SlideShare a Scribd company logo
1 of 15
Download to read offline
Station: Omitted 
Project Number: Omitted 
Calculation Number: Omitted 
Page 1 of 3 
Title: Omitted 
Contents 
1.0  Background ..................................................................................................................................... 2 
2.0  Design Input .................................................................................................................................... 2 
3.0  Analysis ............................................................................................................................................ 2 
4.0  Results/Conclusions ........................................................................................................................ 3 
5.0  References ........................................................................................................................................ 3 
6.0  List of Attachments ......................................................................................................................... 3 
 
Station: Omitted 
Project Number: Omitted 
Calculation Number: Omitted 
Page 2 of 3 
Title: Omitted 
1.0 Background
This proposed design installs two three phase pad mounted reclosers to provide secondary protection for the 6MVA
13.8/13.2kV site power transformers 0X03 and 0X04 and to mitigate the impact on the balance of plant equipment
due to a fault in the plant site power system. A recent ground fault on the secondary side of one of the transformers
has demonstrated that the transformers are not adequately protected (i.e. the transformer damage occurred). The
reclosers will be located between the secondary side of transformers 0X03 and 0X04 and the first downstream pad
mounted switches 0DISC289-SW17 and 0DISC289-SW16. As most of the distribution system cabling is
underground, the new reclosers will be set to interrupt and will not reclose (i.e. one shot protection scheme).
Transformers 0X03 and 0X04 are powered by 13.8kV buses 11 (breaker 252-1106) and 21 (252-2106) respectively.
These transformers then go on to feed disconnect switches 0DISC289-17 and 0DISC289-16 respectively.
The purpose of this study is to develop the new recloser controller phase and ground protection settings to ensure
that the transformers are adequately protected and that coordination exists between the reclosers, the upstream
feeder breakers, and downstream fuses.
2.0 Design Input
The maximum interrupting rating of the reclosers is 12kA (Reference OMITTED). This is greater than the
maximum short circuit on the system of approximately 4.85kA. The maximum short circuit current was calculated
based on the transformer impedance of 6.5% (Reference OMITTED), cable A0H206P impedance (Reference
OMITTED), and a conservative assumption that a 6MVA load is connected with 50% of the load being motor load
drawing 650% locked rotor current. The ETAP model generated for coordination purposes was used to calculate this
value. It should be noted that negative sequence impedance data is not available for transformers 0X03 and 0X04
and therefore the fault current for ground faults is conservatively assumed to be the same as for phase faults.
Ground and phase protection is provided for the primary side of transformers 0X03 and 0X04 from SEL-551 relays
which control breakers 252-1106 and 252-2106. Downstream of disconnect switches 0DISC289-17 and 0DISC289-
16 are fused disconnect switches 0DISC289-SW01 and 0DISC289-SW14 respectively which each contain a
Combined Technologies Type 155F125-Q1B fuse (Reference OMITTED). It should be noted that based on vendor
input, the TCC curve for this fuse is the same as the TCC curve for a Cooper X-Limiter type fuse. The TCC curves
for the fuses are provided in (Reference OMITTED). The TCC curves for the SEL-551 relay are shown in
(Reference OMITTED). The ETAP library is utilized to model these devices. The TCC curves for the Form 6
recloser controls are shown in (Reference OMITTED). Note that the ETAP library does not contain a Form 6
controller but it does contain a Form 4C controller. Review of the Cooper vendor literature indicates that the TCC
curves of the Form 4C are the same as the Form 6 controller. Therefore the Form 4C controller will be utilized in the
ETAP model. The existing settings for the SEL-551 relay are documented in (Reference OMITTED). Damage
curves were not available for transformers 0X03 and 0X04 and therefore, a typical damage curve was selected using
ANSI C57.109 and based on the transformer ratings from (Reference OMITTED). It was assumed that the total
connected transformer load downstream of transformers 0X03 and 0X04 is 6MVA. Typical inrush current for liquid
filled 13kV transformers is 12 times the full load current at 6 cycles. This value is reflected in Attachment 1. The
damage curve for the 500MCM cables is taken from the NEC.
 
3.0 Analysis
The recloser phase and ground protection settings were selected such that the transformers are protected and they
coordinate with the downstream fuses and upstream SEL-551 relay. For the phase protection, curve 202 was
selected and a pickup of 300A was selected. Also a minimum response time TCC modifier of 15cycle and a vertical
multiplier of 0.37 were selected. The resultant curve shape allows for coordination between the fuse and the Form 6
Station: Omitted 
Project Number: Omitted 
Calculation Number: Omitted 
Page 3 of 3 
Title: Omitted 
recloser controller. For ground protection, curve 202 was also selected and a pickup of 250A was selected. No TCC
modifiers were used. The resultant curve shape allows for coordination between the fuse and the Form 6 recloser
controller. It should be noted that although actual ground fault current is not known, transformers 0X03 and 0X04
are still adequately protected. Ground faults lower than 250A will not damage the transformers as this is less than
their full load current rating. The Form 6 settings for each recloser are documented in Attachment 2.
4.0 Results/Conclusions
A coordination plot was created using the above methodology as well as the input discussed in Section 2.0 and is
attached to this document as Attachment 1. As the transformers 0X03 and 0X04 are all delta-wye connected, the
ground protection on the primary side of 0X03 and 0X04 will not see ground faults on the secondary side. As such,
coordination for the ground TCC curves between the recloser and SEL-551 relay is not required. The phase
protection provided by the SEL-551 relay, however, will need to coordinate with the ground protection provided by
the recloser controller. For ground faults on the secondary side of transformers 0X03 and 0X04, the phase protection
of the SEL-551 relays will see 58% (i.e. 1/√3) of the fault current times the transformer turns ratio (i.e. 58% *
13.2kV/13.8kV = 55.5%). This shift was not plotted in Attachment 1. A visual inspection of Attachment 1 was
performed and it was determined that the recloser ground protection coordinates with the SEL-551 phase protection.
Since this is the case, as can be seen in Attachment 1, proper coordination exists up to the calculated maximum short
circuit value and the transformers and cables will be protected using the selected recloser settings. This allows for
improved protection of transformers 0X03 and 0X04 as well as mitigation of impacts on the auxiliary power system
due to system faults.
5.0 References
OMITTED
6.0 List of Attachments*
6.1 Attachment 1: Coordination Plot XXXX
6.2 Attachment 2: Cooper Form 6 Controller Settings Sheet
*Other Attachments OMITTED
 
