SlideShare a Scribd company logo
1 of 28
Download to read offline
Automatic control




Introduction to automatic control

         Dr.-Ing.
         Dr Ing Mohamed Saber Sokar
▐ Objectives
 Review on elementary function
                     y
 Complex numbers
 Laplace transform
     Examples
     properties
     Inverse transform
     Partial fraction expansion
                       e pansion
 Partial fraction
 Common test input signals
 U d
  Understand the Concept of Transfer Functions.
        t d th C        t fT     f F     ti
  ٢                                Dr.-Ing. Mohamed Saber Sokar
▐ Elementary functions
Exponential Function e x
e xe y  e x y ,            e x / e y  e x y
( e x ) y  e xy , e 0  1
Logrithmic F
L i h i Function ln( x ) i l (
ln (xy)  ln x  ln y
   ( y)
    x
ln  ln x  ln y
    y
ln (x a )  a ln x ,
   (                               ln(1)  0
                                     ( )
                                       1
                     ln x
                                  ln         1
e   ln x
            x, e
              ,              e        x
                                           
                                             x
       ٣                                          Dr.-Ing. Mohamed Saber Sokar
▐ Elementary functions
       Even Function: f(  x)  f(x),     x
       Odd Function: f(  x)   f(x),     x
       sin(  x)   sin x, cos(  x)  cos x
       sin x  cos x  1
          2        2


       sin (x  y)  sin x cos y  cos x sin y
       sin (x  y)  sin x cos y  cos x sin y
       sin 2 x  2 sin x cos x
       cos (x  y)  cos x cos y  sin x sin y
       cos (x  y)  cos x cos y  sin x sin y
  ٤                           Dr.-Ing. Mohamed Saber Sokar
▐ Elementary functions
      cos 2 x  cos 2 x  sin 2 x  1  2 sin 2 x  2 cos 2 x  1
                1
      cos x  ( 1  cos 2 x)
           2

                2
               1
      sin 2 x  ( 1  cos 2 x)
               2
                       π            π
      sin x  cos ( x- )  cos ( -x)
                       2            2
                        π            π
      cos x  sin ( x  )  sin ( -x)
                         2           2
      sin (π  x)  sin x
      cos (π  x)   cos x
              sin x           cos x             1                1
      tan x        , cot x        , sec x        , csc x 
              cos x           sin x
                               i              cos x           sin x
                                                               i
  ٥                                            Dr.-Ing. Mohamed Saber Sokar
▐ Elementary functions

      Simplifying
      D  A cos   B sin 
                               B
      then C  A  B , tan  
                    2   2

                               A
      A cos x  B sin x  A2  B 2 cos (  )

          C : magnitude,  : phase

  ٦                                 Dr.-Ing. Mohamed Saber Sokar
▐ Complex Numbers
         If z1  x1  i. y1 , and z 2  x2  i. y2
 adding      z  z1  z 2  ( x1  iy1 )  ( x2  iy2 )  ( x1  x2 )  i ( y1  y2 )

 Multiplying       z  z1 . z 2  ( x1  iy1 ) . ( x2  iy2 )
                    z  z1  z 2  x1 x2  y1 y2  i ( x2 y1  x1 y2 )
 Multiplying by conjugate of the denominator
          z1 x1  iy1 ( x1  iy1 )( x2  iy2 )
        z           
          z 2 x2  iy2 ( x2  iy2 )( x2  iy2 )
           x1 x2  y1 y2    x2 y1  x1 y2
        z               i
             x2  y 2
               2     2
                              x2  y 2
                                2     2


    ٧                                            Dr.-Ing. Mohamed Saber Sokar
▐ Polar form of Complex Numbers
 z=x+i.y,        if    x=r . cos, y= r . sin
  Then z = r(cos +i . sin = r 
 Th        (          i 
 Absolute value (modulus) r2=x2+y2
 Magnitude
    g                  r  x2  y2

 Argument = tan-1(y/x)
 Example z=2+i.4
                          z       20
                                          4
                           tan     1

