SlideShare a Scribd company logo
1 of 87
Download to read offline
Structural Analysis - III
Di t Stiff M th dDirect Stiffness Method
Dr. Rajesh K. N.
Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE Kannur Dr.RajeshKNDept. of CE, GCE Kannur Dr.RajeshKN
1
Module IIIModule III
Direct stiffness method
• Introduction – element stiffness matrix – rotation transformation
Direct stiffness method
matrix – transformation of displacement and load vectors and
stiffness matrix – equivalent nodal forces and load vectors –
assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of
nodal displacement and element forces – analysis of plane truss
beam and plane frame (with numerical examples) – analysis of
grid space frame (without numerical examples)grid – space frame (without numerical examples)
Dept. of CE, GCE Kannur Dr.RajeshKN
2
Introduction
• The formalised stiffness method involves evaluating the
displacement transformation matrix CMJ correctlyp y
• Generation of matrix CMJ is not suitable for computer
programming
H th l ti f di t tiff th d• Hence the evolution of direct stiffness method
Dept. of CE, GCE Kannur Dr.RajeshKN
3
Direct stiffness method
• We need to simplify the assembling process of SJ , theJ
assembled structure stiffness matrix
• The key to this is to use member stiffness matrices for actionsThe key to this is to use member stiffness matrices for actions
and displacements at BOTH ends of each member
If b di l d i h f• If member displacements are expressed with reference to
global co-ordinates, the process of assembling SJ can be made
simplesimple
Dept. of CE, GCE Kannur Dr.RajeshKN
4
Member oriented axes (local coordinates)
d t t i t d ( l b l di t )and structure oriented axes (global coordinates)
Lδ
x
y
L
Local axes
LδL
Lδ
sinLδ θ
Lδ θ
x
YYYY
cosLδ θ
θ
Global axes yGlobal axesGlobal axes
θ
XXXX
Dept. of CE, GCE Kannur Dr.RajeshKN
Global axes
1. Plane truss member
Stiffness coefficients in local coordinates
1
3
2 4
y
0 0
Degrees of freedom
1
⎛ ⎞
⎜ ⎟
Unit displacement
xEA
L
EA
L
⎜ ⎟
⎝ ⎠corr. to DOF 1
0 0
EA EA⎡ ⎤
−⎢ ⎥
[ ]
0 0
0 0 0 0
0 0
M
L L
S
EA EA
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥
=
Member stiffness matrix in local
coordinates
Dept. of CE, GCE Kannur Dr.RajeshKN
0 0 0 0
L L
⎢ ⎥
⎢
⎢⎣ ⎦
⎥
⎥
Transformation of displacement vector
θ
Displacements in global
22 2 cosU D θ=
p g
coordinates: U1 and U2
Displacements in local
di D d D2D
DY iU D θ
12 2 sinU D θ= − θ
1 11 12 1 2cos sinU U U D Dθ θ= + = −
coordinates: D1 and D2
1DY
11 1 cosU D θ=
21 1 sinU D θ=
2 21 22 1 2sin cosU U U D Dθ θ= + = +
1 1cos sinU Dθ θ−⎧ ⎫ ⎧ ⎫⎡ ⎤
⎧ ⎫ ⎧ ⎫⎡ ⎤
1 1
2 2
cos sin
sin cos
U D
U D
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭
X 1 1
2 2
cos sin
sin cos
D U
D U
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
∴ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
{ } [ ]{ }D R U=
C id i b th d
⎧ ⎫ ⎧ ⎫
Considering both ends,
1 1
2 2
cos sin 0 0
sin cos 0 0
0 0 i
D U
D U
D U
θ θ
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬
⎢ ⎥3 3
4 4
0 0 cos sin
0 0 sin cos
D U
D U
θ θ
θ θ
⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
{ } [ ]{ }LOCAL T GLOBALD R D=
[ ] [ ]R O⎡ ⎤
[ ]
[ ] [ ]
[ ] [ ]T
R O
R
O R
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Rotation matrix
Dept. of CE, GCE Kannur Dr.RajeshKN
Transformation of load vector Actions in global
θ
coordinates:
F1 and F2
22 2 cosF A θ= 1 11 12 1 2cos sinF F F A Aθ θ= + = −
22 2
12 2 sinF A θ= − θ 2A 2 21 22 1 2sin cosF F F A Aθ θ= + = +
Y
11 1 cosF A θ=
21 1 sinF A θ=1A 1 1
2 2
cos sin
sin cos
F A
F A
θ θ
θ θ
−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭
11 1
1 1cos sinA Fθ θ⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
X
2 2sin cosA Fθ θ
⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
{ } [ ]{ }A R F=
Dept. of CE, GCE Kannur Dr.RajeshKN
{ } [ ]{ }A R F=
C id i b th dConsidering both ends,
1 1
2 2
cos sin 0 0
sin cos 0 0
A F