0DISC289-SW16/SW17 Fuse
Cooper
X-Limiter
Coordinating 15.5 kV
125A
SEL-551 - P
OC1
Schweitzer
551
CT Ratio 1200:5
U3 - U.S. Very Inverse
Pickup = 1.5 (0.5 - 16 Sec - 5A)
Time Dial = 5
3x = 2.91 s, 5x = 1.29 s, 8x = 0.789 s
Inst = 24 (0.5 - 80 Sec - 5A)
A0H206P
1 - 3/C 500 kcmil
Aluminum Rubber
Tc = 90C
0X03/0X04
6 MVA (Secondary) 6.5 %Z
Delta-Wye Solid Grd
ANSI Curve Shift = 0.58
Inrush
FLA
Recloser - P
TCC1
Cooper
Form 4C
202
Pickup = 300 (100 - 2400 Primary)
Interrupting Time = 34 ms
Minimum Response Time = 15 Cycles
Vertical Multiplier = 0.37
3x = 3.72 s, 5x = 1.21 s, 8x = 0.495 s
Clearing
Recloser - 3P
4.851kA @ 13.2kV
(Sym)
SEL-551 - G
OC1
Schweitzer
551
CT Ratio 50:5
U2 - U.S. Inverse
Pickup = 1.4 (0.5 - 16 Sec - 5A)
Time Dial = 1
3x = 0.924 s, 5x = 0.428 s, 8x = 0.274 s
Recloser - G
TCC1
Cooper
Form 4C
202
Pickup = 250 (2 - 400 Primary)
Interrupting Time = 34 ms
3x = 10 s, 5x = 3.22 s, 8x = 1.28 s
Clearing
10K.5 1 10 100 1K3 5 30 50 300 500 3K 5K
Amps X 10 Site Power (Nom. kV=13.2, Plot Ref. kV=13.2)
10K.5 1 10 100 1K3 5 30 50 300 500 3K 5K
Amps X 10 Site Power (Nom. kV=13.2, Plot Ref. kV=13.2)
1K
.01
.1
1
10
100
.03
.05
.3
.5
3
5
30
50
300
500
Seconds 1K
.01
.1
1
10
100
.03
.05
.3
.5
3
5
30
50
300
500
Seconds
ETAP Star 7.1.0N
Site Power Coordination
Project: Site Self Power Reclosers
Location: CCNPP
Contract:
Engineer: Sargent & Lundy, LLC
Filename: D:0n7518ConstellationCalvert Cliffs11562-08011562-080 Coordination115
Date: 09-17-2012
SN: SARGENTLDY
Rev: Base
Fault: Ground
o
o
Bus 11/21
Site Power
79 Recloser
0DISC289-SW16/SW17 Fuse
OCR SEL-551
252-1106/2106
0X03/0X04
6 MVA
A0H206P
1-3/C 500
Site Power Loads
6 MVA
Site Power
252-1106/2106
Site Power Loads
6 MVA
A0H206P
1-3/C 500
SEL-551
0X03/0X04
6 MVA
Recloser
0DISC289-SW16/SW17 Fuse
Bus 11/21
ECP-12-000556
Form 7, Attachment 2
Page 1 of 1
Note: SEL-551 phase protection will only see 58% times the transformer turns ratio of a ground fault on the secondary side of the transformer due to
its delta-wye connection. Therefore, although not shown on this plot, coordination exists between the SEL-551-P and Recloser-G curves.
1
Page 1
Device Identity
0BKR252-0H1106UserDeviceName
Alternate 3Alternate 2Alternate 1NormalOvercurrent Settings
Phase:
UnblockedUnblockedUnblockedUnblockedPhsTripBlk
UnblockedUnblockedUnblockedUnblockedFastTripBlock
300300300300TCCPMinTrip
IEC EI (202)IEC EI (202)IEC EI (202)IEC EI (202)TCC1PCurve
EnableEnableEnableEnableTCC1PMultEnable
0.370.370.370.37TCC1PMult
DisableDisableDisableDisableTCC1PAddEnable
0000TCC1PAdd
EnableEnableEnableEnableTCC1PMRTAEnable
0.250.250.250.25TCC1PMRTA
DisableDisableDisableDisableTCC1PHCTEnable
32323232TCC1PHCT Mul
0.0160.0160.0160.016TCC1PHCTDly
IEC EI (202)IEC EI (202)IEC EI (202)IEC EI (202)TCC2PCurve
EnableEnableEnableEnableTCC2PMultEnable
0.370.370.370.37TCC2PMult
DisableDisableDisableDisableTCC2PAddEnable
0000TCC2PAdd
EnableEnableEnableEnableTCC2PMRTAEnable
0.250.250.250.25TCC2PMRTA
DisableDisableDisableDisableTCC2PHCTEnable
32323232TCC2PHCT Mul
0.0160.0160.0160.016TCC2PHCTDly
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 1 of 11
/RECL
*
*
*
*
*
*
*
*
*
*
* Indicates Significant Functional Setting
Page 2
Ground:
UnblockedUnblockedUnblockedUnblockedGndTripBlk
UnblockedUnblockedUnblockedUnblockedFastTripBlock
150150150150TCCGMinTrip
120120120120TCC1GCurve
DisableDisableDisableDisableTCC1GMultEnable
1111TCC1GMult
DisableDisableDisableDisableTCC1GAddEnable
0000TCC1GAdd
DisableDisableDisableDisableTCC1GMRTAEnable
0.0130.0130.0130.013TCC1GMRTA
DisableDisableDisableDisableTCC1GHCTEnable
32323232TCC1GHCT Mul
0.0160.0160.0160.016TCC1GHCTDly
120120120120TCC2GCurve
DisableDisableDisableDisableTCC2GMultEnable
1111TCC2GMult
DisableDisableDisableDisableTCC2GAddEnable
0000TCC2GAdd
DisableDisableDisableDisableTCC2GMRTAEnable
0.0130.0130.0130.013TCC2GMRTA
DisableDisableDisableDisableTCC2GHCTEnable
32323232TCC2GHCT Mul
0.0160.0160.0160.016TCC2GHCTDly
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 2 of 11
*
*
*
250 250 250 250
IEC EI (202) IEC EI (202) IEC EI (202) IEC EI (202)
IEC EI (202) IEC EI (202)IEC EI (202) IEC EI (202)
Page 3
Negative Sequence:
BlockedBlockedBlockedBlockedNegSeqTripBlk
UnblockedUnblockedUnblockedUnblockedFastTripBlock
100100100100TCCQMinTrip
104104104104TCC1QCurve
DisableDisableDisableDisableTCC1QMultEnable
1111TCC1QMult
DisableDisableDisableDisableTCC1QAddEnable
0000TCC1QAdd
DisableDisableDisableDisableTCC1QMRTAEnable
0.0130.0130.0130.013TCC1QMRTA
DisableDisableDisableDisableTCC1QHCTEnable
32323232TCC1QHCT Mul
0.0160.0160.0160.016TCC1QHCTDly
117117117117TCC2QCurve
DisableDisableDisableDisableTCC2QMultEnable
1111TCC2QMult
DisableDisableDisableDisableTCC2QAddEnable
0000TCC2QAdd
DisableDisableDisableDisableTCC2QMRTAEnable
0.0130.0130.0130.013TCC2QMRTA
DisableDisableDisableDisableTCC2QHCTEnable
32323232TCC2QHCT Mul
0.0160.0160.0160.016TCC2QHCTDly
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 3 of 11
Page 4
User Curves:
not loadedUser 1:xTCC
40User 1:xMmax
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 1:xT
1User 1:xTmin
not loadedUser 2:xTCC
40User 2:xMmax
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 2:xT
1User 2:xTmin
not loadedUser 3:xTCC
40User 3:xMmax
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 3:xT