                                          2
  ٨                             Dr.-Ing. Mohamed Saber Sokar
▐ Laplace Transform
 D fi iti
  Definition and examples
               d      l
                                                
                            F ( s )  L( f )   e  st f (t )dt
                                                0

                           Inverse Lapalce           f (t )  L1 ( F )
 Example
                                      Unit Step Function u(t)
 f (t )  u (t )  1
                                                   
                                        1  st            1  s 1 0
 F ( s )  L (1)   e    st
                                1 dt   e               e  e
                   0
                                        s           0     s      s
          1
 F (s) 
          s
    ٩                                                   Dr.-Ing. Mohamed Saber Sokar
▐ Laplace Transform (Example)
 Fi d Laplace transform for the f ll i
  Find L l     t    f    f th following                             f (t)  e
                                                                            3t

  function
                                                       
         F ( s )  L ( e 3 t )   e  st e 3 t dt   e  ( s  3 ) t dt
                                    0                    0
                                            
                     1    ( s 3)t                1
                      e                       
                    s3                     0     s3
                     1
         F (s) 
                   s3
                    1
        L (e ) 
            at

                  sa
   ١٠                                              Dr.-Ing. Mohamed Saber Sokar
▐ Laplace Transform
                                
      L ( e sin  t )           e  st e at sin  tdt
             at

                                0
                                                                                    
                           1                                                                   1
                            e  ( s  a ) t sin  t                              (           ) e  ( s  a ) t  cos  tdt
                          sa                                              0         0
                                                                                              sa
                                     
                            
                       
                           sa       
                                     0
                                       e  ( s  a ) t cos  tdt

                                                                                                   
                                                                                                          1
                                                                   cos  t                           (       ) e  ( s  a ) t   2 sin  tdt
                                                     ( s  a )t
                                               e                                       
                             (s  a)2                                               0
                                                                                             sa    0
                                                                                                           sa
                                                                       
                                                      2
                                                                       e                    sin  tdt
                                                                               ( s  a )t
                                            
                           (s  a)       2
                                                 (s  a)           2
                                                                       0
                            
                  2                                                       
                        2 
      (1                ) e  st sin  tdt 
             (s  a)        0
                                                                   (s  a)2
      
                                             
      
      0
        e  st sin  tdt 
                                 (s  a)2   2
      
                                         sa
      
      0
        e  st cos  tdt 
                                    (s  a)2   2
 ١١                                                                                              Dr.-Ing. Mohamed Saber Sokar
▐ Laplace transform table




 ١٢                 Dr.-Ing. Mohamed Saber Sokar
▐ Laplace transform theorem-1




 ١٣                Dr.-Ing. Mohamed Saber Sokar
▐ Laplace transform theorem-2




 ١٤                Dr.-Ing. Mohamed Saber Sokar
▐ Laplace Transform
  Find Laplace transform
      y
      y”+9y=0, y(0)=0, y’(0)=2
          y    y( )    y( )
 1- L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2
 2- L(y)=Y(s)
                Solution
                Sol tion
 (s2+9)Y(s)-2=0
    +9)Y(s) 2 0
 Y(s)=2/ (s2+9) = (2/3)[3/(s2+9)]
 y(t)=(2/3) sin 3t

 ١٥                    Dr.-Ing. Mohamed Saber Sokar
▐ Laplace Transform
Solve: y”+2y’+5y=0 y(0)=2 y’(0)= 4
       y”+2y’+5y=0, y(0)=2, y’(0)=-4
 L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2s+4
   (y )    ( ) y( ) y ( )      ( )
 L(y’)=sY(s)-y(0)=sY(s)-2
 L(y)=Y(s)
 (s2+2s+5)Y(s)=2s
 Y(s)=2s/
  (s2+2s+5)=2(s+1)/[(s+1)2+22]-
                               2/[(s+1)2+22]
 y(t)= e-t(2cos 2t –sin 2t)