A F
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬
3 3
4 4
0 0 cos sin
0 0 sin cos
A F
A F
θ θ
θ θ
⎢ ⎥=⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
{ } [ ]{ }LOCAL T GLOBALi.e., A R A=
Dept. of CE, GCE Kannur Dr.RajeshKN
10
Transformation of stiffness matrix
{ } [ ]{ }LOCAL M LOCALA S D=
[ ]{ } [ ][ ]{ }T GLOBAL M T GLOBALR A S R D=
{ } [ ] [ ][ ]{ }
1
GLOBAL T M T GLOBALA R S R D
−
=
[ ]{ } [ ][ ]{ }T GLOBAL M T GLOBAL
[ ] [ ]1 T
R R
−{ } [ ] [ ][ ]{ }GLOBAL T M T GLOBAL
{ } [ ]{ }A S D
[ ] [ ]T TR R=
{ } [ ]{ }GLOBAL MS GLOBALA S D=
[ ] [ ] [ ][ ]
T
MS T M TS R S R=where,
Member stiffness matrix in
global coordinates
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ] [ ] [ ][ ]
T
S R S R=
T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
[ ] [ ] [ ][ ]MS T M TS R S R=
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
T
c s c s
s c s cEA
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
c s c sL
s c s c
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
2 2
c cs c cs⎡ ⎤− −
⎢ ⎥ M b tiff t i2 2
2 2
cs s cs sEA
L c cs c cs
⎢ ⎥
− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
Member stiffness matrix
in global coordinates
for a plane truss member
2 2
cs s cs s
⎢ ⎥
− −⎣ ⎦
p
Dept. of CE, GCE Kannur Dr.RajeshKN
12
2. Plane frame member
Stiffness coefficients in local coordinates
2 52
4
5
Degrees of freedom0 0 0 0
EA EA⎡ ⎤
1
3
4
6
Degrees of freedom
3 2 3 2
0 0 0 0
12 6 12 6
0 0
L L
EI EI EI EI
L L L L
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
[ ]
2 2
6 4 6 2
0 0
0 0 0 0
Mi
EI EI EI EI
L L L L
S
EA EA
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
Member stiffness matrix
in local coordinates
3 2 3 2
0 0 0 0
12 6 12 6
0 0
L L
EI EI EI EI
L L L L
−⎢ ⎥
⎢ ⎥
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2
6 2 6 4
0 0
EI EI EI EI
L L L L
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦
Transformation of displacement vector
1 1
2 2
cos sin 0 0 0 0
sin cos 0 0 0 0
D U
D U
θ θ
θ θ
⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥
3 3
4 4
0 0 1 0 0 0
0 0 0 cos sin 0
D U
D Uθ θ
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥5 5
6 6
0 0 0 sin cos 0
0 0 0 0 0 1
D U
D U
θ θ⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭
{ } [ ]{ }LOCAL T GLOBALD R D=
[ ] [ ]R O⎡ ⎤
{ } [ ]{ }LOCAL T GLOBAL
[ ]
[ ] [ ]
[ ] [ ]T
R O
R
O R
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Rotation matrix
Dept. of CE, GCE Kannur Dr.RajeshKN
Transformation of load vector
{ } [ ]{ }LOCAL T GLOBALA R A={ } [ ]{ }
cos sin 0 0 0 0θ θ⎡ ⎤
⎢ ⎥
[ ]
sin cos 0 0 0 0
0 0 1 0 0 0
R
θ θ⎢ ⎥−
⎢ ⎥
⎢ ⎥
= ⎢ ⎥[ ]
0 0 0 cos sin 0
0 0 0 sin cos 0
TR
θ θ
θ θ
= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
0 0 0 0 0 1
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
Transformation of stiffness matrix
{ } [ ]{ }GLOBAL MS GLOBALA S D=
[ ] [ ] [ ][ ]T
MS T M TS R S R= Member stiffness matrix in
global coordinatesglobal coordinates
EA EA⎡ ⎤
0 0 0 0
0 0 0 0
c s
s c
⎡ ⎤
⎢ ⎥−
⎢ ⎥
3 2 3 2
0 0 0 0
12 6 12 6
0 0
EA EA
L L
EI EI EI EI
L L L L
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
[ ]
0 0 1 0 0 0
0 0 0 0
0 0 0 0
T
c s
s c
R
⎢ ⎥
⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
[ ]
2 2
6 4 6 2
0 0
0 0 0 0
M
EI EI EI EI
L L L LS
EA EA
L L
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
Where,
,
0 0 0 0 0 1
⎢ ⎥
⎣ ⎦
3 2 3 2
12 6 12 6
0 0
6 2 6 4
0 0
L L
EI EI EI EI
L L L L
EI EI EI EI
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2
0 0
L L L L
⎢ ⎥−
⎢ ⎥⎣ ⎦
Assembling global stiffness matrixg g
Plane truss
2
Force
21
3
31
3
2 4
1
3
Action/displacement components in
local coordinates of members
Dept. of CE, GCE Kannur Dr.RajeshKN
4 4
3
4
3
4
2
6
1 56
2
51
4
3
Action/displacement components in
2
5
6
Action/displacement components in
global coordinates of the structure
Dept. of CE, GCE Kannur Dr.RajeshKN
1 5
1 2 3 4
Global DOF
11 12 13 14
1 1 1 1
21 22 23 24
2 2
2 2
1
2
M M M M