1User 3:xTmin
not loadedUser 4:xTCC
40User 4:xMmax
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 4:xT
1User 4:xTmin
not loadedUser 5:xTCC
40User 5:xMmax
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 5:xT
1User 5:xTmin
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 4 of 11
Page 5
Alternate 3Alternate 2Alternate 1NormalOperations Sequence
1111Operations To LO
Phase/Neg Sequence:
TCC2TCC2TCC2TCC2PQOper#1
TCC2TCC2TCC2TCC2PQOper#2
TCC2TCC2TCC2TCC2PQOper#3
TCC2TCC2TCC2TCC2PQOper#4
Ground:
TCC2TCC2TCC2TCC2GndOper#1
TCC2TCC2TCC2TCC2GndOper#2
TCC2TCC2TCC2TCC2GndOper#3
TCC2TCC2TCC2TCC2GndOper#4
Alternate 3Alternate 2Alternate 1NormalReclose Intervals
Phase/Neg Sequence:
2222PQOpenInt#1
2222PQOpenInt#2
5555PQOpenInt#3
Ground:
2222GndOpenInt#1
2222GndOpenInt#2
5555GndOpenInt#3
30303030ResetTime
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 5 of 11
*
Page 6
Alternate 3Alternate 2Alternate 1NormalCold Load Pickup
YesYesYesYesCLPUBlock
Phase:
300300300300CLPUPMinTrip
IEC EI (202)IEC EI (202)IEC EI (202)IEC EI (202)CLPUPCurve
EnableEnableEnableEnableCLPUPMultEnable
0.370.370.370.37CLPUPMult
DisableDisableDisableDisableCLPUPAddEnable
0000CLPUPAdd
EnableEnableEnableEnableCLPUPMRTAEnable
0.250.250.250.25CLPUPMRTA
DisableDisableDisableDisableCLPUPHCTEnable
32323232CLPUPHCT Mul
0.0160.0160.0160.016CLPUPHCTDly
Ground:
150150150150CLPUGMinTrip
120120120120CLPUGCurve
DisableDisableDisableDisableCLPUGMultEnable
1111CLPUGMult
DisableDisableDisableDisableCLPUGAddEnable
0000CLPUGAdd
DisableDisableDisableDisableCLPUGMRTAEnable
0.0130.0130.0130.013CLPUGMRTA
DisableDisableDisableDisableCLPUGHCTEnable
32323232CLPUGHCT Mul
0.0160.0160.0160.016CLPUGHCTDly
Negative Sequence:
100100100100CLPUQMinTrip
101101101101CLPUQCurve
DisableDisableDisableDisableCLPUQMultEnable
1111CLPUQMult
DisableDisableDisableDisableCLPUQAddEnable
0000CLPUQAdd
DisableDisableDisableDisableCLPUQMRTAEnable
0.0130.0130.0130.013CLPUQMRTA
DisableDisableDisableDisableCLPUQHCTEnable
32323232CLPUQHCT Mul
0.0160.0160.0160.016CLPUQHCTDly
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 6 of 11
Page 7
Alternate 3Alternate 2Alternate 1NormalFrequency
Underfrequency:
OffOffOffOffUFreqEnable
56565656UFreq1PU
100100100100UFreq1Time
56565656UFreq2PU
100100100100UFreq2Time
Overfrequency:
OffOffOffOffOFreqEnable
64646464OFreq1PU
100100100100OFreq1Time
64646464OFreq2PU
100100100100OFreq2Time
U/OF Tripping Supervision:
3.63.63.63.6Freq:MinVolt
UF Loadshed Restore:
OffOffOffOffFreqRestoreEnable
60.0560.0560.0560.05Freq:81OR:PU
300300300300Freq:62Schedule
600600600600Freq:62Abort
0.30.30.30.3Freq:62Transient
OffOffOffOffVoltFreqRestSupEn
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 7 of 11
Page 8
Alternate 3Alternate 2Alternate 1NormalReclsTime and Control
EnableEnableEnableEnable79ResetTarEnable
222279ResetTar
EnableEnableEnableEnable79SeqCoorEnable
222279SeqCoorOps
Alternate 3Alternate 2Alternate 1NormalReclose Retry
DisableDisableDisableDisableRecloseRetryEnable
1111RecloseRetryAttempts
60606060RecloseRetryInterval
Alternate 3Alternate 2Alternate 1NormalVoltage
Undervoltage:
OffOffOffOffUVolt1PEnable
OffOffOffOffUVolt3PEnable
OffOffOffOffUVolt1P/3Pinhibit
11.5211.5211.5211.52UVolt1PPU
100100100100UVolt1PTime
11.5211.5211.5211.52UVolt3PPU
100100100100UVolt3PTime
Overvoltage:
OffOffOffOffOVoltEnable
16.216.216.216.2OVolt1PPU
100100100100OVolt1PTime
16.216.216.216.2OVolt3PPU
100100100100OVolt3PTime
U/OV Loadshed Restore:
OffOffOffOffVoltRestoreEnable
Any Single PhaseAny Single PhaseAny Single PhaseAny Single PhaseVoltRestoreMode
15.1215.1215.1215.12VoltRestHiL
13.6813.6813.6813.68VoltRestLoL
300300300300Freq:62Schedule
600600600600Freq:62Abort
0.30.30.30.3Freq:62Transient
OffOffOffOffVoltFreqRestSupEn
Alternate 3Alternate 2Alternate 1NormalSensitive Earth Fault
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 8 of 11
*
*
Page 9
EnableEnableEnableEnableSEFBlock
40404040SEFMinTrip
120120120120SEFTime
2222SEFReclInt
4444SEFNumOps
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 9 of 11
Page 10
Alternate 3Alternate 2Alternate 1NormalDirectional Control
60606060DirMTA
NonDirectionalNonDirectionalNonDirectionalNonDirectionalDirPhs
NonDirectionalNonDirectionalNonDirectionalNonDirectionalDirGnd
NonDirectionalNonDirectionalNonDirectionalNonDirectionalDirNegSeq
Alternate 3Alternate 2Alternate 1NormalLow Set
Phase:
DisableDisableDisableDisableLSPEnable
3200320032003200LSPPU
100100100100LSPTimeDelay
Ground:
DisableDisableDisableDisableLSGEnable
1600160016001600LSGPU
100100100100LSGTimeDelay
Negative Sequence:
DisableDisableDisableDisableLSQEnable
3200320032003200LSQPU
100100100100LSQTimeDelay
Alternate 3Alternate 2Alternate 1NormalSync Check
DisableDisableDisableDisable25DV:Enable
DisableDisableDisableDisable25DV:DLDB
DisableDisableDisableDisable25DV:DLHB
DisableDisableDisableDisable25DV:HLDB
DisableDisableDisableDisable25DV:HLHB
1584015840158401584025DV:27
264026402640264025DV:27DEAD
1224012240122401224025DV:59
1152011520115201152025DV:59LIVE
4040404025DV
10101010StaticAngleDelay
0.10.10.10.1MechanismOpDelay
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 10 of 11
Doc ID: 0BKR252-0H1106/RECL, Rev. 0
Doc Type: PRSS
ECP: ECP-12-000556
Attachment 2
Page 11 of 11
0BKR252-0H1106/RECL
*
*
*
*
*
*
*
*
*
10
*

