SlideShare a Scribd company logo
1 of 61
Download to read offline
2








n
n
z
n
x
z
X
n
x
Z )
(
)
(
)}
(
{ Vs. 






n
n
j
e
n
x
X 
 )
(
)
(
Q: Why do we need Z-transform?
A: For some signals, Fourier transform does not converge.
)
(
2
)
( n
u
n
x n

e.g.:
Complex variable
Complex function
• Relationship between and :
)
(z
X )
(
X
)
(
)
( 
X
z
X jw
e
z


Z-transform evaluated at unit circle
corresponds to DTFT.
 The role of Z-transform in DT is
similar to Laplace transform in CT.








n
n
z
n
x
z
X
n
x
Z )
(
)
(
)}
(
{

j
re
z  r
z  

z
For what values of z, does the z-transform converge?
 













n
n
j
n
n
re
n
x
z
n
x
z
X 
)
(
)
(
)
(
 







n
n
j
n
e
r
n
x
z
X 
)
(
)
( DTFT of n
r
n
x 
)
(
DTFT of n
r
n
x 
)
( exists if n
r
n
x 
)
( is absolutely summable.
 


n
n
r
n
x )
( Z-transform exists and converges.
Convergence only depends on r.
3
 


n
n
r
n
x )
( ROC is radially symmetric.
1
1

j
re
z 
If Z-transform converges for It also converges for
2
2

j
re
z 
• ROC does not depend on the angle.
• Region of Convergence (ROC): ROC is a region in “z”
domain that converges.





n
n
z
n
x )
(
4
 There are the following possibilities:
1. All Z-domain except one or two points (origin / infinity)
2. Inside a circle
3. Outside a circle
4. Between two circles (ring)
5. ROC does not exist
5




 



Otherwise
0
1
0
)
(
N
n
a
n
x
n
1
1
2
2
1
...
1
)
( 








 N
N
z
a
z
a
az
z
X
1
1
2
2
...
1 





 N
N
z
a
z
a
z
a
ROC: everywhere except at the origin: 0

z







n
n
z
n
x
z
X )
(
)
(
6




 



Otherwise
0
0
)
(
n
N
a
n
x
n
N
N
z
a
z
a
z
a
z
X 






 ...
1
)
( 2
2
1
ROC: everywhere except at infinity: 

z
7







n
n
z
n
x
z
X )
(
)
(
)
(
)
( n
u
a
n
x n

 





n
n
n
n
u
z
a
z
X )
(
)
(  



0
n
n
n
z
a 



0
1
)
(
n
n
az
1
1


az 1
1
1
)
( 


az
z
X
z
a 
8
)
1
(
)
( 


 n
u
a
n
x n
 






1
)
(
n
n
n
z
a
z
X 

 







0
1
1
)
(
1
m
m
m
m
m
z
a
z
a
1
1


z
a 1
1
1
)
( 


az
z
X
a
z 
• Same Z-transform as the
previous example. However,
the ROC is different.
9
 We have shown that X(z) needs the ROC to uniquely
specify a sequence.
)
(
)
( 1
1 n
x
ROC
z
X 


)
(
)
( 2
2 n
x
ROC
z
X 


)
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
1
1
1
)
( 


az
z
X
)
1
(
)
( 


 n
u
a
n
x n
10
)
(
3
1
)
(
2
1
)
( n
u
n
u
n
x
n
n















n
n
n
n
z
z
z
X  







 












0
1
0
1
3
1
2
1
)
(
2
1

z
3
1

z
11
)
1
(
2
1
)
(
3
1
)
( 















 n
u
n
u
n
x
n
n
n
n
n
n
z
z
z
X  






 













 1 1
0
1
2
1
3
1
)
(
3
1

z
2
1

z
12
)
1
(
3
1
)
(
2
1
)
( 














 n
u
n
u
n
x
n
n
n
n
n
n
z
z
z
X  






 












0
1
0
1
3
1
2
1
)
(
2
1

z
3
1

z
 Z-transform does not exist.
13
14
(2) The ROC does not contain any poles (same as in LT).
(1) The ROC of X(z) consists of a ring in the z-plane centered about
the origin (equivalent to a vertical strip in the s-plane)
15
(3) If x[n] is of finite duration, then the ROC is the entire z-
plane, except possibly at z = 0 and/or z = ∞.
Why?
Examples: CT counterpart
 




2
1
)
(
N
N
n
n
z
n
x
z
X
  s
t
z
n all
ROC
1
)
(
all
ROC
1 
 

    






 

s
e
e
T
t
z
z
n sT
)
(
0
ROC
1 1


    







 s
e
e
T
t
z
z
n sT
)
(
ROC
1 

Book Chapter10: Section 1
16
(4) If x[n] is a right-sided sequence, and if |z| = ro is in the ROC, then
all finite values of z for which |z| > ro are also in the ROC.
 
 








1
1
0
1
n
faster tha
converges
N
n
n
n
N
n
r
n
x
r
n
x
Book Chapter10: Section 1
17
What types of signals do the following ROC correspond to?
right-sided left-sided two-sided
(5) If x[n] is a left-sided sequence, and if |z| = ro is in the ROC, then
all finite values of z for which 0 < |z| < ro are also in the ROC.
(6) If x[n] is two-sided, and if |z| = ro is in the ROC, then the ROC
consists of a ring in the z-plane including the circle |z| = ro.
Book Chapter10: Section 1
18
Example:
  0
,
|
|

 b
b
n
x n
     
1



 
n
u
b
n
u
b
n
x n
n
 
 
b
z
z
b
n
u
b
b
z
bz
n
u
b
n
n
1
,
1
1
1
,
1
1
From:
1
1
1













Book Chapter10: Section 1
19
Example, continued
Clearly, ROC does not exist if b > 1 ⇒ No z-transform for b|n|.
b
z
b
z
b
bz
z
X
1
,
1
1
1
1
)
( 1
1
1






 


Book Chapter10: Section 1
 ROC is only a function of r.
 FLS ROC is everywhere except at the origin or
infinity.
 RHS ROC is outside some circle.
 LHS ROC is inside some circle.
 BHS ROC is a ring or it does not exist.
 FT exists if ROC includes unit circle.
20
 Linearity:
)
(
)
( 1
1 z
X
n
x z

 )
(
)
( 2
2 z
X
n
x z


)
(
)
(
)
(
)
(
)
(
)
( 2
2
1
1
2
2
1
1 z
X
a
z
X
a
z
X
n
x
a
n
x
a
n
x z






1
ROC 2
ROC
ROC: at least the intersection of ROC1 and ROC2.
21
 Example: ?
)
(
)
(
)
(cos
)
( 0 
 z
X
n
u
n
n
x 
Solution: )
(
2
1
)
(
2
1
)
(
)
(cos
)
( 0
0
0 n
u
e
n
u
e
n
u
n
n
x n
j
n
j 