s s s s
s s s s
c cs c cs
cs s cs sEA
− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
1 2 3 4
[ ] 1 1 1 1
31 32 33 34
1 1 1 1
41 42 43 44
1 2 2
2 2
2
3
4
M M M M
M M M M
M
s s s s
s s s s
cs s cs sEA
S
c cs c csL
− −
⎢ ⎥ ⎢ ⎥= =
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦
41 42 43 44
1 1 1 1
2 2
4M M M M
s s s scs s cs s
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦
1 2 3 4 5 6
1
2
× × × ×⎡ ⎤
⎢ ⎥× × × ×
⎢ ⎥ C t ib ti f
[ ]
2
3
4
JS
× × × ×
⎢ ⎥
× × × ×⎢ ⎥
= ⎢ ⎥
Contribution of
Member 1 to global
stiffness matrix[ ]
4
5
J ⎢ ⎥
× × × ×⎢ ⎥
⎢ ⎥
⎢ ⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
6
⎢ ⎥
⎣ ⎦
3 4 5 6
Global DOF
11 12 13 14
2 2 2 2
21 22 23 24
3
4
M M M M
s s s s
s s s s
⎡ ⎤
⎢ ⎥
⎢ ⎥
3 4 5 6
[ ] 2 2
2
2 2
31 32 33 34
2 2 2 2
41 42 43 44
4
5
6
M M M M
M M M
M
M
s s s s
s s s s
s s s s
S = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦2 2 2 2
6M M M M
s s s s⎣ ⎦
1 2 3 4 5 6
1
2
⎡ ⎤
⎢ ⎥
⎢ ⎥ C t ib ti f
[ ]
2
3
4
JS
⎢ ⎥
× × × ×⎢ ⎥
= ⎢ ⎥
× × × ×⎢ ⎥
Contribution of
Member 2 to global
stiffness matrix
4
5
6
× × × ×⎢ ⎥
⎢ ⎥× × × ×
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
6
⎢ ⎥
× × × ×⎣ ⎦
11 12 13 14
1⎡ ⎤
1 2 5 6
Global DOF
[ ]
11 12 13 14
3 3 3 3
21 22 23 24
3 3 3 3
1
2
M M M M
M M M M
s s s s
s s s s
S
⎡ ⎤
⎢ ⎥
⎢ ⎥[ ] 3 3
3
3 3
31 32 33 34
3 3 3 3
41 42 43 44
5
6
M M M M
M M M
M
M
s s s s
S = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
41 42 43 44
3 3 3 3
6M M M M
s s s s
⎢ ⎥
⎣ ⎦
1 2 3 4 5 6
1
2
× × × ×⎡ ⎤
⎢ ⎥
1 2 3 4 5 6
[ ]
2
3
JS
⎢ ⎥× × × ×
⎢ ⎥
⎢ ⎥
= ⎢ ⎥
Contribution of
Member 3 to global
stiffness matrix[ ]
4
5
JS ⎢ ⎥
⎢ ⎥
⎢ ⎥× × × ×
⎢ ⎥
stiffness matrix
Dept. of CE, GCE Kannur Dr.RajeshKN
6
⎢ ⎥
× × × ×⎣ ⎦
Assembled global stiffness matrix
11 12 13 1411 12 13 14
s s s ss s s s+ + 1⎡ ⎤
1 2 3 4 5 6
1 1 1 1
21 22 23 24
1 1 1 1
3 3 3 3
21 22 23 24
3 3 3 3
M M M M
M M M M
M M M M
M M M M
s s s s
s s s s
s s s s
s s s s
+ +
+ +
1
2
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
[ ]
31 32 3 11 12 13 14
2 2 2 2
21 22 23 24
3 34
1 1 1 1
41 42 43 44
M M M MM M M M
J
s s s s
s s s s
s s s s
s
S
ss s
+ +
=
+ +
3
4
⎢ ⎥
⎢ ⎥
⎢ ⎥
31 3
2 2 2 2
31 32 33
1 1
2
2
1 1
23 3 32
M M M M
M MM M
M M M M
MM
s s
s s s s
s s
s s
s
s s
s
+ +
+
34
2
33 34
3
4
5MM
ss +
⎢ ⎥
⎢ ⎥
⎢ ⎥41 42 43 44
2
41 42 43 44
3 2 23 32 3
6M M M MM M M M
s s s ss s s s+ +
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
Imposing boundary conditions 2
p g y
Plane truss example
21
1
2
0U U U U= = = =Boundary conditions are:
3
3
11 2 5 6
0U U U UBoundary conditions are:
{ }GLOBALD
11 12 13 1411 12 13 14
s s s ssF s s s+ +⎧ ⎫ U⎧ ⎫⎡ ⎤
{ }GLOBALD
3 3 3 31 1 1 1
2 21 221 22 23 24
1 1 1 1
23 24
1
2 3 3 3 3
M MM M M M
M M M M
M M
M M M M
s s s s
s s s s
sF
F
s s s
s s s s
+ +
+ +
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
1
2
U
U
⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥11 12 13 14
2 2 2 2
21 22 23 24
2
31 32 33 34
1 1 1 1
41 42 43 44
1
3
1 1 1 24 2 2
M M M M M M M
M M M
M
M M M M M
s s s s
s s s
s s s s
s s s s
F
F s
+ +
=
+ +
⎪ ⎪
⎨ ⎬
⎪ ⎪ 4
3
U
U
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥21 1 1 1 24
5
2 2M M MM M M M M
F
F
s
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭
31 32 33 34
2 2 2 2
41 42 43 44
31 32 33 34
3 3 3 3
41 42 43 44
4
5M M M MM M M M
s ss s s s s U
U
+ +
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎣ ⎦⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
6
F⎩ ⎭
41 42 43 44
2 2 2 2
41 42 43 44
3 3 3 3 6M MM M M MM M
ss s s s ss s U+ +⎣ ⎦⎩ ⎭
Reduced equation systemq y
(after imposing boundary conditions)
33 34
1 1
43 44
11 12
2 2
21 22
3 3MM M M
F U
F U
s ss s+ +⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭1 2 1 24 4M MM M
F Us sss⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭
•This reduced equation system can be solved to get the unknown
displacement components 3 4
,U U
{ } [ ]{ }LOCAL T GLOBALD R D=•From
{ }LOCALD can be found out.
