Trig Cheat Sheet
Definition of the Trig Functions
Right triangle definition
For this definition we assume that
p
0 < q < or 0° < q < 90° .
2

Unit circle definition
For this definition q is any angle.
y

( x, y )
hypotenuse

y

opposite

1

q
x

x

q
adjacent
opposite
hypotenuse
adjacent
cos q =
hypotenuse
opposite
tan q =
adjacent

sin q =

hypotenuse
opposite
hypotenuse
sec q =
adjacent
adjacent
cot q =
opposite
csc q =

y
=y
1
x
cos q = = x
1
y
tan q =
x

sin q =

1
y
1
sec q =
x
x
cot q =
y
csc q =

Facts and Properties
Domain
The domain is all the values of q that
can be plugged into the function.
sin q , q can be any angle
cos q , q can be any angle
1ö
æ
tan q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K
2ø
è
csc q , q ¹ n p , n = 0, ± 1, ± 2,K
1ö
æ
sec q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K
2ø
è
cot q , q ¹ n p , n = 0, ± 1, ± 2,K

Range
The range is all possible values to get
out of the function.
csc q ³ 1 and csc q £ -1
-1 £ sin q £ 1
-1 £ cos q £ 1 sec q ³ 1 and sec q £ -1
-¥ < tan q < ¥
-¥ < cot q < ¥

Period
The period of a function is the number,
T, such that f (q + T ) = f (q ) . So, if w
is a fixed number and q is any angle we
have the following periods.
2p
w
2p
=
w
p
=
w
2p
=
w
2p
=
w
p
=
w

sin ( wq ) ®

T=

cos (wq ) ®

T

tan (wq ) ®

T

csc (wq ) ®

T

sec (wq ) ®

T

cot (wq ) ®

T

© 2005 Paul Dawkins
Formulas and Identities
Tangent and Cotangent Identities
sin q
cos q
tan q =
cot q =
cos q
sin q
Reciprocal Identities
1
1
csc q =
sin q =
sin q
csc q
1
1
sec q =
cos q =
cos q
sec q
1
1
cot q =
tan q =
tan q
cot q
Pythagorean Identities
sin 2 q + cos 2 q = 1
tan 2 q + 1 = sec 2 q
1 + cot 2 q = csc 2 q
Even/Odd Formulas
sin ( -q ) = - sin q
csc ( -q ) = - csc q
cos ( -q ) = cos q

sec ( -q ) = sec q

tan ( -q ) = - tan q

cot ( -q ) = - cot q

Periodic Formulas
If n is an integer.
sin (q + 2p n ) = sin q

csc (q + 2p n ) = csc q

cos (q + 2p n ) = cos q sec (q + 2p n ) = sec q
tan (q + p n ) = tan q

cot (q + p n ) = cot q

Double Angle Formulas
sin ( 2q ) = 2sin q cos q
cos ( 2q ) = cos 2 q - sin 2 q
= 2 cos 2 q - 1
= 1 - 2sin 2 q
2 tan q
tan ( 2q ) =
1 - tan 2 q
Degrees to Radians Formulas
If x is an angle in degrees and t is an
angle in radians then
p
t
px
180t
=
Þ t=
and x =
180 x
180
p

Half Angle Formulas
1
sin 2 q = (1 - cos ( 2q ) )
2
1
cos 2 q = (1 + cos ( 2q ) )
2
1 - cos ( 2q )
tan 2 q =
1 + cos ( 2q )
Sum and Difference Formulas
sin (a ± b ) = sin a cos b ± cos a sin b
cos (a ± b ) = cos a cos b m sin a sin b
tan a ± tan b
1 m tan a tan b
Product to Sum Formulas
1
sin a sin b = écos (a - b ) - cos (a + b ) ù
û
2ë
1
cos a cos b = é cos (a - b ) + cos (a + b ) ù
û
2ë
1
sin a cos b = ésin (a + b ) + sin (a - b ) ù
û
2ë
1
cos a sin b = ésin (a + b ) - sin (a - b ) ù
û
2ë
Sum to Product Formulas
æa + b ö
æa - b ö
sin a + sin b = 2sin ç
÷ cos ç
÷
è 2 ø
è 2 ø
æa + b ö æa - b ö
sin a - sin b = 2 cos ç
÷ sin ç
÷
è 2 ø è 2 ø
æa + b ö
æa - b ö
cos a + cos b = 2 cos ç
÷ cos ç
÷
è 2 ø
è 2 ø
æa + b ö æa - b ö
cos a - cos b = -2sin ç
÷ sin ç
÷
è 2 ø è 2 ø
Cofunction Formulas
tan (a ± b ) =