  ١٦                      Dr.-Ing. Mohamed Saber Sokar
▐ Inverse Laplace Transform
       1     1        1      1          1 1     3      1
      L ( 2       )  L ( 2 2 )  L ( 2 2 )  sin 3t         i
          s 9              s 3              3 s 3      3
       1       s3             1      s2             1
      L (                 )L (                                 )
          ( s  2)  3
                   2    2
                                   ( s  2)  3 ( s  2)  3
                                            2    2         2   2


                           2t          1  2t        2t          1
                       e cos 3t  e sin 3t  e (cos 3t  sin 3t )
                                        3                          3
       1 3s  2         1    3s         2
      L ( 2 2 )  L ( 2 2  2 2 )  3 cos t  2 sin t
          s 1               s 1 s 1
      Find
       1     3s  2
      L ( 2            )?
          s  2s  5

 ١٧                                     Dr.-Ing. Mohamed Saber Sokar
▐ Partial Fraction
           s 1
 Y (s)  3 2         , What is y(t)?
        s  s  6s
           s 1              s 1      A   B     C
 Y (s)  3 2                               
        s  s  6 s s ( s  2)( s  3) s s  2 s  3
 multiply by s, and put s  0
       s 1                  Bs         Cs                   1
                        A                            A
 ( s  2)( s  3) s 0      s  2 s 0 s  3 s 0            6
 multiply by s - 2, and put s  2
    s 1               A( s  2)        C ( s  2)            3
                   B                                  B
 s ( s  3) s  2          s     s 2     s  3 s 2         10
  ١٨                                      Dr.-Ing. Mohamed Saber Sokar
▐ Partial Fraction

       multiply by s  3, and put s  3
          s 1               B ( s  3)        A( s  3)
                         C                 
       s ( s  2) s  3     ( s  2) s  3       s     s  3

            2
       C
           15
                   s 1       11 3 1        2 1
       Y (s)  3 2                     
                s  s  6s    6 s 10 s  2 15 s  3
                 1 3 2 t 2  3t
       y (t )    e  e
                 6 10      15

  ١٩                                         Dr.-Ing. Mohamed Saber Sokar
▐ Partial fraction; repeated factor
 y"3 y '2 y  4t  e 3t , y(0)  1, y' (0)  -1
                            y( ) , y ( )
                                     4    1
 s Y  s  1  3( sY  1)  2Y  2 
  2

                                    s    s3
          s  7 s  13 s  4 s  12 G ( s )
            4      3        2
 Y (s)                                
             s ( s  3)( s  3s  2)
              2           2
                                         H (s)
          A2 A1          B      C       D
 y (t )  2                       
          s       s s  3 s  2 s 1
 A 2 , B, C, D can be obtained as before, but A 1?
                        s 4  7 s 3  13 s 2  4 s  12
 A 2  Q ( s ) s 0                                             2
                            ( s  3)( s 2  3s  2)       s 0
  ٢٠                                         Dr.-Ing. Mohamed Saber Sokar
▐ Partial fraction; repeated factor
       s 4  7 s 3  13s 2  4 s  12
Y (s)  2                             
          s ( s  3)( s  3s  2)
                       2


   A2 A1         B       C        D
 2                        
   s    s s  3 s  2 s 1
Multiply by s , and put s  0, A 2 can be obtained
      py y      2
                       p          ,
s  7 s  13s  4 s  12
 4        3       2
                                       Bs 2
                                              Cs   2
                                                    Ds      2
                           A2  A1s            
   ( s  3)( s  3s  2)
              2
                                       s  3 s  2 s 1
Differenti ate with s and put s  0
                     s,
A1  Q ' ( s ) s  0  3
     ٢١                           Dr.-Ing. Mohamed Saber Sokar
▐ Test signals used in control systems




  ٢٢                  Dr.-Ing. Mohamed Saber Sokar
▐ Test signals used in control systems




  ٢٣                  Dr.-Ing. Mohamed Saber Sokar
▐ Free & Forced Responses
 Forced Response [zero ICs & nonzero u(t)]
    The response of a system to nonzero input and zero initial conditions.
    Can be obtained by
         Assume zero ICs and use LT to solve for the forced
         response {replace differentiation with (s) in the
         Input/Output (I/O) ODE model}.