{ } { }D D=F h b
Dept. of CE, GCE Kannur Dr.RajeshKN
{ } { }LOCAL MiD D=•For each member,
{ } { } [ ]{ }A A S D{ } { } [ ]{ }Mi MLi Mi MiA A S D= +Member end actions
Where,
Fixed end actions on the member,{ }MLiA
Member stiffness matrix,[ ]MiS
[ ]
in local
coordinates
Displacement components of the member,[ ]MiD
{ } { } [ ]{ }LOCAL T GLOBALMi D R DD ==As we know,
{ } { } [ ][ ]{ }i i iM ML M i iT GLOBALA A S R D∴ = +
Dept. of CE, GCE Kannur Dr.RajeshKN
25
Direct Stiffness Method: Procedure
STEP 1: Get member stiffness matrices for all members [ ]MiS
STEP 2: Get rotation matrices for all members
[ ]TiR
STEP 3: Transform member stiffness matrices from local coordinates
into global coordinates to get [ ]MSiS[ ]MSi
STEP 4: Assemble global stiffness matrix [ ]JS
STEP 5: Impose boundary conditions to get the reduced stiffness
matrix [ ]S[ ]FFS
Dept. of CE, GCE Kannur Dr.RajeshKN
26
STEP 6: Find equivalent joint loads from applied loads on eachq j pp
member (loads other than those applied at joints directly)
STEP 7 T f b ti f l l di t i t l b lSTEP 7: Transform member actions from local coordinates into global
coordinates to get the transformed load vector
STEP 8: Find combined load vector by adding the above
transformed load vector and the loads applied directly at joints
[ ]CA
STEP 9: Find the reduced load vector by removing members in
h l d di b d di i
[ ]FCA
the load vector corresponding to boundary conditions
STEP 10: Get displacement components of the structure in global
coordinates { } [ ] { }
1
F FF FCD S A
−
=
Dept. of CE, GCE Kannur Dr.RajeshKN
27
{ } [ ]{ }LOCAL T GLOBALD R D=
STEP 11: Get displacement components of each member in local
coordinates
STEP 12: Get member end actions from
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
{ } { } [ ][ ]R RC RF FA A S D= − +STEP 13: Get reactions from
{ }RCA represents combined joint loads (actual and
equivalent) applied directly to the supports.q ) pp y pp
Dept. of CE, GCE Kannur Dr.RajeshKN
28
• Problem 1:
1 Member stiffness matrices in local co ordinates
1EA ⎡ ⎤⎡ ⎤
1. Member stiffness matrices in local co-ordinates
(without considering restraint DOF)
[ ]1
1
00
1.155
0 0 0 0
M
EA
S L
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦0 0 0 0⎣ ⎦ ⎣ ⎦
[ ]
1 0⎡ ⎤
[ ]
1 2 0⎡ ⎤
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]2
1 0
0 0
MS
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
[ ]3
1 2 0
0 0MS
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
2. Rotation (transformation) matrices
[ ]1
cos sin 0.5 0.866
i 0 866 0 5
TR
θ θ
θ θ
−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
[ ]1
60 sin cos 0.866 0.5
T
θ θ θ=−
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
[ ]2
90
0 1
1 0
TR
θ
−⎡ ⎤
= ⎢ ⎥
⎣ ⎦90 1 0θ =− ⎣ ⎦
[ ]3
150
0.866 0.5
0.5 0.866
TR
θ =−
− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
30
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ] [ ] [ ][ ]1 1 1 1
T
MS T M TS R S R=
0.5 0.866 1 0 0.5 0.8661
0 866 0 5 0 0 0 866 0 51 155
T
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦0.866 0.5 0 0 0.866 0.51.155⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 216 0 375−⎡ ⎤0.216 0.375
0.375 0.649
−⎡ ⎤
= ⎢ ⎥−⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]2
0 1 1 0 0 1
1 0 0 0 1 0
T
MSS
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 0⎡ ⎤
= ⎢ ⎥0 1
= ⎢ ⎥
⎣ ⎦
[ ]3
0.866 0.5 1 0 0.866 0.51
0 5 0 866 0 0 0 5 0 8662
T
MSS
− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
[ ]3
0.5 0.866 0 0 0.5 0.8662
MS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0.375 0.217⎡ ⎤
⎢ ⎥0.217 0.125
= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
32
4. Global stiffness matrix
0 216 0 0 375 0 375 0 0 217⎡ ⎤
(by assembling transformed member stiffness matrices)
[ ]
0.216 0 0.375 0.375 0 0.217
0.375 0 0.217 0.649 1 0.125
FFS
+ + − + +⎡ ⎤
= ⎢ ⎥− + + + +⎣ ⎦
0.591 0.158
0 158 1 774
−⎡ ⎤
= ⎢ ⎥
⎣ ⎦0.158 1.774⎢ ⎥−⎣ ⎦
This is the reduced global stiffness matrix, since restraint DOF
were not considered. Hence, boundary conditions are
automatically incorporatedautomatically incorporated.
Dept. of CE, GCE Kannur Dr.RajeshKN
5. Loads
{ }
0
5
FCA
⎧ ⎫
= ⎨ ⎬
−⎩ ⎭
6. Joint displacements6. Joint displacements
0 772⎧ ⎫
{ } [ ] { }
1
F FF FCD S A
−
=
0.772
2.89
−⎧ ⎫
= ⎨ ⎬
−⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
34
7. Member forces
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
Member 1
{ } { } [ ][ ]{ }
{ } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + [ ][ ]{ }1 1 1T GLOBALM R DS=
1
0.5 0.8660
1 155
0.772⎡ ⎤ −⎡ ⎤⎢ ⎥= ⎢ ⎥⎢
−⎧
⎥
⎫
⎨ ⎬
1.833
=
⎧ ⎫
⎨ ⎬1.155
0.866 0.5
0 0
2.89⎢ ⎥⎢ ⎥ ⎣ ⎦
⎣ ⎦
⎨ ⎬
−⎩ ⎭ 0
⎨ ⎬
⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
35
{ } [ ][ ]{ }R DA SM b 2 { } [ ][ ]{ }2 2 2 2T GLOBALM M R DA S=Member 2
0.772
2
1 0 0 1
0 0 1 0 .89
−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦
−⎧ ⎫
⎨
⎦ −⎩⎣
⎬
⎭
2.89
0
⎧
=
⎫
⎨ ⎬
⎩ ⎭
Member 3
{ } [ ][ ]{ }3 3 3 3T GLOBALM M R DA S=
1 2 0 0.866 0.5
0 0 0.5 0.866
0.772
2.89
− −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦
−⎧ ⎫
⎨
⎣ ⎦
⎬
−⎩ ⎭
1.057
0
=
⎧ ⎫
⎨ ⎬
⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
36
• Problem 2 :
10kN m
5
4
8
4m
0kN m
C
B
20kN 2
4
6
7
94m
1
9
4m 1
2
A EI is constant.
