016 Dr George Beaton Keynote AddressClient Choice Awards 2016 Dr George Beaton Keynote Address
Client Choice Awards 2016 Dr George Beaton Keynote Address
 
ECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLS
ECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLSECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLS
ECOLOGICAL STUDY OF ECORESTORED MINE HABITATS OF MUSSOORIE HILLS
 
Greg Holuby Résumé
Greg Holuby RésuméGreg Holuby Résumé
Greg Holuby Résumé
 
Jessica Resume reinvented
Jessica Resume reinventedJessica Resume reinvented
Jessica Resume reinvented
 
Archives and national identity
Archives and national identityArchives and national identity
Archives and national identity
 
Workshop on Knowledge Retention Strategies and Skills for Knowledge Workers
Workshop on Knowledge Retention Strategies and Skills for Knowledge WorkersWorkshop on Knowledge Retention Strategies and Skills for Knowledge Workers
Workshop on Knowledge Retention Strategies and Skills for Knowledge Workers
 
Государственным Трудовым резервам - 75 лет
Государственным Трудовым резервам - 75 летГосударственным Трудовым резервам - 75 лет
Государственным Трудовым резервам - 75 лет
 

Similar to Design of a 2-DOF Ankle Prosthesis Using Variable Position Locking Mechanisms

Final project-of-exoskeleton-universiti-putra-malaysia-mechanical-student
Final project-of-exoskeleton-universiti-putra-malaysia-mechanical-studentFinal project-of-exoskeleton-universiti-putra-malaysia-mechanical-student
Final project-of-exoskeleton-universiti-putra-malaysia-mechanical-studentMuhamad Nurizami Zolkefli
 
Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015Alexis Garo
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Jain-Abhishek-Term-Paper-CE542
Jain-Abhishek-Term-Paper-CE542Jain-Abhishek-Term-Paper-CE542
Jain-Abhishek-Term-Paper-CE542Abhishek Jain, EI
 
E240. project report (2)
E240. project report (2)E240. project report (2)
E240. project report (2)Huu Duy Nguyen
 
A Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSO
A Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSOA Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSO
A Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSOINFOGAIN PUBLICATION
 
Bolted Joints Analysis Methods and Evaluation
Bolted Joints Analysis Methods and EvaluationBolted Joints Analysis Methods and Evaluation
Bolted Joints Analysis Methods and EvaluationIJMER
 
MAE501 Independent Study
MAE501 Independent StudyMAE501 Independent Study
MAE501 Independent Studyhrishishah
 
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingAssessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingIDES Editor
 
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdf
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdfLecture 1 on mechanical vibration- Single Degree of Freedom.pdf
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdfAdelekandikiru2
 
Design of Industrial Electro-Hydraulic Valves, New Approach
Design of Industrial Electro-Hydraulic Valves, New ApproachDesign of Industrial Electro-Hydraulic Valves, New Approach
Design of Industrial Electro-Hydraulic Valves, New ApproachIJERA Editor
 
Seismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systemsSeismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systemsIRJET Journal
 
Photoelastic Stress Analysis of Bell Crank Lever: A Review
Photoelastic Stress Analysis of Bell Crank Lever: A ReviewPhotoelastic Stress Analysis of Bell Crank Lever: A Review
Photoelastic Stress Analysis of Bell Crank Lever: A ReviewIRJET Journal
 
ORS Arciero vs LaPrade Poster_final
ORS Arciero vs LaPrade Poster_finalORS Arciero vs LaPrade Poster_final
ORS Arciero vs LaPrade Poster_finalGabriel Ortiz
 
Actuators Complete
Actuators CompleteActuators Complete
Actuators CompleteNoah Hurst
 
Soft exoskeletons for_upper_and_lower_body_rehabil
Soft exoskeletons for_upper_and_lower_body_rehabilSoft exoskeletons for_upper_and_lower_body_rehabil
Soft exoskeletons for_upper_and_lower_body_rehabilMohammed Mudasser
 
Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_
Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_
Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_Evan Guilfoyle
 

Similar to Design of a 2-DOF Ankle Prosthesis Using Variable Position Locking Mechanisms (20)

Final project-of-exoskeleton-universiti-putra-malaysia-mechanical-student
Final project-of-exoskeleton-universiti-putra-malaysia-mechanical-studentFinal project-of-exoskeleton-universiti-putra-malaysia-mechanical-student
Final project-of-exoskeleton-universiti-putra-malaysia-mechanical-student
 
Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
06_AJMS_303_21.pdf
06_AJMS_303_21.pdf06_AJMS_303_21.pdf
06_AJMS_303_21.pdf
 
Jain-Abhishek-Term-Paper-CE542
Jain-Abhishek-Term-Paper-CE542Jain-Abhishek-Term-Paper-CE542
Jain-Abhishek-Term-Paper-CE542
 