 



Using linearity property: )}
(
2
1
)
(
2
1
{
)
( 0
0
n
u
e
n
u
e
z
z
X n
j
n
j 
 


Earlier we showed that: )
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
If we set: 0

j
e
a 
)
( z
a 
)
(
)
( 0
n
u
e
n
x n
j
 1
0
1
1
)
( 


z
e
z
X j
1
1 0
0
1
1
2
1
1
1
2
1
)
( 








z
e
z
e
z
X j
j 

)
1
( 
z
)
1
( 
z
2
0
1
0
1
cos
2
1
cos
1
)
( 






z
z
z
z
X


22
)
(
)
( z
X
n
x z

 ROC
ROC: Similar ROC with some exceptions at 0 and infinity
)
(
)
( z
X
z
k
n
x k
z 



Example: }
1
,
0
,
7
,
5
,
2
,
1
{
)
(
1


n
x ?
))
2
(
)
(
{ 1
2 

 n
x
n
x
Z
5
3
2
1
1 7
5
2
1
)
( 







 z
z
z
z
z
X
3
1
1
2
2 7
5
2
)
( 





 z
z
z
z
z
X
ROC?
23
)
(
)
( z
X
n
x z

 2
1
: r
z
r
ROC 

)
(
)
( 1
z
a
X
n
x
a z
n 


Example:
2
1
: r
a
z
r
a
ROC 

)
(
)
(cos
)
( 0 n
u
n
a
n
x n


)
(
)
(cos
)
( 0 n
u
n
n
x 
 2
0
1
0
1
cos
2
1
cos
1
)
( 






z
z
z
z
X

 )
1
( 
z
Earlier:
)
(
)
(cos
)
( 0 n
u
n
a
n
x n

 2
2
0
1
0
1
cos
2
1
cos
1
)
( 






z
a
az
az
z
X


)
( a
z 
24
)
(
)
( z
X
n
x z

 2
1
: r
z
r
ROC 

)
(
)
( 1



 z
X
n
x z
Example:
1
2
1
1
:
r
z
r
ROC 

)
( a
z 
Earlier:
)
(
)
( n
u
n
x 
 ?
)
( 
z
X
)
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
)
(
)
( n
u
n
x  1
1
1
)
( 


z
z
X )
1
( 
z
)
(
)
( n
u
n
x 

z
z
X


1
1
)
( )
1
( 
z
25
)
(
)
( z
X
n
x z

 ROC
dz
z
dX
z
n
nx z )
(
)
( 


Example:
)
( a
z 
Earlier:
)
(
)
( n
u
na
n
x n
 ?
)
( 
z
X
)
(
)
(
1 n
u
a
n
x n

1
1
1
1
)
( 


az
z
X
2
1
1
1
2
)
1
(
)
(
)
( 





az
az
dz
z
dX
z
z
X
ROC
)
(
)
(
2 n
u
na
n
x n
 )
( a
z 
26
)
(
)
( 1
1 z
X
n
x z

 )
(
)
( 2
2 z
X
n
x z


)
(
).
(
)
(
)
(
*
)
(
)
( 2
1
2
1 z
X
z
X
z
X
n
x
n
x
n
x z




1
ROC 2
ROC
ROC: at least the intersection of ROC1 and ROC2
Example:









1
,
2
,
1
)
(
1 n
x


 


elsewhere
,
0
5
0
,
1
)
(
2
n
n
x ?
)
(
*
)
( 2
1 
n
x
n
x
2
1
1 2
1
)
( 



 z
z
z
X 5
4
3
2
1
2 1
)
( 









 z
z
z
z
z
z
X
7
6
1
2
1 1
)
(
)
(
)
( 






 z
z
z
z
X
z
X
z
X










1
,
1
,
0
,
0
,
0
,
0
,
1
,
1
)
(n
x
27
Inverse Z-Transform
28
)
(z
X
)
(n
x






n
n
z
n
x
n
x
Z )
(
)}
(
{
)
(z
X )
(n
x
?
• Methods of calculating the inverse Z-transform:
• Cauchy theorem for calculating the inverse Z-transform
(not covered)
• Series expansion
• Partial fraction expansion and using look-up tables

 
C
n
dz
z
z
X
j
1
)
(
2
1

29
4
3
20
5
8
)
( 


 z
z
z
X
 





 

n
n
z
x
x
z
x
z
n
x
z
X ...
)
1
(
)
0
(
)
1
(
...
)
(
)
( 1
)
4
(
20
)
(
5
)
3
(
8
)
( 



 n
n
n
n
x 








n
n
nz
c
z
X )
(
• Basic concept: expand X(z) in terms of powers of z-1
30
 Example:   ?
)
(
:
1
log
)
( 1



 
n
x
a
z
ROC
az
z
X
...
4
3
2
)
1
log(
4
3
2
1







x
x
x
x
x
x
      ...
4
3
2
)
1
log(
4
1
3
1
2
1
1
1
1
1













az
az
az
az
az
az
...
)
3
(
3
)
2
(
2
)
1
(
)
0
(
.
0
)
(
3
2




 



a
a
a
n
x
  )
1
(
1
)
( 1


 
n
u
n
a
n
x n
n
31
 This method is applicable if we have a ratio of two polynomials in
the form of .
 We would like to rewrite X(z) in the following manner:
 This expansion is performed in a way that the inverse Z-transform
of can be easily found using a lookup table and
using the linearity property, we can find x(n):
)
(
...
)
(
)
(
)
( 2
2
1
1 z
X
a
z
X
a
z
X
a
z
X N
N




)
(
),...,
(
),
( 2
1 z
X
z
X
z
X N
)
(
...
)
(
)
(
)
( 2
2
1
1 n
x
a
n
x
a
n
x
a
n
x N
N




)
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
2
1
1
)
1
(
)
( 



az
az
z
X
)
(
)
( n
u
na
n
x n
 )
( a
z 
Example:
N
N
M
M
z
a
z
a
a
z
b
z
b
b
z
Q
z
P
z
X












...
...
)
(
)
(
)
(
1
1
0
1
1
0
32
)
( a
z 
 Any non-constant single-variable polynomial of degree
N can be factored into N terms:
 If the coefficients of the polynomial are real, then the
roots are either real or complex conjugates.
 If is a complex root, then is also a root.
3
3
2
2
1
1
0
)
( z
a
z
a
z
a
a
z
P 