1
2
3
Displacements in
global co-ordinates
Dept. of CE, GCE Kannur Dr.RajeshKN
37
global co ordinates
2 5
6
9 2
1
4
3 6
4
6
2
6
9 2
5
1 1
Ki ti 1Kinematic
indeterminacy
DOF in local co-
ordinates
1
2
33
Dept. of CE, GCE Kannur Dr.RajeshKN
38
0 0 0 0
12 6 12 6
EA EA
L L
EI EI EI EI
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥
3 2 3 2
2 2
12 6 12 6
0 0
6 4 6 2
0 0
EI EI EI EI
L L L L
EI EI EI EI
L L L L
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
Member stiffness matrix
[ ]
0 0 0 0
12 6 12 6
Mi
L L L LS
EA EA
L L
EI EI EI EI
⎢ ⎥=
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
of a 2D frame member in
local coordinates
3 2 3 2
2 2
12 6 12 6
0 0
6 2 6 4
0 0
EI EI EI EI
L L L L
EI EI EI EI
L L L L
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦L L L L⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
39
1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)
6Local DOFMember 1
(without considering restraint DOF)
[ ] 4EI
S ⎡ ⎤=
⎢ ⎥ [ ]1EI EI= =
6Global DOF
[ ]1MS
L
=
⎢ ⎥⎣ ⎦
[ ]1EI EI
Member 2
6 9Global DOF
3 6Local DOF
Member 2
[ ]
4 2EI EI
L LS
⎡ ⎤
⎢ ⎥
⎢ ⎥
6 9Global DOF
0.5EI EI⎡ ⎤
[ ]2
2 4
M
L LS
EI EI
L L
= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
0.5EI EI
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
40
2. Rotation (transformation) matrices
In this case, transformation matrices are:
[ ] [ ]1 1TR = corresponding to local DOF 6
[ ]2
1 0
0 1
TR
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
corresponding to local DOFs 3 & 6
⎣ ⎦
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ]1MSS EI= [ ]2
0.5
0.5
MS
EI EI
S
EI EI
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
⎣ ⎦
4 A bl d ( d d d) l b l tiff t i
6 9Gl b l DOF
4. Assembled (and reduced) global stiffness matrix
[ ]
0.5EI EI
S
IE⎡ + ⎤
= ⎢ ⎥
6 9Global DOF
2 0.5
EI
⎡ ⎤
= ⎢ ⎥[ ]
0.5FFS
EI EI
= ⎢ ⎥
⎣ ⎦ 0.5 1
EI= ⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
5. Loads
20
13.33 13.33
B
C
20
13.33 20
13.33B
C20
B
20 20
C C20
Fi d d ti A
Combined (Eqlt.+
actual) joint loads
A
Fixed end actions A (Loads in global
co-ordinates)
{ }
13.33
13 33FCA
−⎧ ⎫
= ⎨ ⎬
⎩ ⎭
Loads corresponding to global DOF 6, 9:
Dept. of CE, GCE Kannur Dr.RajeshKN
43
{ }
13.33FC ⎨ ⎬
⎩ ⎭
Loads corresponding to global DOF 6, 9:
6 Joint displacements
11 431 ⎧ ⎫
6. Joint displacements
{ } [ ] { }
1
F FF FCD S A
−
=
11.43
19.04
1
EI
−⎧
=
⎫
⎨ ⎬
⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
44
7. Member end actions
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
: fixed end actions for member i{ }MLiA
Member 1
{ } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= +
{ } [ ]{ }DA S { } { }
4 1
0 11 43
EI⎡ ⎤
{ } [ ]{ }1 1 1ML M GLOBALDA S= + { } { }0 11.43
11.43
L EI
⎡ ⎤
= + −⎢ ⎥⎣ ⎦
= −
This is the member end action corresponding to local DOF 6
f M b 1 i b d h d f
Dept. of CE, GCE Kannur Dr.RajeshKN
45
of Member 1. i.e., member end moment at the top edge of
Member 1.
Member 2
{ } { } [ ]{ }2 2 2 2M ML M GLOBALA A DS= +
Member 2
13.33 11.43
13.33 1
0.5
9.04
1
0.5
EI EI
EI EI EI
−⎧ ⎫ ⎧ ⎫
+
⎡ ⎤
= ⎢ ⎥
⎣
⎨ ⎬ ⎨
−⎩ ⎭ ⎩⎦
⎬
⎭
13.33 1.91−⎧ ⎫ ⎧ ⎫
+⎨ ⎬ ⎨= ⎬
11.42
=
⎧ ⎫
⎨ ⎬
Th th b ti di t l l DOF 3
13.33 13.325
+⎨ ⎬ ⎨
⎩ ⎭
⎬
− ⎩ ⎭ 0
⎨ ⎬
⎩ ⎭
These are the member actions corresponding to local DOFs 3
and 6 of Member 2. i.e., member end moments of Member 2.
Dept. of CE, GCE Kannur Dr.RajeshKN
46
11.43
0B 0B
C
11.43
Member end moments
A
Dept. of CE, GCE Kannur Dr.RajeshKN
47
• Problem 3 :
10 kips0.24 kips/in.