More Related Content

What's hot

Selectivity and Coodination
Selectivity and CoodinationSelectivity and Coodination
Selectivity and Coodinationmichaeljmack
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
Sample calculation-for-differential-relays
Sample calculation-for-differential-relaysSample calculation-for-differential-relays
Sample calculation-for-differential-relaysRoberto Costa
 
Energy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plantEnergy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plantMANOJ KUMAR MAHARANA
 
Digital transformer protection systems
Digital transformer protection systemsDigital transformer protection systems
Digital transformer protection systemsmichaeljmack
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersSARAVANAN A
 
Power Electronics Chapter 7
Power Electronics  Chapter 7Power Electronics  Chapter 7
Power Electronics Chapter 7guest8ae54cfb
 
Motor & generator protection example settings
Motor & generator protection example settingsMotor & generator protection example settings
Motor & generator protection example settingsH. Kheir
 
Dynamic Analysis and Testing of on-load tap changer
Dynamic Analysis and Testing of on-load tap changerDynamic Analysis and Testing of on-load tap changer
Dynamic Analysis and Testing of on-load tap changerLeonardo Nicolini
 
Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...
Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...
Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...ZunAib Ali
 
Catalog relay bảo vệ Circutor dòng RGE
Catalog relay bảo vệ Circutor dòng RGECatalog relay bảo vệ Circutor dòng RGE
Catalog relay bảo vệ Circutor dòng RGECTY TNHH HẠO PHƯƠNG
 
Power transformer maintenance
Power transformer maintenancePower transformer maintenance
Power transformer maintenanceLucian Lazar
 
Transformer vector group_test_conditions
Transformer vector group_test_conditionsTransformer vector group_test_conditions
Transformer vector group_test_conditionsSARAVANAN A
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalAlan Elbanhawy
 
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers11 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1NASSAR KALLIKETTIYAPURAKAL
 
Testing,maintenance&protection
Testing,maintenance&protectionTesting,maintenance&protection
Testing,maintenance&protectionRakesh Joshi
 

What's hot (19)

Selectivity and Coodination
Selectivity and CoodinationSelectivity and Coodination
Selectivity and Coodination
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Sample calculation-for-differential-relays
Sample calculation-for-differential-relaysSample calculation-for-differential-relays
Sample calculation-for-differential-relays
 
Energy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plantEnergy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plant
 
Digital transformer protection systems
Digital transformer protection systemsDigital transformer protection systems
Digital transformer protection systems
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers
 
Power Electronics Chapter 7
Power Electronics  Chapter 7Power Electronics  Chapter 7
Power Electronics Chapter 7
 
Motor & generator protection example settings
Motor & generator protection example settingsMotor & generator protection example settings
Motor & generator protection example settings
 
Dynamic Analysis and Testing of on-load tap changer
Dynamic Analysis and Testing of on-load tap changerDynamic Analysis and Testing of on-load tap changer
Dynamic Analysis and Testing of on-load tap changer
 
pwm inverter
pwm inverterpwm inverter
pwm inverter
 
Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...
Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...
Sinusoidal PWM and Space Vector Modulation For Two Level Voltage Source Conve...
 
Catalog relay bảo vệ Circutor dòng RGE
Catalog relay bảo vệ Circutor dòng RGECatalog relay bảo vệ Circutor dòng RGE
Catalog relay bảo vệ Circutor dòng RGE
 
Power transformer maintenance
Power transformer maintenancePower transformer maintenance
Power transformer maintenance
 
Transformer vector group_test_conditions
Transformer vector group_test_conditionsTransformer vector group_test_conditions
Transformer vector group_test_conditions
 
1.2 ron 2
1.2 ron 21.2 ron 2
1.2 ron 2
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers11 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
1 mrg000577 en_application_of_unit_protection_schemes_for_auto-transformers1
 
Testing,maintenance&protection
Testing,maintenance&protectionTesting,maintenance&protection
Testing,maintenance&protection
 
Cycle-by-Cycle Simulation
Cycle-by-Cycle SimulationCycle-by-Cycle Simulation
Cycle-by-Cycle Simulation
 

Viewers also liked

Acrobat document
Acrobat documentAcrobat document
Acrobat documentesregroup
 
Protection primer
Protection primerProtection primer
Protection primerluonglt
 
Protective Device Coordination
Protective Device CoordinationProtective Device Coordination
Protective Device Coordinationjoeengi
 
Generator protection gers
Generator protection gersGenerator protection gers
Generator protection gersHabudin Hassan
 
Generator protection
Generator protectionGenerator protection
Generator protectionKeshar Rawal
 
Protection Of Generator
Protection Of GeneratorProtection Of Generator
Protection Of GeneratorRahuldey1991
 
тема 8
тема 8тема 8
тема 8Nata_iv
 
Food grade 3- unit 4
Food  grade 3- unit 4Food  grade 3- unit 4
Food grade 3- unit 4Songanle
 
ppt nursing audit - role of nurse manager
ppt nursing audit - role of nurse manager ppt nursing audit - role of nurse manager
ppt nursing audit - role of nurse manager Queen sankranti
 
Discos compactos ii
Discos compactos iiDiscos compactos ii
Discos compactos iiPetro Galan
 
ASSIGNMENT
ASSIGNMENTASSIGNMENT
ASSIGNMENTAnuPlr
 
BeatBrokerProfile_EventPromoter_2011
BeatBrokerProfile_EventPromoter_2011BeatBrokerProfile_EventPromoter_2011
BeatBrokerProfile_EventPromoter_2011Sam Young
 
ASSIGNMENT
ASSIGNMENTASSIGNMENT
ASSIGNMENTAnuPlr
 

Viewers also liked (20)

Sathish Kumar-Resume.
Sathish Kumar-Resume.Sathish Kumar-Resume.
Sathish Kumar-Resume.
 