 )
)(
)(
( 3
2
1 z
z
z
z
z
z
k 



0
z
*
0
z
33
 Example:
5
.
0
5
.
1
5
.
0
5
.
1
1
1
)
( 2
2
2
1





 

z
z
z
z
z
z
X
)
5
.
0
)(
1
(
)
(



z
z
z
z
z
X
)
1
(
)
5
.
0
( 2
1 


 z
A
z
A
z
1

z 2
1 
A
5
.
0

z 1
2 

A

5
.
0
1
2
)
(




z
z
z
z
z
X
1
: 
z
ROC )
(
]
5
.
0
2
[
)
(
)
5
.
0
(
)
(
)
1
.(
2
)
( n
u
n
u
n
u
n
x n
n
n




)
5
.
0
)(
1
(
5
.
0
1
)
1
(
2
)
5
.
0
(
1
2
1










z
z
A
z
A
z
A z
A
z
1
1
5
.
0
1
1
1
2






z
z
34
 Example: 2
1
1
)
1
)(
1
(
1
)
( 




z
z
z
X
2
2
)
1
)(
1
(
)
(



z
z
z
z
z
X
)
1
(
)
1
)(
1
(
)
1
( 3
2
2
1
2






 z
A
z
z
A
z
A
z
2
1
1
1
1
)
1
(
5
.
0
1
75
.
0
1
25
.
0
)
( 









z
z
z
z
z
X
)
(
)
1
(
5
.
0
)
(
)
1
(
75
.
0
)
(
)
1
(
25
.
0
)
( n
u
n
n
u
n
u
n
x n
n
n 



x(n) causal
• In the case of complex conjugate roots, the coefficients in the
partial fraction expansion will be complex conjugates.
 2
3
2
1
1
1
1 





z
A
z
A
z
A
2
3
)
1
)(
1
( 


z
z
z
35
36
Example:
Partial Fraction Expansion Algebra: A = 1, B = 2
Note, particular to z-transforms:
1) When finding poles and zeros,
express X(z) as a function of z.
2) When doing inverse z-transform
using PFE, express X(z) as a
function of z-1.
1
1
1
1
1
2
3
1
1
4
1
1
3
1
1
4
1
1
6
5
3
3
1
4
1
6
5
3
)
(









































z
B
z
A
z
z
z
z
z
z
z
z
X
   
n
x
n
x
n
x
z
z
z
X
2
1
1
1
]
[
3
1
1
2
4
1
1
1
)
(











37
ROC III:
ROC II:
ROC I:
   
   
n
u
n
x
n
u
n
x
z
n
n
















3
1
2
4
1
singnal
sided
-
right
-
3
1
2
1
   
   
1
3
1
2
4
1
singnal
sided
-
two
-
3
1
4
1
2
1




















n
u
n
x
n
u
n
x
z
n
n
   
   
1
3
1
2
1
4
1
singnal
sided
-
left
-
4
1
2
1






















n
u
n
x
n
u
n
x
z
n
n
Linear Constant- Coefficient
Difference Equation (LCCDE)
38
LTI Systems
h(n)
FIR IIR
With rational transfer
function
)
(
)
(
)
(
z
Q
z
P
z
H 
No rational transfer
function
)
(
)
(
)
(
z
Q
z
P
z
H 
Use difference
equations for
implementation
h(n),H (z)
x(n),X(z) y(n),Y(z) )
(
).
(
)
(
)
(
*
)
(
)
(
z
X
z
H
z
Y
n
x
n
h
n
y


Transfer
function
39
 Cumulative Average System:
 



n
k
n
k
x
n
n
y
0
,...
1
,
0
),
(
1
1
)
(
)
(
)
(
)
(
)
1
(
1
0
n
x
k
x
n
y
n
n
k






)
(
)
1
( n
x
n
ny 


)
(
1
1
)
1
(
1
)
( n
x
n
n
y
n
n
n
y





40
 The general form for a linear constant-coefficient
difference equation is given by:
 Given the difference equation of an IIR system and the initial
condition of y(n), we can compute the output y(n) through the
difference equation more efficiently using finite number of
computations.
 
 





M
k
k
N
k
k k
n
x
b
k
n
y
a
n
y
0
1
)
(
)
(
)
(
Order of the system
41
 Question: How can an LCCDE correspond to an LTI system?
 E.g.:
 It is not even a system, since a unique input does not
correspond to a unique output.
 Q: How can we show this?
 A: If is a solution, is also a solution.
 Q: How can we resolve this problem?
 A: We need to add an initial condition (I.C.).
)
(
)
1
(
)
( n
x
n
ay
n
y 


)
(
1 n
y
n
ka
n
y
n
y 
 )
(
)
( 1
2
)
(
)
1
(
)
( n
x
n
ay
n
y 


)
(
)
( n
b
n
x 

0
)
1
(
:
IC y
y 

42
)
(
)
1
(
)
( n
x
n
ay
n
y 

 )
(
)
( n
b
n
x 
 0
)
1
(
:
IC y
y 

:
0

n b
ay
b
ay
y 



 0
)
0
(
)
1
(
)
0
( 
ab
y
a
b
ay
a
ay
y 




 0
2
0 )
(
0
)
0
(
)
1
(
)
(
)
( 0 b
ay
a
n
y n


:
2


n )
(
)
1
(
)
( n
x
n
ay
n
y 

 )
(
)
(
1
)
1
( n
a
b
n
y
a
n
y 



0
1
)
1
(
)
1
(
1
)
2
( y
a
a
b
y
a
y 




 
Causal implementation
Anti-causal implementation
0
2
1
)
3
( y
a
y 

0
1
)
( y
a
n
y n

:
1


n
43
)
1
(
)
(
)
(
)
( 0
1
0 



 
n
u
y
a
n
u
b
ay
a
n
y n
n
)
(
)
( 0
1
n
bu
a
y
a
n
y n
n

 
• By Combining the two answers, we get:
• Q: Does this system correspond to a linear system?
)
(
)
1
(
)
( n
x
n
ay
n
y 

 )
(
)
( n
b
n
x 
 0
)
1
(
:
IC y
y 

• A: No, zero input does not result in zero output.
• An LCCDE corresponds to a linear system, when IC=0.
44
)
(
)
( 0
1
n
bu
a
y
a
n
y n
n

 
• Q: Does this system correspond to a TI system?
)
(
)
1
(
)
( n
x
n
ay
n
y 

 )
(
)
( n
b
n
x 
 0
)
1
(
:
IC y
y 

• A: Consider
• In order for an LCCDE to correspond to a TI system, IC=0.
(for 𝑛0 ≥ 0)
)
(
)
( n
b
n
x 
 . Now let’s shift the input: )
(
)
( 0
n
n
b
n
w 
 