E240. project report (2)
E240. project report (2)E240. project report (2)
E240. project report (2)
 
Thesis Summary
Thesis SummaryThesis Summary
Thesis Summary
 
A Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSO
A Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSOA Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSO
A Novel Hybrid Approach for Stability Analysis of SMIB using GA and PSO
 
Bolted Joints Analysis Methods and Evaluation
Bolted Joints Analysis Methods and EvaluationBolted Joints Analysis Methods and Evaluation
Bolted Joints Analysis Methods and Evaluation
 
MAE501 Independent Study
MAE501 Independent StudyMAE501 Independent Study
MAE501 Independent Study
 
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric ModelingAssessing Uncertainty of Pushover Analysis to Geometric Modeling
Assessing Uncertainty of Pushover Analysis to Geometric Modeling
 
december
decemberdecember
december
 
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdf
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdfLecture 1 on mechanical vibration- Single Degree of Freedom.pdf
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdf
 
Design of Industrial Electro-Hydraulic Valves, New Approach
Design of Industrial Electro-Hydraulic Valves, New ApproachDesign of Industrial Electro-Hydraulic Valves, New Approach
Design of Industrial Electro-Hydraulic Valves, New Approach
 
Seismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systemsSeismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systems
 
Photoelastic Stress Analysis of Bell Crank Lever: A Review
Photoelastic Stress Analysis of Bell Crank Lever: A ReviewPhotoelastic Stress Analysis of Bell Crank Lever: A Review
Photoelastic Stress Analysis of Bell Crank Lever: A Review
 
ORS Arciero vs LaPrade Poster_final
ORS Arciero vs LaPrade Poster_finalORS Arciero vs LaPrade Poster_final
ORS Arciero vs LaPrade Poster_final
 
Actuators Complete
Actuators CompleteActuators Complete
Actuators Complete
 
Soft exoskeletons for_upper_and_lower_body_rehabil
Soft exoskeletons for_upper_and_lower_body_rehabilSoft exoskeletons for_upper_and_lower_body_rehabil
Soft exoskeletons for_upper_and_lower_body_rehabil
 
Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_
Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_
Extremity_Wear_Testing_-_Total_Ankle_and_Shoulder_Replacement_Testing_
 