 Free Response [u(t) = 0 & nonzero ICs]
    The response of a system to zero input and nonzero initial conditions.
    Can be obtained by
        Let u(t) = 0 and use Laplace transform (LT) considering
         Initial condition (IC) values to solve for the free
         response.
         response
   ٢٤                                      Dr.-Ing. Mohamed Saber Sokar
▐ Transient and Steady State Response
Ex:        Find the total response of a stable first order system:
                             p                              y
                                 y  5 y  10u
                                 
      to a ramp input: u  t   5t                   with I.C.:        y 0  2
                                                     10           5           1
                                 Y    s                                          2
                                                                                     
 - Total response                                  s5          s 2
                                                                           s  5 y0
                                               Transfer Function U  s     
                                                                              
                                                                    Free Response
 - Partial fraction eq.                               Forced Response

                           a1  a2    a3    2
            Y   s           2      
                           s   s    s5   s5
                            d 21 2
            a1 
                     1
                  2  1 ! ds 21
                                   s Yforced ( s) s0  ds  s505    s 505 2
                                                          d
                                                             
                                                                    
                                                                                            2
                                                                s 0          s 0



            a2   s 2Yforced ( s ) 
                                    s0  10            a3   s  5 Yforced ( s ) 
                                                                                       s5  2
                                                                                                               
                                                                                                               
             y t           2 
                                10t
                                                         a 3 e 5 t
                                                                                                 2 e 5 t
                                                                                                               
                         Steady state response
                             d                        Transient response                    Transient response
                                                                                             T     i  t
                                                                                                                
                         from Forced response         from Forced response                  free response
                                                                                                                
      ٢٥                                                             Dr.-Ing. Mohamed Saber Sokar
▐ Transient and Steady State Response
Ex:      Find the response of a given second order system:
                     p          g                   y
                     4 y  3 y  6u
                   y      
to a sinusoidal input: u  t   5sin  3t            with I.C.: y  0   0, y  0   2
                                                                  
                                            6       53      2s  4  2
                          Y   s                          2
- Total response                       s2  4s  3 s2  
                                        
                                                      32     3
                                                            s 4 s 
                                                                
                                             Forced Response             Free Response
 - Partial fraction equation
               a1     a2     a3      a4    b1     b2 
Y     s    s 3                         
                     s 1   s3j   s 3j  s 3   s  1
                                                         
       5             9                 1                   1
a1          a2         a 3  1      j    a 4  1      j       b1  1         b2  3
       2             2                 2                   2
  y  t   2 Re a3e 3 jt     a1  b1  e 3t   a2  b2  e  t 
             
                                                        
               Steady state response                  Transient response
                                        7         15  t 
        5 sin  3t  tan 1  2      e 3t     e 
                                        2          2     
    ٢٦                                                 Dr.-Ing. Mohamed Saber Sokar
▐ Transfer function
The transfer function H() of a system is the frequency
dependent ratio of the system output Y(s) to a system
input U(s)
      U(s).

        U(s)                   Y (s)                 Y(s)
                   H(s) =
                               U ( s)
                                 (s

                                         Vo ( )
                  H( )  Voltage gain 
                                         Vi ( )


                                         I o ( )
                  H( )  Current gain 
                                         I i ( )
   ٢٧                                   Dr.-Ing. Mohamed Saber Sokar
٢٨   Dr.-Ing. Mohamed Saber Sokar

More Related Content

What's hot

Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...Alexander Decker
 
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...Alexander Decker
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZSANTIAGO PABLO ALBERTO
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular functionAPEX INSTITUTE
 