20 kips
1000 kips-in
75 in
100 in 50 in 50 in100 in 50 in 50 in
Dept. of CE, GCE Kannur Dr.RajeshKN
48
2 5
1
3
4
6
8
7
9
8
Global DOF
7
Dept. of CE, GCE Kannur Dr.RajeshKN
49
21
3
5
6Local DOF
4
6Local DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
50
4
Free DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
51
1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)(without considering restraint DOF)
0 0
12 6
XEA
L
EI EI
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
1000 0 0⎡ ⎤
⎢ ⎥[ ]1 3 2
12 6
0
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−
5
0 120 6000
0 6000 4 10
⎢ ⎥= −
⎢ ⎥
− ×⎢ ⎥⎣ ⎦
2
0
L L
⎢ ⎥−
⎣ ⎦
0 0
12 6
XEA
L
EI EI
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
800 0 0⎡ ⎤
⎢ ⎥
[ ]2 3 2
12 6
0
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
5
0 61.44 3840
0 3840 3.2 10
⎢ ⎥=
⎢ ⎥
×⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
52
2
0
L L
⎢ ⎥
⎣ ⎦
2. Rotation (transformation) matrices
[ ]
cos sin 0
i 0R
⎡ ⎤
⎢ ⎥
θ θ
θ θ[ ] sin cos 0
0 0 1
TR ⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦
θ θ
Member 1
Member 2
[ ]2
0.8 0.6 0
0.6 0.8 0R
−⎡ ⎤
⎢ ⎥=
⎢ ⎥[ ]1
1 0 0
0 1 0R
⎡ ⎤
⎢ ⎥=
⎢ ⎥
[ ]
0 0 1
⎢ ⎥
⎢ ⎥⎣ ⎦
[ ]1
0 0 1
⎢ ⎥
⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
53
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ] [ ] [ ][ ]1 1 1 1
T
MS T M TS R S R=
1 0 0 1000 0 0 1 0 0
0 1 0 0 120 6000 0 1 0
T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
5
0 1 0 0 120 6000 0 1 0
0 0 1 0 6000 4 10 0 0 1
= −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
5
1000 0 0
0 120 6000
⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎢ ⎥5
0 6000 4 10− ×⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
54
[ ]
0.8 0.6 0 800 0 0 0.8 0.6 0
0 6 0 8 0 0 61 44 3840 0 6 0 8 0
T
S
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
[ ]2
5
0.6 0.8 0 0 61.44 3840 0.6 0.8 0
0 0 1 0 3840 3.2 10 0 0 1
MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0.8 0.6 0 640 480 0
0 6 0 8 0 36 86 49 15 3840
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥
5
0.6 0.8 0 36.86 49.15 3840
0 0 1 2304 3072 3.2 10
= −
⎢ ⎥ ⎢ ⎥
×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
534.12 354.51 2304
354 51 327 32 3072
−⎡ ⎤
⎢ ⎥= −
⎢ ⎥
5
354.51 327.32 3072
2304 3072 3.2 10
⎢ ⎥
×⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
4. Assembled (reduced) global stiffness matrix
1000 534.12 0 354.51 0 2304+ − +⎡ ⎤
. sse b ed ( educed) g oba st ess at x
[ ]
5 5
0 354.51 120 327.32 6000 3072
0 2304 6000 3072 4 10 3.2 10
FFS
⎡ ⎤
⎢ ⎥= − + − +
⎢ ⎥
+ − + × + ×⎢ ⎥⎣ ⎦0 2304 6000 3072 4 10 3.2 10+ + × + ×⎢ ⎥⎣ ⎦
1534 12 354 51 2304⎡ ⎤
5
1534.12 354.51 2304
354.51 447.32 2928
−⎡ ⎤
⎢ ⎥− −
⎢
⎢
=
⎥
⎥5
2304 2928 7.2 10− ×⎢⎣ ⎦⎥
Dept. of CE, GCE Kannur Dr.RajeshKN
56
5. Loads
⎧ ⎫
{ }
0
10JA
⎧ ⎫
⎪ ⎪
= −⎨ ⎬
⎪ ⎪
Actual joint loads
1000⎪ ⎪−⎩ ⎭
{ }
0
22A
⎧ ⎫
⎪ ⎪
⎨ ⎬Equivalent joint loads { } 22
50
EA = −⎨ ⎬
⎪ ⎪−⎩ ⎭
Equivalent joint loads
0⎧ ⎫
⎪ ⎪
{ } { } { } 32
1050
FC J EA A A
⎪ ⎪
= + = −⎨ ⎬
⎪ ⎪−⎩ ⎭
Hence, combined joint loads
Dept. of CE, GCE Kannur Dr.RajeshKN
⎩ ⎭
6. Joint displacements
{ } [ ] { }
1
F FF FCD S A
−
={ } [ ] { }F FF FCD S A
1
{ }
1
1534.12 354.51 2304 0
354.51 447.32 2928 32FD
−
− ⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥∴ = − − −⎨ ⎬⎢ ⎥
⎪ ⎪5
2304 2928 7.2 10 1050
⎢ ⎥
⎪ ⎪− × −⎢ ⎥ ⎩ ⎭⎣ ⎦
0.0206
0.09936
−⎧ ⎫
⎪ ⎪
= −⎨ ⎬0.09936
0.001797
⎨ ⎬
⎪ ⎪−⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
7. Member end actions
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
1000 0 0 1 0 0 0.0206⎡ ⎤ ⎡ ⎤ −⎧ ⎫
⎪ ⎪
{ }
5
0 120 6000 0 1 0 0.0993
0 6000 4 10 0
6
0 1 0.001797
MLiA
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + −
⎢ ⎥ ⎢ ⎥
− ×⎢ ⎥ ⎢ ⎥
⎧ ⎫
⎪ ⎪
−⎨
⎣ ⎦ ⎣
⎪
⎩⎦
⎬
⎪− ⎭0 6000 4 10 0 0 1 0.001797⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎩⎦ ⎭
8. Reactions
{ } { } [ ][ ]R RC RF FA A S D= − +
Dept. of CE, GCE Kannur Dr.RajeshKN
• Problem 4:
20kN/
6m2m2m
40kN
20kN/m
16kNm
2m
80kN
2m
I1=I3=
I2=I2
A1=A3=