Acrobat document
Acrobat documentAcrobat document
Acrobat document
 
Protection primer
Protection primerProtection primer
Protection primer
 
Protection primer
Protection primerProtection primer
Protection primer
 
Protective Device Coordination
Protective Device CoordinationProtective Device Coordination
Protective Device Coordination
 
Overcurrent protection
Overcurrent protectionOvercurrent protection
Overcurrent protection
 
Generator protection gers
Generator protection gersGenerator protection gers
Generator protection gers
 
Generator protection
Generator protectionGenerator protection
Generator protection
 
Protection Of Generator
Protection Of GeneratorProtection Of Generator
Protection Of Generator
 
тема 8
тема 8тема 8
тема 8
 
Food grade 3- unit 4
Food  grade 3- unit 4Food  grade 3- unit 4
Food grade 3- unit 4
 
ppt nursing audit - role of nurse manager
ppt nursing audit - role of nurse manager ppt nursing audit - role of nurse manager
ppt nursing audit - role of nurse manager
 
Mohamed El Nady C.V
Mohamed El Nady C.VMohamed El Nady C.V
Mohamed El Nady C.V
 
Presentation1
Presentation1Presentation1
Presentation1
 
Discos compactos ii
Discos compactos iiDiscos compactos ii
Discos compactos ii
 
ASSIGNMENT
ASSIGNMENTASSIGNMENT
ASSIGNMENT
 
Nuorilla on asiaa!
Nuorilla on asiaa!Nuorilla on asiaa!
Nuorilla on asiaa!
 
classical
classicalclassical
classical
 
BeatBrokerProfile_EventPromoter_2011
BeatBrokerProfile_EventPromoter_2011BeatBrokerProfile_EventPromoter_2011
BeatBrokerProfile_EventPromoter_2011
 
ASSIGNMENT
ASSIGNMENTASSIGNMENT
ASSIGNMENT
 

Similar to Sample Coordination Study

1. Determine the voltage drop at the motor frame for an earth .docx
1. Determine the voltage drop at the motor frame for an earth .docx1. Determine the voltage drop at the motor frame for an earth .docx
1. Determine the voltage drop at the motor frame for an earth .docxjackiewalcutt
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewAUTHELECTRONIC
 
Bsf earthing system calculation-1
Bsf earthing system calculation-1Bsf earthing system calculation-1
Bsf earthing system calculation-1Raymund Cortez
 
3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdfLiewChiaPing
 
IRJET- Study Over Current Relay (MCGG53) Response using Matlab Model
IRJET- Study Over Current Relay (MCGG53) Response using Matlab ModelIRJET- Study Over Current Relay (MCGG53) Response using Matlab Model
IRJET- Study Over Current Relay (MCGG53) Response using Matlab ModelIRJET Journal
 
Semtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulatorsSemtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulatorsRaghu Selvaraj
 
Semtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulatorsSemtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulatorsRaghu Selvaraj
 
SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.Piero Belforte
 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatusnganesh90
 
Catalog hitachi hitachi switch&breaders ctlg eng-dienhathe.org
Catalog hitachi hitachi switch&breaders ctlg eng-dienhathe.orgCatalog hitachi hitachi switch&breaders ctlg eng-dienhathe.org
Catalog hitachi hitachi switch&breaders ctlg eng-dienhathe.orgDien Ha The
 
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...IRJET Journal
 
Serial 3 Channel AC 230V SSR and Dimmer
Serial 3 Channel AC 230V SSR and DimmerSerial 3 Channel AC 230V SSR and Dimmer
Serial 3 Channel AC 230V SSR and DimmerRaghav Shetty
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Ct2000 es manual_english_version_1[1].0
Ct2000 es manual_english_version_1[1].0Ct2000 es manual_english_version_1[1].0
Ct2000 es manual_english_version_1[1].0Toàn Huỳnh
 
Buck converterdesignnote
Buck converterdesignnoteBuck converterdesignnote
Buck converterdesignnoteruchita dahad
 
Transformer overcurrent
Transformer overcurrentTransformer overcurrent
Transformer overcurrentmichaeljmack
 
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITEDMarioFarias18
 
Moc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 vMoc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 vPablo Inda-Huerta
 

Similar to Sample Coordination Study (20)

1. Determine the voltage drop at the motor frame for an earth .docx
1. Determine the voltage drop at the motor frame for an earth .docx1. Determine the voltage drop at the motor frame for an earth .docx
1. Determine the voltage drop at the motor frame for an earth .docx
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
 
Bsf earthing system calculation-1
Bsf earthing system calculation-1Bsf earthing system calculation-1
Bsf earthing system calculation-1
 
3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf
 
IRJET- Study Over Current Relay (MCGG53) Response using Matlab Model
IRJET- Study Over Current Relay (MCGG53) Response using Matlab ModelIRJET- Study Over Current Relay (MCGG53) Response using Matlab Model
IRJET- Study Over Current Relay (MCGG53) Response using Matlab Model
 
Semtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulatorsSemtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulators
 
Semtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulatorsSemtech synchronous vs-asynchronous-buck-regulators
Semtech synchronous vs-asynchronous-buck-regulators
 
DC Component of Fault Current
DC Component of Fault CurrentDC Component of Fault Current
DC Component of Fault Current
 
SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.SWAN/DWS micro-behavioral power/gnd plane modelling.
SWAN/DWS micro-behavioral power/gnd plane modelling.
 
K2917.pptx
K2917.pptxK2917.pptx
K2917.pptx
 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatus
 
Catalog hitachi hitachi switch&breaders ctlg eng-dienhathe.org
Catalog hitachi hitachi switch&breaders ctlg eng-dienhathe.orgCatalog hitachi hitachi switch&breaders ctlg eng-dienhathe.org
Catalog hitachi hitachi switch&breaders ctlg eng-dienhathe.org
 
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
 
Serial 3 Channel AC 230V SSR and Dimmer
Serial 3 Channel AC 230V SSR and DimmerSerial 3 Channel AC 230V SSR and Dimmer
Serial 3 Channel AC 230V SSR and Dimmer
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
Ct2000 es manual_english_version_1[1].0
Ct2000 es manual_english_version_1[1].0Ct2000 es manual_english_version_1[1].0
Ct2000 es manual_english_version_1[1].0
 
Buck converterdesignnote
Buck converterdesignnoteBuck converterdesignnote
Buck converterdesignnote
 
Transformer overcurrent
Transformer overcurrentTransformer overcurrent
Transformer overcurrent
 
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
 
Moc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 vMoc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 v
 