æp
ö
sin ç - q ÷ = cos q
è2
ø
æp
ö
csc ç - q ÷ = sec q
è2
ø

æp
ö
cos ç - q ÷ = sin q
è2
ø
æp
ö
sec ç - q ÷ = csc q
è2
ø

æp
ö
tan ç - q ÷ = cot q
2
è
ø

æp
ö
cot ç - q ÷ = tan q
2
è
ø

© 2005 Paul Dawkins
Unit Circle
y

p
2

æ 1 3ö
ç- , ÷
è 2 2 ø
æ
2 2ö
,
ç÷
2 2 ø
è
æ
3 1ö
ç- , ÷
è 2 2ø

3p
4

5p
6

( 0,1)

2p
3

p
3

90°
120°

æ1 3ö
ç , ÷
ç2 2 ÷
è
ø
æ 2 2ö
ç
ç 2 , 2 ÷
÷
è
ø

p
4

60°
45°

135°

30°

p
6

æ 3 1ö
ç , ÷
ç 2 2÷
è
ø

150°

p 180°

æ
3 1ö
ç - ,- ÷
2ø
è 2

7p
6

æ
2
2ö
,ç÷
2
2 ø
è

0°

210°

0

360°

( -1,0 )

2p

330°
225°

5p
4

4p
3

240°

æ 1
3ö
ç - ,÷
è 2 2 ø

315°
7p
300°
270°
4
5p
3p
3
2
æ

(1,0 )

11p
6

x

æ 3 1ö
ç ,- ÷
è 2 2ø

æ 2
2ö
,ç
÷
2 ø
è 2

1
3ö
ç ,÷
è2 2 ø

( 0,-1)

For any ordered pair on the unit circle ( x, y ) : cos q = x and sin q = y
Example
æ 5p
cos ç
è 3

ö 1
÷=
ø 2

æ 5p
sin ç
è 3

3
ö
÷=2
ø

© 2005 Paul Dawkins
Inverse Trig Functions
Definition
y = sin -1 x is equivalent to x = sin y

Inverse Properties
cos ( cos -1 ( x ) ) = x
cos -1 ( cos (q ) ) = q
sin ( sin -1 ( x ) ) = x

y = tan -1 x is equivalent to x = tan y
Domain and Range
Function
Domain
y = sin -1 x
-1

-1 £ x £ 1

y = cos x

-1 £ x £ 1

y = tan -1 x

-¥ < x < ¥

sin -1 ( sin (q ) ) = q

tan ( tan -1 ( x ) ) = x

y = cos -1 x is equivalent to x = cos y

tan -1 ( tan (q ) ) = q

Alternate Notation
sin -1 x = arcsin x

Range
p
p
- £ y£
2
2
0£ y £p
p
p
- < y<
2
2

cos -1 x = arccos x
tan -1 x = arctan x

Law of Sines, Cosines and Tangents
c

b

a

a

g

b
Law of Sines
sin a sin b sin g
=
=
a
b
c

Law of Tangents
a - b tan 1 (a - b )
2
=
1
a + b tan 2 (a + b )