Dept. of CE, GCE Kannur Dr.RajeshKN
60
A2=
1 2 31 2 3
4
C ti itConnectivity:
Member Node 1 Node 2
1 1 2
2 2 3
3 2 4
Dept. of CE, GCE Kannur Dr.RajeshKN
61
3 2 4
46
5
46
Free DOF
Dept. of CE, GCE Kannur Dr.RajeshKN
62
1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)(without considering restraint DOF)
5
0 0
3.5 10 0 0
12 6
XEA
L
EI EI
⎡ ⎤
⎢ ⎥
⎡ ⎤×⎢ ⎥
⎢ ⎥⎢ ⎥[ ]1 3 2
12 6
0 0 6562.5 13125
0 13125 35000
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥⎢ ⎥= − = −⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎣ ⎦
⎢ ⎥− 2
0
L L
⎢ ⎥
⎣ ⎦
⎡ ⎤
[ ]
5
0 0
3.5 10 0 0
12 6
X
Z Z
EA
L
EI EI
⎡ ⎤
⎢ ⎥
⎡ ⎤×⎢ ⎥
⎢ ⎥⎢ ⎥[ ]2 3 2
2
12 6
0 0 3888.89 11666.67
0 11666.67 46666.67
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
63
2
L L
⎢ ⎥
⎣ ⎦
⎡ ⎤
[ ]
5
0 0
3.5 10 0 0
12 6
0 0 6 62 1312
X
Z Z
EA
L
EI EI
S
⎡ ⎤
⎢ ⎥
⎡ ⎤×⎢ ⎥
⎢ ⎥⎢ ⎥[ ]3 3 2
2
12 6
0 0 6562.5 13125
0 13125 35000
6 4
0
Z Z
M
Z Z
EI EI
S
L L
EI EI
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦
2
L L
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
64
2. Rotation (transformation) matrices
0 1 0−⎡ ⎤1 0 0⎡ ⎤
1 0 0⎡ ⎤
[ ]3
90
0 1 0
1 0 0
0 0 1
R
θ =−
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
[ ]1
0
1 0 0
0 1 0
0 0 1
R
θ =
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
[ ]2
0
0 1 0
0 0 1
R
θ =
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
Member 1
0 0 1⎢ ⎥⎣ ⎦
Member 2
0 0 1⎢ ⎥⎣ ⎦
Member 3
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
65
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[ ] [ ] [ ][ ]1 1 1 1
T
MS T M TS R S R=
5
3.5 10 0 0
0 6562.5 13125
⎡ ⎤×
⎢ ⎥
= −⎢ ⎥
0 13125 35000
⎢ ⎥
⎢ ⎥−⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
66
5T
⎡ ⎤⎡ ⎤ ⎡ ⎤
[ ]
5
2
1 0 0 3.5 10 0 0 1 0 0
0 1 0 0 3888.89 11666.67 0 1 0
T
MSS
⎡ ⎤×⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥0 0 1 0 11666.67 46666.67 0 0 1⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
5
3.5 10 0 0
0 3888.89 11666.67
⎡ ⎤×
⎢ ⎥
= ⎢ ⎥
0 11666.67 46666.67
⎢ ⎥
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
67
[ ]
5
3
0 1 0 3.5 10 0 0 0 1 0
1 0 0 0 6562.5 13125 1 0 0
T
MSS
⎡ ⎤− × −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
0 0 1 0 13125 35000 0 0 1
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
5
0 1 0 0 3.5 10 0
1 0 0 6562 5 0 13125
⎡ ⎤− ×⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥1 0 0 6562.5 0 13125
0 0 1 13125 0 35000
⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
6562.5 0 13125⎡ ⎤
⎢ ⎥5
0 3.5 10 0
13125 0 35000
⎢ ⎥= ×
⎢ ⎥
⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
68
⎣ ⎦
4. Assembled (and reduced) global stiffness matrix. sse b ed (a d educed) g oba st ess at x
5 5
3.5 10 3.5 10 6562.5 0 0 0 0 0 13125⎡ ⎤× + × + + + + +
⎢ ⎥
[ ] 5
0 0 0 6562.5 3888.89 3.5 10 13125 11666.67 0
0 0 13125 13125 11666.67 0 35000 46666.67 35000
FFS
⎢ ⎥
= + + + + × − + +⎢ ⎥
⎢ ⎥+ + − + + + +⎣ ⎦
706562 5 0 13125⎡ ⎤706562.5 0 13125
0 360451.39 1458.33
⎡ ⎤
⎢ ⎥= −
⎢ ⎥
13125 1458.33 116666.67
⎢ ⎥
−⎢ ⎥⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
60
5. Loads
20
20 kNm 60 60
2020
60
60
40
4040
40
Fixed end actions
Dept. of CE, GCE Kannur Dr.RajeshKN
7040
Fixed end actions
80kN
0+16=16 kNm0 16 16 kNm
40kN
Combined (equivalent + actual) joint loads
Dept. of CE, GCE Kannur Dr.RajeshKN
71
( q ) j
0⎧ ⎫ 0⎧ ⎫ 0⎧ ⎫
0⎧ ⎫
⎪ ⎪0
0
0
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
0
20
20
⎧ ⎫
⎪ ⎪−
⎪ ⎪
−⎪ ⎪
0
20
20
⎧ ⎫
⎪ ⎪−
⎪ ⎪
−⎪ ⎪
20
20
0
⎪ ⎪−
⎪ ⎪
−⎪ ⎪
⎪ ⎪
0
0
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
40
80
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
40
80
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
{ }
0
60
60
RCA
⎪ ⎪
⎪ ⎪⎪ ⎪
= −⎨ ⎬
⎪ ⎪
⎪ ⎪
{ }
16
;
0
0
JA
⎪ ⎪
−⎪ ⎪
= ⎨ ⎬
⎪ ⎪
⎪ ⎪
{ }
0
;
0
60
EA
⎪ ⎪
⎪ ⎪
= ⎨ ⎬
⎪ ⎪
⎪ ⎪−
{ } { } { }
16
;
0
60
C J EA A A
⎪ ⎪
−⎪ ⎪
= + = ⎨ ⎬
⎪ ⎪
⎪ ⎪−
40
80
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪
0
0
0
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
60
60
40
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