Computer Science and Information Science 4th semester (2012-June Question
Computer Science and Information Science 4th semester (2012-June Question Computer Science and Information Science 4th semester (2012-June Question
Computer Science and Information Science 4th semester (2012-June Question B G S Institute of Technolgy
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
10.1.1.115.1297
10.1.1.115.129710.1.1.115.1297
10.1.1.115.1297Hung Luong
 
Introduction - Time Series Analysis
Introduction - Time Series AnalysisIntroduction - Time Series Analysis
Introduction - Time Series Analysisjaya gobi
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.SEENET-MTP
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppttuiye
 

What's hot (19)

Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
 
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada Z
 
4th Semester Mechanincal Engineering (2012-June) Question Papers
4th Semester Mechanincal Engineering (2012-June) Question Papers4th Semester Mechanincal Engineering (2012-June) Question Papers
4th Semester Mechanincal Engineering (2012-June) Question Papers
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular function
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Unit2
Unit2Unit2
Unit2
 
Pr1
Pr1Pr1
Pr1
 
S05
S05S05
S05
 
Computer Science and Information Science 4th semester (2012-June Question
Computer Science and Information Science 4th semester (2012-June Question Computer Science and Information Science 4th semester (2012-June Question
Computer Science and Information Science 4th semester (2012-June Question
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
test
testtest
test
 
10.1.1.115.1297
10.1.1.115.129710.1.1.115.1297
10.1.1.115.1297
 
Introduction - Time Series Analysis
Introduction - Time Series AnalysisIntroduction - Time Series Analysis
Introduction - Time Series Analysis
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 

Similar to Session02 review-laplace and partial fractionl

Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
The univalence of some integral operators
The univalence of some integral operatorsThe univalence of some integral operators
The univalence of some integral operatorsAlexander Decker
 
11.the univalence of some integral operators
11.the univalence of some integral operators11.the univalence of some integral operators
11.the univalence of some integral operatorsAlexander Decker
 
Generalization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsGeneralization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsYoshihiro Mizoguchi
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointAnujKumar734472
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transformRowenaDulay1
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Dataswissnex San Francisco
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Poleijtsrd
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Designtaha25
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)ronald sanchez
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
short course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatisticsshort course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatisticsAmro Elfeki
 
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)KINGSHUKMUKHERJEE11
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...Alexander Decker
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 

Similar to Session02 review-laplace and partial fractionl (20)

5.pdf
5.pdf5.pdf
5.pdf
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
The univalence of some integral operators
The univalence of some integral operatorsThe univalence of some integral operators
The univalence of some integral operators
 
11.the univalence of some integral operators
11.the univalence of some integral operators11.the univalence of some integral operators
11.the univalence of some integral operators
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
 
Generalization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsGeneralization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on Groups
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
 
Z transform
 Z transform Z transform
Z transform
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Data
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
short course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatisticsshort course on Subsurface stochastic modelling and geostatistics
short course on Subsurface stochastic modelling and geostatistics
 