Design of a 2-DOF Ankle Prosthesis Using Variable Position Locking Mechanisms

  • 1. Design  of  a  2-­‐DOF  Ankle  Prosthesis  Using  Variable  Posi9on   Locking  Mechanisms     Alexander  Folz  Advisor:  Dr.  Joseph  Schimmels  Marque<e  University   PROBLEM   An   esFmated   159,000   TransFbial   (below   the   knee)   amputaFons   were   performed   in   the   United   States   in   the   year   19961.   Prostheses   available   to   these   individuals   include   passive   opFons   (affordable   but   limited   performance)   and   acFve   opFons   (electromechanical   energy   generaFon   but   oVen   not   financially  feasible).  Due  to  constraints  related  to  each   style,  neither  is  an  ideal  soluFon.     INTRODUCTION   This   is   the   moFvaFon   to   develop   a   new   soluFon,   a   passive  device  that  yields  energy  return  characterisFcs   through   the   conversion   of   translaFonal   energy   along   the   leg   into   rotaFonal   energy   about   the   ankle   joint.   However,  Fming  of  the  capture  and  release  of  energy   must   be   considered.   This   is   the   novel   porFon   of   the   design   and   also   how   it   differs   from   previous   design   generaFons.   In   previous   generaFons,   two   key   Fming   principles  were  as  follows:   1.  A   mid-­‐stance   deflecFon   technique   was   employed   to  store  translaFonal  energy   2.  Timing  of  energy  storage  was  based  on  the  ankle   kinemaFc/kineFc  profiles  (as  seen  in  Figure  1)   However,  these  facets  of  the  design  were  found  to  be   undesirable  based  upon  human  subject  tesFng  for  the   following  reasons:   1.  Subjects   found   a   sudden   mid   stance   deflecFon   to   be  jarring   2.  Issues   in   the   consistency   of   energy   storage   and   release   occurred   due   to   a   user’s   ankle   profiles   varying  from  stride  to  stride   These  issues  will  be  addressed  in  the  next  generaFon   prosthesis  through  the  use  of  the  following  principles:   1.  DeflecFon/energy   storage   will   occur   early   in   the   stance  cycle  (as  seen  in  Figure  4)   2.  Timing  of  energy  storage  and  release  will  be  based   on   the   maxima/minima   of   angle   kineFc   and   kinemaFc  profiles  (i.e.,  d·∙/dt  =  0)   Other  design  aspects  to  be  addressed  are  as  follows:   1.  Decreased  weight  relaFve  to  previous  generaFons   2.  Increased  durability   OBJECTIVES   NATURAL  ANKLE  BEHAVIOR   TIMING  STRATEGY   §  ConFnue  to  iterate  opFmizaFon  procedure  within   mechanical  (space,  available  spring  rates,  etc.)   constraints   §  Complete  conceptual  3D  model  of  opFmized  ankle   design   §  Detail  design  and  drawing  generaFon   §  Prove  feasibility  of  early  stance  deflecFon  to  capture   linear  energy   §  Must  result  in  net  posiFve  rotaFonal  work   §  Timing  of  energy  storage  and  release  based  solely  on   maxima/minima  of  ankle  profiles   §  Safely  usable  by  a  250  lb.  individual   §  Lower  weight  than  previous  generaFons   §  Customizable  for  a  mulFtude  of  users  and  deflecFon   sejngs   A   parametric   model   of   the   prosthesis   was   developed   and   simulated   using   MATLAB.   Using   a   quasi-­‐staFc   model,  inputs  and  outputs  are  as  follows:   1.  Inputs   a)  Leg  Force  [N]   b)  Ankle  Angle  [Rad]   2.  Outputs   a)  Ankle  Moment  [Nm]   b)  Leg  DeflecFon  [mm]   Over  the  course  of  the  stance  cycle,  there  exists  two   key   moments   in   regards   to   energy   store   and   release   and  they  are  as  follows:   1.  Maximum  leg  force  (3),  in  Figure  1:   a)  Timing   mechanism   for   translaFonal   energy   storage   b)  Ensures  early  stance  leg  deflecFon   2.  Maximum  ankle  angle  (5),  in  Figure  1:   a)  Timing  mechanism  for  rotaFonal  energy  release   b)  Ensures  reliable  energy  release  when  compared   to   use   of   arbitrary   ankle   angle   as   Fming   characterisFc   In  Figure  1  and  2,  several  key  moments  in  the  stance  cycle  are  idenFfied  on  each  plot:  Heel  Strike  (1),  Foot  Flat  (2),   Maximum  Leg  Force  (3),  Heel  Off  (4),  Maximum  Ankle  Angle  (5)  and  Toe  Off  (6).  Using  Figure  2,  it  is  possible  to  find   the  rotaFonal  work  done  by  the  ankle  by  integraFng  (either  analyFcally  or  numerically)  to  find  the  area  within  the   curve.  For  a  natural  ankle,  the  work  done  is  18.47  J  for  the  average  127  lb.  individual2.   Figure  1:  Ankle  kineFc/kinemaFc  profiles  as  a  funcFon  of  Fme,  stance  phase2   MODELING   FUTURE  WORK   CITATIONS   Figure  3:  Modeled  ankle  performance  compared  to  natural  ankle.     CONCLUSIONS   To  conclude,  modeled  results  proved  that  it  is  feasible   to   use   an   early   stance   deflecFon   to   capture   linear   energy.  Using  a  rudimentary  opFmizaFon  method,  the   modeled  prosthesis  was  able  to  achieve  25.46%  of  the   work  output  of  a  natural  ankle  (4.77  Joules)  for  15  mm   of  leg  deflecFon.   Figure  4:  DeflecFon  along  the  leg  axis.  Note  that  bulk  of  deflecFon  occurs  early  in   stance   WEIGHT  MINIMIZATION   Work  for  this  objecFve  will  stem  in  two  direcFons:   1.  Material  SelecFon:  In  previous  generaFons,  bulk  of   materials  used  were:   a)  Aluminum  6061  (Strength/Density  =  4.1e5  in)3   b)  Steel  1018  (Strength/Density  =  2.2e5  in)  3   To   decrease   material   weight,   Aluminum   7075   (strength/density   =   7.5e5   in)   3   will   be   used   where   feasible.   2.  Linear  moFon  mechanism  analysis:     a)  Large  contributor  to  overall  weight  of  device   b)  CompleFng   thorough   stress   analysis,   a   smaller   model  was  selected   c)  Weight  of  component  reduced  by  25.8%   Figure  2:  Natural  Ankle  Torque-­‐Angle  Curve2.   [1]:  Owings,  M.,  and  Kozak,  L.  J.,  1998.  “Ambulatory  and  inpaFent  procedures  in  the  united   states,  1996”.  Vital  and  Health  StaFsFcs,  Series  13(139),  p.  24.     [2]:  Winter,  David  A.  Biomechanics  and  Motor  Control  of  Human  Mo5on.  New  Jersey:  John   Wiley  &  Sons,  2009   [3]:  All  strength  and  density  values  courtesy  of:  Mcmaster.com   PRELIMINARY  RESULTS