Output: )
( 0
0
1 0
n
n
u
ba
y
a n
n
n

 

)
(
)
( 0
0
1
0
0
0
n
n
u
ba
y
a
n
n
y n
n
n
n



 


Shift
variant
• In order for an LCCDE to correspond to an LTI system, IC=0.
45
 In order an LCCDE to correspond to a causal LTI system :
◦ Initial rest condition (IRC)=0
 E.g., if , for a first order LCCDE, the IRC should
be as follows:
 E.g., if , for a second order LCCDE, the IRC
should be as follows:
)
(
)
( n
n
x 

0
)
1
( 

y
)
3
(
)
( 
 n
n
x 
0
)
2
(
,
0
)
1
( 
 y
y
46
)
2
(
)
1
(
)
(
2
)
1
(
2
1
)
( 





 n
x
n
x
n
x
n
y
n
y 0
;
0
)
( 
 n
n
y
)
2
(
)
1
(
)
(
2
)
1
(
2
1
)
( 





 n
n
n
n
h
n
h 


Solution1: )
2
(
)
1
(
)
(
2
)
1
(
2
1
)
( 





 n
n
n
n
h
n
h 


0
)
1
( 

h
2
0
0
2
0
0
0
)
0
(
2
)
1
(
2
1
)
0
( 








 
h
h
1


n
0

n
1

n 1
2
2
1
0
)
0
(
0
)
0
(
2
1
)
1
( 





 
h
h
2

n 1
1
)
2
1
(
2
)
2
1
(
1
)
1
2
2
1
(
2
1
)
0
(
0
0
)
1
(
2
1
)
2
( 2












 
h
h
3

n
2
1
1
)
2
1
(
2
)
2
1
(
)
1
1
)
2
1
(
2
)
2
1
((
2
1
)
2
(
2
1
)
3
( 2
3
2










 h
h
3
,
1
)
2
1
(
1
)
2
1
(
2
)
2
1
(
)
1
)
2
1
(
1
)
2
1
(
2
)
2
1
((
2
1
)
1
(
2
1
)
(
2
1
3
2
1




















n
n
h
n
h
n
n
n
n
n
n
47
3

n
)
2
(
)
1
(
)
(
2
)
1
(
2
1
)
( 





 n
x
n
x
n
x
n
y
n
y 0
;
0
)
( 
 n
n
y
)
(
)
(
)
(
2
)
(
2
1
)
( 2
1
1
z
X
z
z
X
z
z
X
z
Y
z
z
Y 






1
2
1
1
1
2
1
1
2
1
1
2
1
1
2
)
(
)
(
)
(












z
z
z
z
z
z
X
z
Y
z
H
)
( a
z 
)
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
Remember:
)
2
(
2
1
)
1
(
2
1
)
(
2
1
2
)
(
2
1


























n
u
n
u
n
u
n
h
n
n
n
h(n),H (z)
x(n),X(z) y(n),Y(z)
)
(
)
(
)
(
)
(
).
(
)
(
z
X
z
Y
z
H
z
X
z
H
z
Y


48
 Z-transform with rational transfer function:



















N
k
k
k
M
k
k
k
N
N
M
M
z
a
z
b
z
a
z
a
a
z
b
z
b
b
z
A
z
B
z
X
0
0
1
1
0
1
1
0
...
...
)
(
)
(
)
(
Zero: X(z)=0 Pole: X(z)=∞
0
,
0 0
0 
 b
a
Getting rid of the negative powers:
0
1
0
1
0
1
0
1
0
0
...
...
)
(
)
(
)
(
a
a
z
a
a
z
b
b
z
b
b
z
z
a
z
b
z
A
z
B
z
X
N
N
N
M
M
M
N
M




























)
)...(
)(
(
)
)...(
)(
(
2
1
2
1
0
0
N
M
N
M
p
z
p
z
p
z
z
z
z
z
z
z
z
a
b






 

Poles and zeros?
49
 A pole-zero plot can represent X(z) graphically.
)
( a
z 
Example: )
(
)
(
1 n
u
a
n
x n

1
1
1
1
)
( 


az
z
X
a
z
z
z
X


)
(
1
50
 If a polynomial has real coefficients, its roots are either
real or occur in complex conjugates.
51
)
( a
z 
)
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
1
0 
 a
0
1 

 a
1

a
52
)
( a
z 
)
(
)
( n
u
a
n
x n

1
1
1
)
( 


az
z
X
1


a
1

a
1


a
53
)
( a
z 
)
(
)
( n
u
na
n
x n

2
1
1
)
1
(
)
( 



az
az
z
X
1
0 
 a
0
1 

 a
1

a
54
)
( a
z 
)
(
)
( n
u
na
n
x n

2
1
1
)
1
(
)
( 



az
az
z
X
1


a
1

a
1


a
55
56
 For BIBO stability of an LTI system, we shall have
 Now, let’s see what happens in the z-domain:
 




n
n
h )
(






n
n
z
n
h
z
H )
(
)
( 





n
n
z
n
h
z
H )
(
)
( 











n
n
n
n
z
n
h
z
n
h )
(
)
(
1

z 





n
z
n
h
z
H )
(
)
( 1
•CONCLUSION: an LTI system is BIBO stable iff the ROC
of its impulse response includes the unit circle.
57
 Causal LTI systems have h(n) = 0 for n<0.
 ROC of the z-transform of a causal sequence is the
exterior of a circle.
 CONCLUSION: an LTI system is causal iff the ROC of
its system function is the exterior of a circle of radius
r<∞ including the point z=∞.
58
 Conditions for stability and causality are different and one
does not imply the other.
 A causal system might be stable or unstable just as a non-
causal system can be stable or unstable.
 For causal systems though, the condition of stability can be
narrowed since:
◦ A causal system has z-transform with ROC outside a circle of radius r.
◦ The ROC of a stable system must contain the unit circle.
Then a causal and stable system ROC must be 𝑧 > 𝑟 with 𝑟 < 1.
 This means that a causal LTI system is BIBO
stable iff all the poles of H(z) are inside the
unit circle.
1