Sample Coordination Study

  • 1. Station: Omitted  Project Number: Omitted  Calculation Number: Omitted  Page 1 of 3  Title: Omitted  Contents  1.0  Background ..................................................................................................................................... 2  2.0  Design Input .................................................................................................................................... 2  3.0  Analysis ............................................................................................................................................ 2  4.0  Results/Conclusions ........................................................................................................................ 3  5.0  References ........................................................................................................................................ 3  6.0  List of Attachments ......................................................................................................................... 3   
  • 2. Station: Omitted  Project Number: Omitted  Calculation Number: Omitted  Page 2 of 3  Title: Omitted  1.0 Background This proposed design installs two three phase pad mounted reclosers to provide secondary protection for the 6MVA 13.8/13.2kV site power transformers 0X03 and 0X04 and to mitigate the impact on the balance of plant equipment due to a fault in the plant site power system. A recent ground fault on the secondary side of one of the transformers has demonstrated that the transformers are not adequately protected (i.e. the transformer damage occurred). The reclosers will be located between the secondary side of transformers 0X03 and 0X04 and the first downstream pad mounted switches 0DISC289-SW17 and 0DISC289-SW16. As most of the distribution system cabling is underground, the new reclosers will be set to interrupt and will not reclose (i.e. one shot protection scheme). Transformers 0X03 and 0X04 are powered by 13.8kV buses 11 (breaker 252-1106) and 21 (252-2106) respectively. These transformers then go on to feed disconnect switches 0DISC289-17 and 0DISC289-16 respectively. The purpose of this study is to develop the new recloser controller phase and ground protection settings to ensure that the transformers are adequately protected and that coordination exists between the reclosers, the upstream feeder breakers, and downstream fuses. 2.0 Design Input The maximum interrupting rating of the reclosers is 12kA (Reference OMITTED). This is greater than the maximum short circuit on the system of approximately 4.85kA. The maximum short circuit current was calculated based on the transformer impedance of 6.5% (Reference OMITTED), cable A0H206P impedance (Reference OMITTED), and a conservative assumption that a 6MVA load is connected with 50% of the load being motor load drawing 650% locked rotor current. The ETAP model generated for coordination purposes was used to calculate this value. It should be noted that negative sequence impedance data is not available for transformers 0X03 and 0X04 and therefore the fault current for ground faults is conservatively assumed to be the same as for phase faults. Ground and phase protection is provided for the primary side of transformers 0X03 and 0X04 from SEL-551 relays which control breakers 252-1106 and 252-2106. Downstream of disconnect switches 0DISC289-17 and 0DISC289- 16 are fused disconnect switches 0DISC289-SW01 and 0DISC289-SW14 respectively which each contain a Combined Technologies Type 155F125-Q1B fuse (Reference OMITTED). It should be noted that based on vendor input, the TCC curve for this fuse is the same as the TCC curve for a Cooper X-Limiter type fuse. The TCC curves for the fuses are provided in (Reference OMITTED). The TCC curves for the SEL-551 relay are shown in (Reference OMITTED). The ETAP library is utilized to model these devices. The TCC curves for the Form 6 recloser controls are shown in (Reference OMITTED). Note that the ETAP library does not contain a Form 6 controller but it does contain a Form 4C controller. Review of the Cooper vendor literature indicates that the TCC curves of the Form 4C are the same as the Form 6 controller. Therefore the Form 4C controller will be utilized in the ETAP model. The existing settings for the SEL-551 relay are documented in (Reference OMITTED). Damage curves were not available for transformers 0X03 and 0X04 and therefore, a typical damage curve was selected using ANSI C57.109 and based on the transformer ratings from (Reference OMITTED). It was assumed that the total connected transformer load downstream of transformers 0X03 and 0X04 is 6MVA. Typical inrush current for liquid filled 13kV transformers is 12 times the full load current at 6 cycles. This value is reflected in Attachment 1. The damage curve for the 500MCM cables is taken from the NEC.   3.0 Analysis The recloser phase and ground protection settings were selected such that the transformers are protected and they coordinate with the downstream fuses and upstream SEL-551 relay. For the phase protection, curve 202 was selected and a pickup of 300A was selected. Also a minimum response time TCC modifier of 15cycle and a vertical multiplier of 0.37 were selected. The resultant curve shape allows for coordination between the fuse and the Form 6