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 

Recently uploaded

Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 

Session02 review-laplace and partial fractionl

  • 1. Automatic control Introduction to automatic control Dr.-Ing. Dr Ing Mohamed Saber Sokar
  • 2. ▐ Objectives  Review on elementary function y  Complex numbers  Laplace transform  Examples  properties  Inverse transform  Partial fraction expansion e pansion  Partial fraction  Common test input signals  U d Understand the Concept of Transfer Functions. t d th C t fT f F ti ٢ Dr.-Ing. Mohamed Saber Sokar
  • 3. ▐ Elementary functions Exponential Function e x e xe y  e x y , e x / e y  e x y ( e x ) y  e xy , e 0  1 Logrithmic F L i h i Function ln( x ) i l ( ln (xy)  ln x  ln y ( y) x ln  ln x  ln y y ln (x a )  a ln x , ( ln(1)  0 ( ) 1  ln x ln 1 e ln x  x, e , e x  x ٣ Dr.-Ing. Mohamed Saber Sokar
  • 4. ▐ Elementary functions Even Function: f(  x)  f(x), x Odd Function: f(  x)   f(x), x sin(  x)   sin x, cos(  x)  cos x sin x  cos x  1 2 2 sin (x  y)  sin x cos y  cos x sin y sin (x  y)  sin x cos y  cos x sin y sin 2 x  2 sin x cos x cos (x  y)  cos x cos y  sin x sin y cos (x  y)  cos x cos y  sin x sin y ٤ Dr.-Ing. Mohamed Saber Sokar
  • 5. ▐ Elementary functions cos 2 x  cos 2 x  sin 2 x  1  2 sin 2 x  2 cos 2 x  1 1 cos x  ( 1  cos 2 x) 2 2 1 sin 2 x  ( 1  cos 2 x) 2 π π sin x  cos ( x- )  cos ( -x) 2 2 π π cos x  sin ( x  )  sin ( -x) 2 2 sin (π  x)  sin x cos (π  x)   cos x sin x cos x 1 1 tan x  , cot x  , sec x  , csc x  cos x sin x i cos x sin x i ٥ Dr.-Ing. Mohamed Saber Sokar
  • 6. ▐ Elementary functions Simplifying D  A cos   B sin  B then C  A  B , tan   2 2 A A cos x  B sin x  A2  B 2 cos (  ) C : magnitude,  : phase ٦ Dr.-Ing. Mohamed Saber Sokar
  • 7. ▐ Complex Numbers If z1  x1  i. y1 , and z 2  x2  i. y2  adding z  z1  z 2  ( x1  iy1 )  ( x2  iy2 )  ( x1  x2 )  i ( y1  y2 )  Multiplying z  z1 . z 2  ( x1  iy1 ) . ( x2  iy2 ) z  z1  z 2  x1 x2  y1 y2  i ( x2 y1  x1 y2 )  Multiplying by conjugate of the denominator z1 x1  iy1 ( x1  iy1 )( x2  iy2 ) z   z 2 x2  iy2 ( x2  iy2 )( x2  iy2 ) x1 x2  y1 y2 x2 y1  x1 y2 z i x2  y 2 2 2 x2  y 2 2 2 ٧ Dr.-Ing. Mohamed Saber Sokar
  • 8. ▐ Polar form of Complex Numbers  z=x+i.y, if x=r . cos, y= r . sin Then z = r(cos +i . sin = r   Th (  i   Absolute value (modulus) r2=x2+y2  Magnitude g r  x2  y2  Argument = tan-1(y/x)  Example z=2+i.4 z  20 4   tan 1 2 ٨ Dr.-Ing. Mohamed Saber Sokar
  • 9. ▐ Laplace Transform  D fi iti Definition and examples d l  F ( s )  L( f )   e  st f (t )dt 0 Inverse Lapalce f (t )  L1 ( F ) Example Unit Step Function u(t) f (t )  u (t )  1   1  st 1  s 1 0 F ( s )  L (1)   e  st 1 dt   e  e  e 0 s 0 s s 1  F (s)  s ٩ Dr.-Ing. Mohamed Saber Sokar