59
 Example:
 Specify ROC and h(n) for the following cases:
 The system is stable:
 The system is causal:
 The system is anti-causal:
1
1
2
1
2
1
1
3
1
2
1
1
5
.
1
5
.
3
1
4
3
)
( 












z
z
z
z
z
z
H
3
: 2
1

 z
ROC   )
1
(
)
3
(
2
)
(
)
( 2
1



 n
u
n
u
n
h n
n
3
: 
z
ROC   )
(
)
3
(
2
)
(
)
( 2
1
n
u
n
u
n
h n
n


5
.
0
: 
z
ROC   )
1
(
]
)
3
(
2
[
)
( 2
1




 n
u
n
h n
n
60
 Discussed z-transform, region of convergence,
properties of z-transform and how the inverse z-
transform can be calculated.
 Discussed LCCDEs and the concept of the pole-zero
for their z-transform
 Next: we will analyze the properties of ideal filters
61

More Related Content

Similar to 5.pdf

ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptAhmadZafar60
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
short course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatisticsshort course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatisticsAmro Elfeki
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Waqas Afzal
 
Notes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxNotes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxgajjesatheesh59
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transformKaransinh Parmar
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...NUI Galway
 
Signals and systems3 ppt
Signals and systems3 pptSignals and systems3 ppt
Signals and systems3 pptEngr umar
 
Session02 review-laplace and partial fractionl
Session02 review-laplace and partial fractionlSession02 review-laplace and partial fractionl
Session02 review-laplace and partial fractionlAhmad Essam
 

Similar to 5.pdf (20)

ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.ppt
 
Z transform
Z transformZ transform
Z transform
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Dsp lecture vol 3 zt
Dsp lecture vol 3 ztDsp lecture vol 3 zt
Dsp lecture vol 3 zt
 
short course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatisticsshort course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatistics
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
 
Notes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxNotes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptx
 
Signal3
Signal3Signal3
Signal3
 
ch3-4
ch3-4ch3-4
ch3-4
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transform
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
It 05104 digsig_1
It 05104 digsig_1It 05104 digsig_1
It 05104 digsig_1
 
Signals and systems3 ppt
Signals and systems3 pptSignals and systems3 ppt
Signals and systems3 ppt
 
Unit2
Unit2Unit2
Unit2
 
Session02 review-laplace and partial fractionl
Session02 review-laplace and partial fractionlSession02 review-laplace and partial fractionl
Session02 review-laplace and partial fractionl
 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 
Z transform
Z transformZ transform
Z transform
 
Z transform
Z transformZ transform
Z transform
 
Digital signal processing part2
Digital signal processing part2Digital signal processing part2
Digital signal processing part2
 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