  • 3. Station: Omitted  Project Number: Omitted  Calculation Number: Omitted  Page 3 of 3  Title: Omitted  recloser controller. For ground protection, curve 202 was also selected and a pickup of 250A was selected. No TCC modifiers were used. The resultant curve shape allows for coordination between the fuse and the Form 6 recloser controller. It should be noted that although actual ground fault current is not known, transformers 0X03 and 0X04 are still adequately protected. Ground faults lower than 250A will not damage the transformers as this is less than their full load current rating. The Form 6 settings for each recloser are documented in Attachment 2. 4.0 Results/Conclusions A coordination plot was created using the above methodology as well as the input discussed in Section 2.0 and is attached to this document as Attachment 1. As the transformers 0X03 and 0X04 are all delta-wye connected, the ground protection on the primary side of 0X03 and 0X04 will not see ground faults on the secondary side. As such, coordination for the ground TCC curves between the recloser and SEL-551 relay is not required. The phase protection provided by the SEL-551 relay, however, will need to coordinate with the ground protection provided by the recloser controller. For ground faults on the secondary side of transformers 0X03 and 0X04, the phase protection of the SEL-551 relays will see 58% (i.e. 1/√3) of the fault current times the transformer turns ratio (i.e. 58% * 13.2kV/13.8kV = 55.5%). This shift was not plotted in Attachment 1. A visual inspection of Attachment 1 was performed and it was determined that the recloser ground protection coordinates with the SEL-551 phase protection. Since this is the case, as can be seen in Attachment 1, proper coordination exists up to the calculated maximum short circuit value and the transformers and cables will be protected using the selected recloser settings. This allows for improved protection of transformers 0X03 and 0X04 as well as mitigation of impacts on the auxiliary power system due to system faults. 5.0 References OMITTED 6.0 List of Attachments* 6.1 Attachment 1: Coordination Plot XXXX 6.2 Attachment 2: Cooper Form 6 Controller Settings Sheet *Other Attachments OMITTED  
  • 4. 0DISC289-SW16/SW17 Fuse Cooper X-Limiter Coordinating 15.5 kV 125A SEL-551 - P OC1 Schweitzer 551 CT Ratio 1200:5 U3 - U.S. Very Inverse Pickup = 1.5 (0.5 - 16 Sec - 5A) Time Dial = 5 3x = 2.91 s, 5x = 1.29 s, 8x = 0.789 s Inst = 24 (0.5 - 80 Sec - 5A) A0H206P 1 - 3/C 500 kcmil Aluminum Rubber Tc = 90C 0X03/0X04 6 MVA (Secondary) 6.5 %Z Delta-Wye Solid Grd ANSI Curve Shift = 0.58 Inrush FLA Recloser - P TCC1 Cooper Form 4C 202 Pickup = 300 (100 - 2400 Primary) Interrupting Time = 34 ms Minimum Response Time = 15 Cycles Vertical Multiplier = 0.37 3x = 3.72 s, 5x = 1.21 s, 8x = 0.495 s Clearing Recloser - 3P 4.851kA @ 13.2kV (Sym) SEL-551 - G OC1 Schweitzer 551 CT Ratio 50:5 U2 - U.S. Inverse Pickup = 1.4 (0.5 - 16 Sec - 5A) Time Dial = 1 3x = 0.924 s, 5x = 0.428 s, 8x = 0.274 s Recloser - G TCC1 Cooper Form 4C 202 Pickup = 250 (2 - 400 Primary) Interrupting Time = 34 ms 3x = 10 s, 5x = 3.22 s, 8x = 1.28 s Clearing 10K.5 1 10 100 1K3 5 30 50 300 500 3K 5K Amps X 10 Site Power (Nom. kV=13.2, Plot Ref. kV=13.2) 10K.5 1 10 100 1K3 5 30 50 300 500 3K 5K Amps X 10 Site Power (Nom. kV=13.2, Plot Ref. kV=13.2) 1K .01 .1 1 10 100 .03 .05 .3 .5 3 5 30 50 300 500 Seconds 1K .01 .1 1 10 100 .03 .05 .3 .5 3 5 30 50 300 500 Seconds ETAP Star 7.1.0N Site Power Coordination Project: Site Self Power Reclosers Location: CCNPP Contract: Engineer: Sargent & Lundy, LLC Filename: D:0n7518ConstellationCalvert Cliffs11562-08011562-080 Coordination115 Date: 09-17-2012 SN: SARGENTLDY Rev: Base Fault: Ground o o Bus 11/21 Site Power 79 Recloser 0DISC289-SW16/SW17 Fuse OCR SEL-551 252-1106/2106 0X03/0X04 6 MVA A0H206P 1-3/C 500 Site Power Loads 6 MVA Site Power 252-1106/2106 Site Power Loads 6 MVA A0H206P 1-3/C 500 SEL-551 0X03/0X04 6 MVA Recloser 0DISC289-SW16/SW17 Fuse Bus 11/21 ECP-12-000556 Form 7, Attachment 2 Page 1 of 1 Note: SEL-551 phase protection will only see 58% times the transformer turns ratio of a ground fault on the secondary side of the transformer due to its delta-wye connection. Therefore, although not shown on this plot, coordination exists between the SEL-551-P and Recloser-G curves. 1
  • 5. Page 1 Device Identity 0BKR252-0H1106UserDeviceName Alternate 3Alternate 2Alternate 1NormalOvercurrent Settings Phase: UnblockedUnblockedUnblockedUnblockedPhsTripBlk UnblockedUnblockedUnblockedUnblockedFastTripBlock 300300300300TCCPMinTrip IEC EI (202)IEC EI (202)IEC EI (202)IEC EI (202)TCC1PCurve EnableEnableEnableEnableTCC1PMultEnable 0.370.370.370.37TCC1PMult DisableDisableDisableDisableTCC1PAddEnable 0000TCC1PAdd EnableEnableEnableEnableTCC1PMRTAEnable 0.250.250.250.25TCC1PMRTA DisableDisableDisableDisableTCC1PHCTEnable 32323232TCC1PHCT Mul 0.0160.0160.0160.016TCC1PHCTDly IEC EI (202)IEC EI (202)IEC EI (202)IEC EI (202)TCC2PCurve EnableEnableEnableEnableTCC2PMultEnable 0.370.370.370.37TCC2PMult DisableDisableDisableDisableTCC2PAddEnable 0000TCC2PAdd EnableEnableEnableEnableTCC2PMRTAEnable 0.250.250.250.25TCC2PMRTA DisableDisableDisableDisableTCC2PHCTEnable 32323232TCC2PHCT Mul 0.0160.0160.0160.016TCC2PHCTDly Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 1 of 11 /RECL * * * * * * * * * * * Indicates Significant Functional Setting
  • 6. Page 2 Ground: UnblockedUnblockedUnblockedUnblockedGndTripBlk UnblockedUnblockedUnblockedUnblockedFastTripBlock 150150150150TCCGMinTrip 120120120120TCC1GCurve DisableDisableDisableDisableTCC1GMultEnable 1111TCC1GMult DisableDisableDisableDisableTCC1GAddEnable 0000TCC1GAdd DisableDisableDisableDisableTCC1GMRTAEnable 0.0130.0130.0130.013TCC1GMRTA DisableDisableDisableDisableTCC1GHCTEnable 32323232TCC1GHCT Mul 0.0160.0160.0160.016TCC1GHCTDly 120120120120TCC2GCurve DisableDisableDisableDisableTCC2GMultEnable 1111TCC2GMult DisableDisableDisableDisableTCC2GAddEnable 0000TCC2GAdd DisableDisableDisableDisableTCC2GMRTAEnable 0.0130.0130.0130.013TCC2GMRTA DisableDisableDisableDisableTCC2GHCTEnable 32323232TCC2GHCT Mul 0.0160.0160.0160.016TCC2GHCTDly Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 2 of 11 * * * 250 250 250 250 IEC EI (202) IEC EI (202) IEC EI (202) IEC EI (202) IEC EI (202) IEC EI (202)IEC EI (202) IEC EI (202)