Law of Cosines
a 2 = b2 + c 2 - 2bc cos a

b - c tan 1 ( b - g )
2
=
b + c tan 1 ( b + g )
2

b 2 = a 2 + c 2 - 2ac cos b
c 2 = a 2 + b 2 - 2ab cos g

a - c tan 1 (a - g )
2
=
1
a + c tan 2 (a + g )

Mollweide’s Formula
a + b cos 1 (a - b )
2
=
c
sin 1 g
2

© 2005 Paul Dawkins

Trig cheat sheet

  • 1.
    Trig Cheat Sheet Definitionof the Trig Functions Right triangle definition For this definition we assume that p 0 < q < or 0° < q < 90° . 2 Unit circle definition For this definition q is any angle. y ( x, y ) hypotenuse y opposite 1 q x x q adjacent opposite hypotenuse adjacent cos q = hypotenuse opposite tan q = adjacent sin q = hypotenuse opposite hypotenuse sec q = adjacent adjacent cot q = opposite csc q = y =y 1 x cos q = = x 1 y tan q = x sin q = 1 y 1 sec q = x x cot q = y csc q = Facts and Properties Domain The domain is all the values of q that can be plugged into the function. sin q , q can be any angle cos q , q can be any angle 1ö æ tan q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K 2ø è csc q , q ¹ n p , n = 0, ± 1, ± 2,K 1ö æ sec q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K 2ø è cot q , q ¹ n p , n = 0, ± 1, ± 2,K Range The range is all possible values to get out of the function. csc q ³ 1 and csc q £ -1 -1 £ sin q £ 1 -1 £ cos q £ 1 sec q ³ 1 and sec q £ -1 -¥ < tan q < ¥ -¥ < cot q < ¥ Period The period of a function is the number, T, such that f (q + T ) = f (q ) . So, if w is a fixed number and q is any angle we have the following periods. 2p w 2p = w p = w 2p = w 2p = w p = w sin ( wq ) ® T= cos (wq ) ® T tan (wq ) ® T csc (wq ) ® T sec (wq ) ® T cot (wq ) ® T © 2005 Paul Dawkins
  • 2.
    Formulas and Identities Tangentand Cotangent Identities sin q cos q tan q = cot q = cos q sin q Reciprocal Identities 1 1 csc q = sin q = sin q csc q 1 1 sec q = cos q = cos q sec q 1 1 cot q = tan q = tan q cot q Pythagorean Identities sin 2 q + cos 2 q = 1 tan 2 q + 1 = sec 2 q 1 + cot 2 q = csc 2 q Even/Odd Formulas sin ( -q ) = - sin q csc ( -q ) = - csc q cos ( -q ) = cos q sec ( -q ) = sec q tan ( -q ) = - tan q cot ( -q ) = - cot q Periodic Formulas If n is an integer. sin (q + 2p n ) = sin q csc (q + 2p n ) = csc q cos (q + 2p n ) = cos q sec (q + 2p n ) = sec q tan (q + p n ) = tan q cot (q + p n ) = cot q Double Angle Formulas sin ( 2q ) = 2sin q cos q cos ( 2q ) = cos 2 q - sin 2 q = 2 cos 2 q - 1 = 1 - 2sin 2 q 2 tan q tan ( 2q ) = 1 - tan 2 q Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then p t px 180t = Þ t= and x = 180 x 180 p Half Angle Formulas 1 sin 2 q = (1 - cos ( 2q ) ) 2 1 cos 2 q = (1 + cos ( 2q ) ) 2 1 - cos ( 2q ) tan 2 q = 1 + cos ( 2q ) Sum and Difference Formulas sin (a ± b ) = sin a cos b ± cos a sin b cos (a ± b ) = cos a cos b m sin a sin b tan a ± tan b 1 m tan a tan b Product to Sum Formulas 1 sin a sin b = écos (a - b ) - cos (a + b ) ù û 2ë 1 cos a cos b = é cos (a - b ) + cos (a + b ) ù û 2ë 1 sin a cos b = ésin (a + b ) + sin (a - b ) ù û 2ë 1 cos a sin b = ésin (a + b ) - sin (a - b ) ù û 2ë Sum to Product Formulas æa + b ö æa - b ö sin a + sin b = 2sin ç ÷ cos ç ÷ è 2 ø è 2 ø æa + b ö æa - b ö sin a - sin b = 2 cos ç ÷ sin ç ÷ è 2 ø è 2 ø æa + b ö æa - b ö cos a + cos b = 2 cos ç ÷ cos ç ÷ è 2 ø è 2 ø æa + b ö æa - b ö cos a - cos b = -2sin ç ÷ sin ç ÷ è 2 ø è 2 ø Cofunction Formulas tan (a ± b ) = æp ö sin ç - q ÷ = cos q è2 ø æp ö csc ç - q ÷ = sec q è2 ø æp ö cos ç - q ÷ = sin q è2 ø æp ö sec ç - q ÷ = csc q è2 ø æp ö tan ç - q ÷ = cot q 2 è ø æp ö cot ç - q ÷ = tan q 2 è ø © 2005 Paul Dawkins
  • 3.
    Unit Circle y p 2 æ 13ö ç- , ÷ è 2 2 ø æ 2 2ö , ç÷ 2 2 ø è æ 3 1ö ç- , ÷ è 2 2ø 3p 4 5p 6 ( 0,1) 2p 3 p 3 90° 120° æ1 3ö ç , ÷ ç2 2 ÷ è ø æ 2 2ö ç ç 2 , 2 ÷ ÷ è ø p 4 60° 45° 135° 30° p 6 æ 3 1ö ç , ÷ ç 2 2÷ è ø 150° p 180° æ 3 1ö ç - ,- ÷ 2ø è 2 7p 6 æ 2 2ö ,ç÷ 2 2 ø è 0° 210° 0 360° ( -1,0 ) 2p 330° 225° 5p 4 4p 3 240° æ 1 3ö ç - ,÷ è 2 2 ø 315° 7p 300° 270° 4 5p 3p 3 2 æ (1,0 ) 11p 6 x æ 3 1ö ç ,- ÷ è 2 2ø æ 2 2ö ,ç ÷ 2 ø è 2 1 3ö ç ,÷ è2 2 ø ( 0,-1) For any ordered pair on the unit circle ( x, y ) : cos q = x and sin q = y Example æ 5p cos ç è 3 ö 1 ÷= ø 2 æ 5p sin ç è 3 3 ö ÷=2 ø © 2005 Paul Dawkins
  • 4.
    Inverse Trig Functions Definition y= sin -1 x is equivalent to x = sin y Inverse Properties cos ( cos -1 ( x ) ) = x cos -1 ( cos (q ) ) = q sin ( sin -1 ( x ) ) = x y = tan -1 x is equivalent to x = tan y Domain and Range Function Domain y = sin -1 x -1 -1 £ x £ 1 y = cos x -1 £ x £ 1 y = tan -1 x -¥ < x < ¥ sin -1 ( sin (q ) ) = q tan ( tan -1 ( x ) ) = x y = cos -1 x is equivalent to x = cos y tan -1 ( tan (q ) ) = q Alternate Notation sin -1 x = arcsin x Range p p - £ y£ 2 2 0£ y £p p p - < y< 2 2 cos -1 x = arccos x tan -1 x = arctan x Law of Sines, Cosines and Tangents c b a a g b Law of Sines sin a sin b sin g = = a b c Law of Tangents a - b tan 1 (a - b ) 2 = 1 a + b tan 2 (a + b ) Law of Cosines a 2 = b2 + c 2 - 2bc cos a b - c tan 1 ( b - g ) 2 = b + c tan 1 ( b + g ) 2 b 2 = a 2 + c 2 - 2ac cos b c 2 = a 2 + b 2 - 2ab cos g a - c tan 1 (a - g ) 2 = 1 a + c tan 2 (a + g ) Mollweide’s Formula a + b cos 1 (a - b ) 2 = c sin 1 g 2 © 2005 Paul Dawkins