5.pdf

  • 1.
  • 2. 2         n n z n x z X n x Z ) ( ) ( )} ( { Vs.        n n j e n x X   ) ( ) ( Q: Why do we need Z-transform? A: For some signals, Fourier transform does not converge. ) ( 2 ) ( n u n x n  e.g.: Complex variable Complex function • Relationship between and : ) (z X ) ( X ) ( ) (  X z X jw e z   Z-transform evaluated at unit circle corresponds to DTFT.  The role of Z-transform in DT is similar to Laplace transform in CT.
  • 3.         n n z n x z X n x Z ) ( ) ( )} ( {  j re z  r z    z For what values of z, does the z-transform converge?                n n j n n re n x z n x z X  ) ( ) ( ) (          n n j n e r n x z X  ) ( ) ( DTFT of n r n x  ) ( DTFT of n r n x  ) ( exists if n r n x  ) ( is absolutely summable.     n n r n x ) ( Z-transform exists and converges. Convergence only depends on r. 3
  • 4.     n n r n x ) ( ROC is radially symmetric. 1 1  j re z  If Z-transform converges for It also converges for 2 2  j re z  • ROC does not depend on the angle. • Region of Convergence (ROC): ROC is a region in “z” domain that converges.      n n z n x ) ( 4
  • 5.  There are the following possibilities: 1. All Z-domain except one or two points (origin / infinity) 2. Inside a circle 3. Outside a circle 4. Between two circles (ring) 5. ROC does not exist 5
  • 6.          Otherwise 0 1 0 ) ( N n a n x n 1 1 2 2 1 ... 1 ) (           N N z a z a az z X 1 1 2 2 ... 1        N N z a z a z a ROC: everywhere except at the origin: 0  z        n n z n x z X ) ( ) ( 6
  • 7.          Otherwise 0 0 ) ( n N a n x n N N z a z a z a z X         ... 1 ) ( 2 2 1 ROC: everywhere except at infinity:   z 7        n n z n x z X ) ( ) (
  • 8. ) ( ) ( n u a n x n         n n n n u z a z X ) ( ) (      0 n n n z a     0 1 ) ( n n az 1 1   az 1 1 1 ) (    az z X z a  8
  • 9. ) 1 ( ) (     n u a n x n         1 ) ( n n n z a z X            0 1 1 ) ( 1 m m m m m z a z a 1 1   z a 1 1 1 ) (    az z X a z  • Same Z-transform as the previous example. However, the ROC is different. 9
  • 10.  We have shown that X(z) needs the ROC to uniquely specify a sequence. ) ( ) ( 1 1 n x ROC z X    ) ( ) ( 2 2 n x ROC z X    ) ( ) ( n u a n x n  1 1 1 ) (    az z X 1 1 1 ) (    az z X ) 1 ( ) (     n u a n x n 10
  • 11. ) ( 3 1 ) ( 2 1 ) ( n u n u n x n n                n n n n z z z X                        0 1 0 1 3 1 2 1 ) ( 2 1  z 3 1  z 11
  • 12. ) 1 ( 2 1 ) ( 3 1 ) (                  n u n u n x n n n n n n z z z X                         1 1 0 1 2 1 3 1 ) ( 3 1  z 2 1  z 12
  • 13. ) 1 ( 3 1 ) ( 2 1 ) (                 n u n u n x n n n n n n z z z X                       0 1 0 1 3 1 2 1 ) ( 2 1  z 3 1  z  Z-transform does not exist. 13
  • 14. 14 (2) The ROC does not contain any poles (same as in LT). (1) The ROC of X(z) consists of a ring in the z-plane centered about the origin (equivalent to a vertical strip in the s-plane)
  • 15. 15 (3) If x[n] is of finite duration, then the ROC is the entire z- plane, except possibly at z = 0 and/or z = ∞. Why? Examples: CT counterpart       2 1 ) ( N N n n z n x z X   s t z n all ROC 1 ) ( all ROC 1                   s e e T t z z n sT ) ( 0 ROC 1 1                s e e T t z z n sT ) ( ROC 1   Book Chapter10: Section 1
  • 16. 16 (4) If x[n] is a right-sided sequence, and if |z| = ro is in the ROC, then all finite values of z for which |z| > ro are also in the ROC.             1 1 0 1 n faster tha converges N n n n N n r n x r n x Book Chapter10: Section 1
  • 17. 17 What types of signals do the following ROC correspond to? right-sided left-sided two-sided (5) If x[n] is a left-sided sequence, and if |z| = ro is in the ROC, then all finite values of z for which 0 < |z| < ro are also in the ROC. (6) If x[n] is two-sided, and if |z| = ro is in the ROC, then the ROC consists of a ring in the z-plane including the circle |z| = ro. Book Chapter10: Section 1
  • 18. 18 Example:   0 , | |   b b n x n       1      n u b n u b n x n n     b z z b n u b b z bz n u b n n 1 , 1 1 1 , 1 1 From: 1 1 1              Book Chapter10: Section 1
  • 19. 19 Example, continued Clearly, ROC does not exist if b > 1 ⇒ No z-transform for b|n|. b z b z b bz z X 1 , 1 1 1 1 ) ( 1 1 1           Book Chapter10: Section 1
  • 20.  ROC is only a function of r.  FLS ROC is everywhere except at the origin or infinity.  RHS ROC is outside some circle.  LHS ROC is inside some circle.  BHS ROC is a ring or it does not exist.  FT exists if ROC includes unit circle. 20
  • 21.  Linearity: ) ( ) ( 1 1 z X n x z   ) ( ) ( 2 2 z X n x z   ) ( ) ( ) ( ) ( ) ( ) ( 2 2 1 1 2 2 1 1 z X a z X a z X n x a n x a n x z       1 ROC 2 ROC ROC: at least the intersection of ROC1 and ROC2. 21
  • 22.  Example: ? ) ( ) ( ) (cos ) ( 0   z X n u n n x  Solution: ) ( 2 1 ) ( 2 1 ) ( ) (cos ) ( 0 0 0 n u e n u e n u n n x n j n j        Using linearity property: )} ( 2 1 ) ( 2 1 { ) ( 0 0 n u e n u e z z X n j n j      Earlier we showed that: ) ( ) ( n u a n x n  1 1 1 ) (    az z X If we set: 0  j e a  ) ( z a  ) ( ) ( 0 n u e n x n j  1 0 1 1 ) (    z e z X j 1 1 0 0 1 1 2 1 1 1 2 1 ) (          z e z e z X j j   ) 1 (  z ) 1 (  z 2 0 1 0 1 cos 2 1 cos 1 ) (        z z z z X   22
  • 23. ) ( ) ( z X n x z   ROC ROC: Similar ROC with some exceptions at 0 and infinity ) ( ) ( z X z k n x k z     Example: } 1 , 0 , 7 , 5 , 2 , 1 { ) ( 1   n x ? )) 2 ( ) ( { 1 2    n x n x Z 5 3 2 1 1 7 5 2 1 ) (          z z z z z X 3 1 1 2 2 7 5 2 ) (        z z z z z X ROC? 23
  • 24. ) ( ) ( z X n x z   2 1 : r z r ROC   ) ( ) ( 1 z a X n x a z n    Example: 2 1 : r a z r a ROC   ) ( ) (cos ) ( 0 n u n a n x n   ) ( ) (cos ) ( 0 n u n n x   2 0 1 0 1 cos 2 1 cos 1 ) (        z z z z X   ) 1 (  z Earlier: ) ( ) (cos ) ( 0 n u n a n x n   2 2 0 1 0 1 cos 2 1 cos 1 ) (        z a az az z X   ) ( a z  24