  • 10. ▐ Laplace Transform (Example)  Fi d Laplace transform for the f ll i Find L l t f f th following f (t)  e 3t function   F ( s )  L ( e 3 t )   e  st e 3 t dt   e  ( s  3 ) t dt 0 0  1 ( s 3)t 1  e  s3 0 s3 1  F (s)  s3 1 L (e )  at sa ١٠ Dr.-Ing. Mohamed Saber Sokar
  • 11. ▐ Laplace Transform  L ( e sin  t )   e  st e at sin  tdt at 0   1 1  e  ( s  a ) t sin  t   ( ) e  ( s  a ) t  cos  tdt sa 0 0 sa    sa  0 e  ( s  a ) t cos  tdt     1 cos  t  ( ) e  ( s  a ) t   2 sin  tdt ( s  a )t  e  (s  a)2 0 sa 0 sa   2 e sin  tdt ( s  a )t   (s  a) 2 (s  a) 2 0  2  2  (1  ) e  st sin  tdt  (s  a) 0 (s  a)2    0 e  st sin  tdt  (s  a)2   2  sa  0 e  st cos  tdt  (s  a)2   2 ١١ Dr.-Ing. Mohamed Saber Sokar
  • 12. ▐ Laplace transform table ١٢ Dr.-Ing. Mohamed Saber Sokar
  • 13. ▐ Laplace transform theorem-1 ١٣ Dr.-Ing. Mohamed Saber Sokar
  • 14. ▐ Laplace transform theorem-2 ١٤ Dr.-Ing. Mohamed Saber Sokar
  • 15. ▐ Laplace Transform  Find Laplace transform y y”+9y=0, y(0)=0, y’(0)=2 y y( ) y( ) 1- L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2 2- L(y)=Y(s) Solution Sol tion (s2+9)Y(s)-2=0 +9)Y(s) 2 0 Y(s)=2/ (s2+9) = (2/3)[3/(s2+9)] y(t)=(2/3) sin 3t ١٥ Dr.-Ing. Mohamed Saber Sokar
  • 16. ▐ Laplace Transform Solve: y”+2y’+5y=0 y(0)=2 y’(0)= 4 y”+2y’+5y=0, y(0)=2, y’(0)=-4  L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2s+4 (y ) ( ) y( ) y ( ) ( )  L(y’)=sY(s)-y(0)=sY(s)-2  L(y)=Y(s)  (s2+2s+5)Y(s)=2s  Y(s)=2s/ (s2+2s+5)=2(s+1)/[(s+1)2+22]- 2/[(s+1)2+22]  y(t)= e-t(2cos 2t –sin 2t) ١٦ Dr.-Ing. Mohamed Saber Sokar
  • 17. ▐ Inverse Laplace Transform 1 1 1 1 1 1 3 1 L ( 2 )  L ( 2 2 )  L ( 2 2 )  sin 3t i s 9 s 3 3 s 3 3 1 s3 1 s2 1 L ( )L (  ) ( s  2)  3 2 2 ( s  2)  3 ( s  2)  3 2 2 2 2  2t 1  2t  2t 1  e cos 3t  e sin 3t  e (cos 3t  sin 3t ) 3 3 1 3s  2 1 3s 2 L ( 2 2 )  L ( 2 2  2 2 )  3 cos t  2 sin t s 1 s 1 s 1 Find 1 3s  2 L ( 2 )? s  2s  5 ١٧ Dr.-Ing. Mohamed Saber Sokar
  • 18. ▐ Partial Fraction s 1 Y (s)  3 2 , What is y(t)? s  s  6s s 1 s 1 A B C Y (s)  3 2     s  s  6 s s ( s  2)( s  3) s s  2 s  3 multiply by s, and put s  0 s 1 Bs Cs 1  A   A ( s  2)( s  3) s 0 s  2 s 0 s  3 s 0 6 multiply by s - 2, and put s  2 s 1 A( s  2) C ( s  2) 3  B   B s ( s  3) s  2 s s 2 s  3 s 2 10 ١٨ Dr.-Ing. Mohamed Saber Sokar
  • 19. ▐ Partial Fraction multiply by s  3, and put s  3 s 1 B ( s  3) A( s  3) C  s ( s  2) s  3 ( s  2) s  3 s s  3 2 C 15 s 1 11 3 1 2 1 Y (s)  3 2    s  s  6s 6 s 10 s  2 15 s  3 1 3 2 t 2  3t y (t )    e  e 6 10 15 ١٩ Dr.-Ing. Mohamed Saber Sokar
  • 20. ▐ Partial fraction; repeated factor y"3 y '2 y  4t  e 3t , y(0)  1, y' (0)  -1 y( ) , y ( ) 4 1 s Y  s  1  3( sY  1)  2Y  2  2 s s3 s  7 s  13 s  4 s  12 G ( s ) 4 3 2 Y (s)   s ( s  3)( s  3s  2) 2 2 H (s) A2 A1 B C D y (t )  2     s s s  3 s  2 s 1 A 2 , B, C, D can be obtained as before, but A 1? s 4  7 s 3  13 s 2  4 s  12 A 2  Q ( s ) s 0  2 ( s  3)( s 2  3s  2) s 0 ٢٠ Dr.-Ing. Mohamed Saber Sokar