  • 7. Page 3 Negative Sequence: BlockedBlockedBlockedBlockedNegSeqTripBlk UnblockedUnblockedUnblockedUnblockedFastTripBlock 100100100100TCCQMinTrip 104104104104TCC1QCurve DisableDisableDisableDisableTCC1QMultEnable 1111TCC1QMult DisableDisableDisableDisableTCC1QAddEnable 0000TCC1QAdd DisableDisableDisableDisableTCC1QMRTAEnable 0.0130.0130.0130.013TCC1QMRTA DisableDisableDisableDisableTCC1QHCTEnable 32323232TCC1QHCT Mul 0.0160.0160.0160.016TCC1QHCTDly 117117117117TCC2QCurve DisableDisableDisableDisableTCC2QMultEnable 1111TCC2QMult DisableDisableDisableDisableTCC2QAddEnable 0000TCC2QAdd DisableDisableDisableDisableTCC2QMRTAEnable 0.0130.0130.0130.013TCC2QMRTA DisableDisableDisableDisableTCC2QHCTEnable 32323232TCC2QHCT Mul 0.0160.0160.0160.016TCC2QHCTDly Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 3 of 11
  • 8. Page 4 User Curves: not loadedUser 1:xTCC 40User 1:xMmax 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 1:xT 1User 1:xTmin not loadedUser 2:xTCC 40User 2:xMmax 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 2:xT 1User 2:xTmin not loadedUser 3:xTCC 40User 3:xMmax 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 3:xT 1User 3:xTmin not loadedUser 4:xTCC 40User 4:xMmax 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 4:xT 1User 4:xTmin not loadedUser 5:xTCC 40User 5:xMmax 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0User 5:xT 1User 5:xTmin Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 4 of 11
  • 9. Page 5 Alternate 3Alternate 2Alternate 1NormalOperations Sequence 1111Operations To LO Phase/Neg Sequence: TCC2TCC2TCC2TCC2PQOper#1 TCC2TCC2TCC2TCC2PQOper#2 TCC2TCC2TCC2TCC2PQOper#3 TCC2TCC2TCC2TCC2PQOper#4 Ground: TCC2TCC2TCC2TCC2GndOper#1 TCC2TCC2TCC2TCC2GndOper#2 TCC2TCC2TCC2TCC2GndOper#3 TCC2TCC2TCC2TCC2GndOper#4 Alternate 3Alternate 2Alternate 1NormalReclose Intervals Phase/Neg Sequence: 2222PQOpenInt#1 2222PQOpenInt#2 5555PQOpenInt#3 Ground: 2222GndOpenInt#1 2222GndOpenInt#2 5555GndOpenInt#3 30303030ResetTime Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 5 of 11 *
  • 10. Page 6 Alternate 3Alternate 2Alternate 1NormalCold Load Pickup YesYesYesYesCLPUBlock Phase: 300300300300CLPUPMinTrip IEC EI (202)IEC EI (202)IEC EI (202)IEC EI (202)CLPUPCurve EnableEnableEnableEnableCLPUPMultEnable 0.370.370.370.37CLPUPMult DisableDisableDisableDisableCLPUPAddEnable 0000CLPUPAdd EnableEnableEnableEnableCLPUPMRTAEnable 0.250.250.250.25CLPUPMRTA DisableDisableDisableDisableCLPUPHCTEnable 32323232CLPUPHCT Mul 0.0160.0160.0160.016CLPUPHCTDly Ground: 150150150150CLPUGMinTrip 120120120120CLPUGCurve DisableDisableDisableDisableCLPUGMultEnable 1111CLPUGMult DisableDisableDisableDisableCLPUGAddEnable 0000CLPUGAdd DisableDisableDisableDisableCLPUGMRTAEnable 0.0130.0130.0130.013CLPUGMRTA DisableDisableDisableDisableCLPUGHCTEnable 32323232CLPUGHCT Mul 0.0160.0160.0160.016CLPUGHCTDly Negative Sequence: 100100100100CLPUQMinTrip 101101101101CLPUQCurve DisableDisableDisableDisableCLPUQMultEnable 1111CLPUQMult DisableDisableDisableDisableCLPUQAddEnable 0000CLPUQAdd DisableDisableDisableDisableCLPUQMRTAEnable 0.0130.0130.0130.013CLPUQMRTA DisableDisableDisableDisableCLPUQHCTEnable 32323232CLPUQHCT Mul 0.0160.0160.0160.016CLPUQHCTDly Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 6 of 11
  • 11. Page 7 Alternate 3Alternate 2Alternate 1NormalFrequency Underfrequency: OffOffOffOffUFreqEnable 56565656UFreq1PU 100100100100UFreq1Time 56565656UFreq2PU 100100100100UFreq2Time Overfrequency: OffOffOffOffOFreqEnable 64646464OFreq1PU 100100100100OFreq1Time 64646464OFreq2PU 100100100100OFreq2Time U/OF Tripping Supervision: 3.63.63.63.6Freq:MinVolt UF Loadshed Restore: OffOffOffOffFreqRestoreEnable 60.0560.0560.0560.05Freq:81OR:PU 300300300300Freq:62Schedule 600600600600Freq:62Abort 0.30.30.30.3Freq:62Transient OffOffOffOffVoltFreqRestSupEn Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 7 of 11
  • 12. Page 8 Alternate 3Alternate 2Alternate 1NormalReclsTime and Control EnableEnableEnableEnable79ResetTarEnable 222279ResetTar EnableEnableEnableEnable79SeqCoorEnable 222279SeqCoorOps Alternate 3Alternate 2Alternate 1NormalReclose Retry DisableDisableDisableDisableRecloseRetryEnable 1111RecloseRetryAttempts 60606060RecloseRetryInterval Alternate 3Alternate 2Alternate 1NormalVoltage Undervoltage: OffOffOffOffUVolt1PEnable OffOffOffOffUVolt3PEnable OffOffOffOffUVolt1P/3Pinhibit 11.5211.5211.5211.52UVolt1PPU 100100100100UVolt1PTime 11.5211.5211.5211.52UVolt3PPU 100100100100UVolt3PTime Overvoltage: OffOffOffOffOVoltEnable 16.216.216.216.2OVolt1PPU 100100100100OVolt1PTime 16.216.216.216.2OVolt3PPU 100100100100OVolt3PTime U/OV Loadshed Restore: OffOffOffOffVoltRestoreEnable Any Single PhaseAny Single PhaseAny Single PhaseAny Single PhaseVoltRestoreMode 15.1215.1215.1215.12VoltRestHiL 13.6813.6813.6813.68VoltRestLoL 300300300300Freq:62Schedule 600600600600Freq:62Abort 0.30.30.30.3Freq:62Transient OffOffOffOffVoltFreqRestSupEn Alternate 3Alternate 2Alternate 1NormalSensitive Earth Fault Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 8 of 11 * *
  • 13. Page 9 EnableEnableEnableEnableSEFBlock 40404040SEFMinTrip 120120120120SEFTime 2222SEFReclInt 4444SEFNumOps Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 9 of 11
  • 14. Page 10 Alternate 3Alternate 2Alternate 1NormalDirectional Control 60606060DirMTA NonDirectionalNonDirectionalNonDirectionalNonDirectionalDirPhs NonDirectionalNonDirectionalNonDirectionalNonDirectionalDirGnd NonDirectionalNonDirectionalNonDirectionalNonDirectionalDirNegSeq Alternate 3Alternate 2Alternate 1NormalLow Set Phase: DisableDisableDisableDisableLSPEnable 3200320032003200LSPPU 100100100100LSPTimeDelay Ground: DisableDisableDisableDisableLSGEnable 1600160016001600LSGPU 100100100100LSGTimeDelay Negative Sequence: DisableDisableDisableDisableLSQEnable 3200320032003200LSQPU 100100100100LSQTimeDelay Alternate 3Alternate 2Alternate 1NormalSync Check DisableDisableDisableDisable25DV:Enable DisableDisableDisableDisable25DV:DLDB DisableDisableDisableDisable25DV:DLHB DisableDisableDisableDisable25DV:HLDB DisableDisableDisableDisable25DV:HLHB 1584015840158401584025DV:27 264026402640264025DV:27DEAD 1224012240122401224025DV:59 1152011520115201152025DV:59LIVE 4040404025DV 10101010StaticAngleDelay 0.10.10.10.1MechanismOpDelay Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 10 of 11
  • 15. Doc ID: 0BKR252-0H1106/RECL, Rev. 0 Doc Type: PRSS ECP: ECP-12-000556 Attachment 2 Page 11 of 11 0BKR252-0H1106/RECL * * * * * * * * * 10 *