  • 25. ) ( ) ( z X n x z   2 1 : r z r ROC   ) ( ) ( 1     z X n x z Example: 1 2 1 1 : r z r ROC   ) ( a z  Earlier: ) ( ) ( n u n x   ? ) (  z X ) ( ) ( n u a n x n  1 1 1 ) (    az z X ) ( ) ( n u n x  1 1 1 ) (    z z X ) 1 (  z ) ( ) ( n u n x   z z X   1 1 ) ( ) 1 (  z 25
  • 26. ) ( ) ( z X n x z   ROC dz z dX z n nx z ) ( ) (    Example: ) ( a z  Earlier: ) ( ) ( n u na n x n  ? ) (  z X ) ( ) ( 1 n u a n x n  1 1 1 1 ) (    az z X 2 1 1 1 2 ) 1 ( ) ( ) (       az az dz z dX z z X ROC ) ( ) ( 2 n u na n x n  ) ( a z  26
  • 27. ) ( ) ( 1 1 z X n x z   ) ( ) ( 2 2 z X n x z   ) ( ). ( ) ( ) ( * ) ( ) ( 2 1 2 1 z X z X z X n x n x n x z     1 ROC 2 ROC ROC: at least the intersection of ROC1 and ROC2 Example:          1 , 2 , 1 ) ( 1 n x       elsewhere , 0 5 0 , 1 ) ( 2 n n x ? ) ( * ) ( 2 1  n x n x 2 1 1 2 1 ) (      z z z X 5 4 3 2 1 2 1 ) (            z z z z z z X 7 6 1 2 1 1 ) ( ) ( ) (         z z z z X z X z X           1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 ) (n x 27
  • 29. ) (z X ) (n x       n n z n x n x Z ) ( )} ( { ) (z X ) (n x ? • Methods of calculating the inverse Z-transform: • Cauchy theorem for calculating the inverse Z-transform (not covered) • Series expansion • Partial fraction expansion and using look-up tables    C n dz z z X j 1 ) ( 2 1  29
  • 30. 4 3 20 5 8 ) (     z z z X           n n z x x z x z n x z X ... ) 1 ( ) 0 ( ) 1 ( ... ) ( ) ( 1 ) 4 ( 20 ) ( 5 ) 3 ( 8 ) (      n n n n x          n n nz c z X ) ( • Basic concept: expand X(z) in terms of powers of z-1 30
  • 31.  Example:   ? ) ( : 1 log ) ( 1      n x a z ROC az z X ... 4 3 2 ) 1 log( 4 3 2 1        x x x x x x       ... 4 3 2 ) 1 log( 4 1 3 1 2 1 1 1 1 1              az az az az az az ... ) 3 ( 3 ) 2 ( 2 ) 1 ( ) 0 ( . 0 ) ( 3 2          a a a n x   ) 1 ( 1 ) ( 1     n u n a n x n n 31
  • 32.  This method is applicable if we have a ratio of two polynomials in the form of .  We would like to rewrite X(z) in the following manner:  This expansion is performed in a way that the inverse Z-transform of can be easily found using a lookup table and using the linearity property, we can find x(n): ) ( ... ) ( ) ( ) ( 2 2 1 1 z X a z X a z X a z X N N     ) ( ),..., ( ), ( 2 1 z X z X z X N ) ( ... ) ( ) ( ) ( 2 2 1 1 n x a n x a n x a n x N N     ) ( ) ( n u a n x n  1 1 1 ) (    az z X 2 1 1 ) 1 ( ) (     az az z X ) ( ) ( n u na n x n  ) ( a z  Example: N N M M z a z a a z b z b b z Q z P z X             ... ... ) ( ) ( ) ( 1 1 0 1 1 0 32 ) ( a z 
  • 33.  Any non-constant single-variable polynomial of degree N can be factored into N terms:  If the coefficients of the polynomial are real, then the roots are either real or complex conjugates.  If is a complex root, then is also a root. 3 3 2 2 1 1 0 ) ( z a z a z a a z P     ) )( )( ( 3 2 1 z z z z z z k     0 z * 0 z 33
  • 34.  Example: 5 . 0 5 . 1 5 . 0 5 . 1 1 1 ) ( 2 2 2 1         z z z z z z X ) 5 . 0 )( 1 ( ) (    z z z z z X ) 1 ( ) 5 . 0 ( 2 1     z A z A z 1  z 2 1  A 5 . 0  z 1 2   A  5 . 0 1 2 ) (     z z z z z X 1 :  z ROC ) ( ] 5 . 0 2 [ ) ( ) 5 . 0 ( ) ( ) 1 .( 2 ) ( n u n u n u n x n n n     ) 5 . 0 )( 1 ( 5 . 0 1 ) 1 ( 2 ) 5 . 0 ( 1 2 1           z z A z A z A z A z 1 1 5 . 0 1 1 1 2       z z 34
  • 35.  Example: 2 1 1 ) 1 )( 1 ( 1 ) (      z z z X 2 2 ) 1 )( 1 ( ) (    z z z z z X ) 1 ( ) 1 )( 1 ( ) 1 ( 3 2 2 1 2        z A z z A z A z 2 1 1 1 1 ) 1 ( 5 . 0 1 75 . 0 1 25 . 0 ) (           z z z z z X ) ( ) 1 ( 5 . 0 ) ( ) 1 ( 75 . 0 ) ( ) 1 ( 25 . 0 ) ( n u n n u n u n x n n n     x(n) causal • In the case of complex conjugate roots, the coefficients in the partial fraction expansion will be complex conjugates.  2 3 2 1 1 1 1       z A z A z A 2 3 ) 1 )( 1 (    z z z 35
  • 36. 36 Example: Partial Fraction Expansion Algebra: A = 1, B = 2 Note, particular to z-transforms: 1) When finding poles and zeros, express X(z) as a function of z. 2) When doing inverse z-transform using PFE, express X(z) as a function of z-1. 1 1 1 1 1 2 3 1 1 4 1 1 3 1 1 4 1 1 6 5 3 3 1 4 1 6 5 3 ) (                                          z B z A z z z z z z z z X     n x n x n x z z z X 2 1 1 1 ] [ 3 1 1 2 4 1 1 1 ) (           
  • 37. 37 ROC III: ROC II: ROC I:         n u n x n u n x z n n                 3 1 2 4 1 singnal sided - right - 3 1 2 1         1 3 1 2 4 1 singnal sided - two - 3 1 4 1 2 1                     n u n x n u n x z n n         1 3 1 2 1 4 1 singnal sided - left - 4 1 2 1                       n u n x n u n x z n n
  • 39. LTI Systems h(n) FIR IIR With rational transfer function ) ( ) ( ) ( z Q z P z H  No rational transfer function ) ( ) ( ) ( z Q z P z H  Use difference equations for implementation h(n),H (z) x(n),X(z) y(n),Y(z) ) ( ). ( ) ( ) ( * ) ( ) ( z X z H z Y n x n h n y   Transfer function 39
  • 40.  Cumulative Average System:      n k n k x n n y 0 ,... 1 , 0 ), ( 1 1 ) ( ) ( ) ( ) ( ) 1 ( 1 0 n x k x n y n n k       ) ( ) 1 ( n x n ny    ) ( 1 1 ) 1 ( 1 ) ( n x n n y n n n y      40
  • 41.  The general form for a linear constant-coefficient difference equation is given by:  Given the difference equation of an IIR system and the initial condition of y(n), we can compute the output y(n) through the difference equation more efficiently using finite number of computations.          M k k N k k k n x b k n y a n y 0 1 ) ( ) ( ) ( Order of the system 41
  • 42.  Question: How can an LCCDE correspond to an LTI system?  E.g.:  It is not even a system, since a unique input does not correspond to a unique output.  Q: How can we show this?  A: If is a solution, is also a solution.  Q: How can we resolve this problem?  A: We need to add an initial condition (I.C.). ) ( ) 1 ( ) ( n x n ay n y    ) ( 1 n y n ka n y n y   ) ( ) ( 1 2 ) ( ) 1 ( ) ( n x n ay n y    ) ( ) ( n b n x   0 ) 1 ( : IC y y   42