  • 21. ▐ Partial fraction; repeated factor s 4  7 s 3  13s 2  4 s  12 Y (s)  2  s ( s  3)( s  3s  2) 2 A2 A1 B C D  2     s s s  3 s  2 s 1 Multiply by s , and put s  0, A 2 can be obtained py y 2 p , s  7 s  13s  4 s  12 4 3 2 Bs 2 Cs 2 Ds 2  A2  A1s    ( s  3)( s  3s  2) 2 s  3 s  2 s 1 Differenti ate with s and put s  0 s, A1  Q ' ( s ) s  0  3 ٢١ Dr.-Ing. Mohamed Saber Sokar
  • 22. ▐ Test signals used in control systems ٢٢ Dr.-Ing. Mohamed Saber Sokar
  • 23. ▐ Test signals used in control systems ٢٣ Dr.-Ing. Mohamed Saber Sokar
  • 24. ▐ Free & Forced Responses  Forced Response [zero ICs & nonzero u(t)]  The response of a system to nonzero input and zero initial conditions.  Can be obtained by  Assume zero ICs and use LT to solve for the forced response {replace differentiation with (s) in the Input/Output (I/O) ODE model}.  Free Response [u(t) = 0 & nonzero ICs]  The response of a system to zero input and nonzero initial conditions.  Can be obtained by Let u(t) = 0 and use Laplace transform (LT) considering Initial condition (IC) values to solve for the free response. response ٢٤ Dr.-Ing. Mohamed Saber Sokar
  • 25. ▐ Transient and Steady State Response Ex: Find the total response of a stable first order system: p y y  5 y  10u  to a ramp input: u  t   5t with I.C.: y 0  2 10 5 1 Y s   2  - Total response s5 s 2 s  5 y0 Transfer Function U  s         Free Response - Partial fraction eq. Forced Response a1 a2 a3 2 Y s   2   s s s5 s5 d 21 2 a1  1  2  1 ! ds 21 s Yforced ( s) s0  ds  s505    s 505 2 d    2    s 0    s 0 a2   s 2Yforced ( s )    s0  10 a3   s  5 Yforced ( s )    s5  2     y t   2    10t    a 3 e 5 t   2 e 5 t   Steady state response d  Transient response Transient response T i t  from Forced response  from Forced response free response  ٢٥ Dr.-Ing. Mohamed Saber Sokar
  • 26. ▐ Transient and Steady State Response Ex: Find the response of a given second order system: p g y   4 y  3 y  6u y  to a sinusoidal input: u  t   5sin  3t  with I.C.: y  0   0, y  0   2  6 53 2s  4  2 Y s   2 - Total response s2  4s  3 s2      32    3 s 4 s   Forced Response Free Response - Partial fraction equation  a1 a2 a3 a4   b1 b2  Y s  s 3        s 1 s3j s 3j s 3 s  1  5 9 1 1 a1   a2  a 3  1  j a 4  1  j b1  1 b2  3 2 2 2 2 y  t   2 Re a3e 3 jt     a1  b1  e 3t   a2  b2  e  t            Steady state response Transient response  7 15  t   5 sin  3t  tan 1  2      e 3t  e   2 2  ٢٦ Dr.-Ing. Mohamed Saber Sokar
  • 27. ▐ Transfer function The transfer function H() of a system is the frequency dependent ratio of the system output Y(s) to a system input U(s) U(s). U(s) Y (s) Y(s) H(s) = U ( s) (s Vo ( ) H( )  Voltage gain  Vi ( ) I o ( ) H( )  Current gain  I i ( ) ٢٧ Dr.-Ing. Mohamed Saber Sokar
  • 28. ٢٨ Dr.-Ing. Mohamed Saber Sokar