  • 43. ) ( ) 1 ( ) ( n x n ay n y    ) ( ) ( n b n x   0 ) 1 ( : IC y y   : 0  n b ay b ay y      0 ) 0 ( ) 1 ( ) 0 (  ab y a b ay a ay y       0 2 0 ) ( 0 ) 0 ( ) 1 ( ) ( ) ( 0 b ay a n y n   : 2   n ) ( ) 1 ( ) ( n x n ay n y    ) ( ) ( 1 ) 1 ( n a b n y a n y     0 1 ) 1 ( ) 1 ( 1 ) 2 ( y a a b y a y        Causal implementation Anti-causal implementation 0 2 1 ) 3 ( y a y   0 1 ) ( y a n y n  : 1   n 43
  • 44. ) 1 ( ) ( ) ( ) ( 0 1 0       n u y a n u b ay a n y n n ) ( ) ( 0 1 n bu a y a n y n n    • By Combining the two answers, we get: • Q: Does this system correspond to a linear system? ) ( ) 1 ( ) ( n x n ay n y    ) ( ) ( n b n x   0 ) 1 ( : IC y y   • A: No, zero input does not result in zero output. • An LCCDE corresponds to a linear system, when IC=0. 44
  • 45. ) ( ) ( 0 1 n bu a y a n y n n    • Q: Does this system correspond to a TI system? ) ( ) 1 ( ) ( n x n ay n y    ) ( ) ( n b n x   0 ) 1 ( : IC y y   • A: Consider • In order for an LCCDE to correspond to a TI system, IC=0. (for 𝑛0 ≥ 0) ) ( ) ( n b n x   . Now let’s shift the input: ) ( ) ( 0 n n b n w    Output: ) ( 0 0 1 0 n n u ba y a n n n     ) ( ) ( 0 0 1 0 0 0 n n u ba y a n n y n n n n        Shift variant • In order for an LCCDE to correspond to an LTI system, IC=0. 45
  • 46.  In order an LCCDE to correspond to a causal LTI system : ◦ Initial rest condition (IRC)=0  E.g., if , for a first order LCCDE, the IRC should be as follows:  E.g., if , for a second order LCCDE, the IRC should be as follows: ) ( ) ( n n x   0 ) 1 (   y ) 3 ( ) (   n n x  0 ) 2 ( , 0 ) 1 (   y y 46
  • 47. ) 2 ( ) 1 ( ) ( 2 ) 1 ( 2 1 ) (        n x n x n x n y n y 0 ; 0 ) (   n n y ) 2 ( ) 1 ( ) ( 2 ) 1 ( 2 1 ) (        n n n n h n h    Solution1: ) 2 ( ) 1 ( ) ( 2 ) 1 ( 2 1 ) (        n n n n h n h    0 ) 1 (   h 2 0 0 2 0 0 0 ) 0 ( 2 ) 1 ( 2 1 ) 0 (            h h 1   n 0  n 1  n 1 2 2 1 0 ) 0 ( 0 ) 0 ( 2 1 ) 1 (         h h 2  n 1 1 ) 2 1 ( 2 ) 2 1 ( 1 ) 1 2 2 1 ( 2 1 ) 0 ( 0 0 ) 1 ( 2 1 ) 2 ( 2               h h 3  n 2 1 1 ) 2 1 ( 2 ) 2 1 ( ) 1 1 ) 2 1 ( 2 ) 2 1 (( 2 1 ) 2 ( 2 1 ) 3 ( 2 3 2            h h 3 , 1 ) 2 1 ( 1 ) 2 1 ( 2 ) 2 1 ( ) 1 ) 2 1 ( 1 ) 2 1 ( 2 ) 2 1 (( 2 1 ) 1 ( 2 1 ) ( 2 1 3 2 1                     n n h n h n n n n n n 47 3  n
  • 48. ) 2 ( ) 1 ( ) ( 2 ) 1 ( 2 1 ) (        n x n x n x n y n y 0 ; 0 ) (   n n y ) ( ) ( ) ( 2 ) ( 2 1 ) ( 2 1 1 z X z z X z z X z Y z z Y        1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 ) ( ) ( ) (             z z z z z z X z Y z H ) ( a z  ) ( ) ( n u a n x n  1 1 1 ) (    az z X Remember: ) 2 ( 2 1 ) 1 ( 2 1 ) ( 2 1 2 ) ( 2 1                           n u n u n u n h n n n h(n),H (z) x(n),X(z) y(n),Y(z) ) ( ) ( ) ( ) ( ). ( ) ( z X z Y z H z X z H z Y   48
  • 49.  Z-transform with rational transfer function:                    N k k k M k k k N N M M z a z b z a z a a z b z b b z A z B z X 0 0 1 1 0 1 1 0 ... ... ) ( ) ( ) ( Zero: X(z)=0 Pole: X(z)=∞ 0 , 0 0 0   b a Getting rid of the negative powers: 0 1 0 1 0 1 0 1 0 0 ... ... ) ( ) ( ) ( a a z a a z b b z b b z z a z b z A z B z X N N N M M M N M                             ) )...( )( ( ) )...( )( ( 2 1 2 1 0 0 N M N M p z p z p z z z z z z z z a b          Poles and zeros? 49
  • 50.  A pole-zero plot can represent X(z) graphically. ) ( a z  Example: ) ( ) ( 1 n u a n x n  1 1 1 1 ) (    az z X a z z z X   ) ( 1 50
  • 51.  If a polynomial has real coefficients, its roots are either real or occur in complex conjugates. 51
  • 52. ) ( a z  ) ( ) ( n u a n x n  1 1 1 ) (    az z X 1 0   a 0 1    a 1  a 52
  • 53. ) ( a z  ) ( ) ( n u a n x n  1 1 1 ) (    az z X 1   a 1  a 1   a 53
  • 54. ) ( a z  ) ( ) ( n u na n x n  2 1 1 ) 1 ( ) (     az az z X 1 0   a 0 1    a 1  a 54
  • 55. ) ( a z  ) ( ) ( n u na n x n  2 1 1 ) 1 ( ) (     az az z X 1   a 1  a 1   a 55
  • 56. 56
  • 57.  For BIBO stability of an LTI system, we shall have  Now, let’s see what happens in the z-domain:       n n h ) (       n n z n h z H ) ( ) (       n n z n h z H ) ( ) (             n n n n z n h z n h ) ( ) ( 1  z       n z n h z H ) ( ) ( 1 •CONCLUSION: an LTI system is BIBO stable iff the ROC of its impulse response includes the unit circle. 57
  • 58.  Causal LTI systems have h(n) = 0 for n<0.  ROC of the z-transform of a causal sequence is the exterior of a circle.  CONCLUSION: an LTI system is causal iff the ROC of its system function is the exterior of a circle of radius r<∞ including the point z=∞. 58
  • 59.  Conditions for stability and causality are different and one does not imply the other.  A causal system might be stable or unstable just as a non- causal system can be stable or unstable.  For causal systems though, the condition of stability can be narrowed since: ◦ A causal system has z-transform with ROC outside a circle of radius r. ◦ The ROC of a stable system must contain the unit circle. Then a causal and stable system ROC must be 𝑧 > 𝑟 with 𝑟 < 1.  This means that a causal LTI system is BIBO stable iff all the poles of H(z) are inside the unit circle. 1   59
  • 60.  Example:  Specify ROC and h(n) for the following cases:  The system is stable:  The system is causal:  The system is anti-causal: 1 1 2 1 2 1 1 3 1 2 1 1 5 . 1 5 . 3 1 4 3 ) (              z z z z z z H 3 : 2 1   z ROC   ) 1 ( ) 3 ( 2 ) ( ) ( 2 1     n u n u n h n n 3 :  z ROC   ) ( ) 3 ( 2 ) ( ) ( 2 1 n u n u n h n n   5 . 0 :  z ROC   ) 1 ( ] ) 3 ( 2 [ ) ( 2 1      n u n h n n 60
  • 61.  Discussed z-transform, region of convergence, properties of z-transform and how the inverse z- transform can be calculated.  Discussed LCCDEs and the concept of the pole-zero for their z-transform  Next: we will analyze the properties of ideal filters 61