40⎧ ⎫
⎪ ⎪
60
60
40
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
40⎪ ⎪−⎩ ⎭
80
0
⎪ ⎪
−⎪ ⎪
⎪ ⎪
⎩ ⎭
0
40
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎩ ⎭
{ } 80
16
FCA
⎪ ⎪
= −⎨ ⎬
⎪ ⎪−⎩ ⎭
80
40
⎪ ⎪
−⎪ ⎪
⎪ ⎪−⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
72
[ ] [ ] { }
1
D S A
−
=6. Joint displacements
1
706562.5 0 13125 40
−
⎡ ⎤ ⎧ ⎫
⎪ ⎪
[ ] [ ] { }F FF FCD S A=6. Jo t d sp ace e ts
0 360451.39 1458.33 80
13125 1458.33 116666.67 16
⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥
⎪ ⎪− −⎢ ⎥⎣ ⎦ ⎩ ⎭⎢ ⎥⎣ ⎦ ⎩ ⎭
5 9 6
0.142 10 0.646 10 0.160 10 40
− − −
⎡ ⎤× − × − × ⎧ ⎫
⎢ ⎥9 5 7
6 7 5
40
0.646 10 0.277 10 0.348 10 80
160 160 10 0 348 10 0 859 10
− − −
− − −
⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪
= − × × × −⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥ −× × × ⎩ ⎭⎣ ⎦
160.160 10 0.348 10 0.859 10⎢ ⎥− × × × ⎩ ⎭⎣ ⎦
4
0.594 10−
⎧ ⎫×
⎪ ⎪3
3
0.222 10
0.147 10
−
−
⎪ ⎪
= − ×⎨ ⎬
⎪ ⎪− ×⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
73
⎩ ⎭
7. Member end actions
{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +
Dept. of CE, GCE Kannur Dr.RajeshKN
Summary
Direct stiffness method
Summary
• Introduction – element stiffness matrix – rotation transformation
matrix – transformation of displacement and load vectors and
stiffness matrix – equivalent nodal forces and load vectors –
assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of
nodal displacement and element forces – analysis of plane truss
beam and plane frame (with numerical examples) – analysis of
grid space frame (without numerical examples)grid – space frame (without numerical examples)
Dept. of CE, GCE Kannur Dr.RajeshKN
75
• Problem X:
2
6
1 3
5
6
4
5
Dept. of CE, GCE Kannur Dr.RajeshKN
76
0 0
EA EA⎡ ⎤
[ ]1
0 0
1 0 1 0
0 0 0 0 0 0 0 01
M
L L
S
⎡ ⎤
−⎢ ⎥ −⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
[ ]1
1 0 1 02
0 0
0 0 0 0
0 0 0 0
M
EA EA
L L
⎢ ⎥ −⎢ ⎥
−⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦0 0 0 0⎢ ⎥⎣ ⎦
[ ] [ ] [ ]2 3 4S S S= = =[ ] [ ] [ ]2 3 4M M MS S S
1 0 1 0
0 0 0 01
−⎡ ⎤
⎢ ⎥
⎢ ⎥
1 0 1 0
0 0 0 01
−⎡ ⎤
⎢ ⎥
⎢ ⎥[ ]5
0 0 0 01
1 0 1 02.83
0 0 0 0
MS ⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦
[ ]6
0 0 0 01
1 0 1 02.83
0 0 0 0
MS ⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
77
⎣ ⎦ ⎣ ⎦
Rotation matrices
cos sin 0 0 0 1 0 0
sin cos 0 0 1 0 0 0
θ θ
θ θ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
[ ]1
90
sin cos 0 0 1 0 0 0
0 0 cos sin 0 0 0 1
TR
θ
θ θ
θ θ=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
0 0 sin cos 0 0 1 0θ θ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦
0 1 0 0−⎡ ⎤
⎢ ⎥
1 0 0 0
0 1 0 0
⎡ ⎤
⎢ ⎥
[ ]3
90
1 0 0 0
0 0 0 1
TR
θ =−
⎢ ⎥
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
[ ]2
0
0 1 0 0
0 0 1 0
0 0 0 1
TR
θ =
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦ 0 0 1 0
⎢ ⎥
⎣ ⎦0 0 0 1
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
[ ]
1 1 0 0
1 1 0 0
0 707R
⎡ ⎤
⎢ ⎥−
⎢ ⎥=[ ]
1 0 0 0
0 1 0 0
R
−⎡ ⎤
⎢ ⎥−
⎢ ⎥ [ ]5
45
0.707
0 0 1 1
0 0 1 1
TR
θ =
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦
[ ]4
180 0 0 1 0
0 0 0 1
TR
θ =
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
−⎣ ⎦⎣ ⎦
[ ]
1 1 0 0
1 1 0 0
−⎡ ⎤
⎢ ⎥
⎢ ⎥[ ]6
45
1 1 0 0
0.707
0 0 1 1
0 0 1 1
TR
θ =−
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦0 0 1 1⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
79
[ ] [ ] [ ][ ]T
S R S R[ ] [ ] [ ][ ]1 1 1 1MS T M TS R S R=
0 1 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 01
T
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
0 0 0 1 1 0 1 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 1 0
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 0 0 0⎡ ⎤0 1 0 0 0 1 0 1− −⎡ ⎤ ⎡ ⎤
0 1 0 11
0 0 0 02
⎡ ⎤
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
1 0 0 0 0 0 0 01
0 0 0 1 0 1 0 12
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
0 1 0 1
⎢ ⎥
−⎣ ⎦0 0 1 0 0 0 0 0
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
1 0 1 0−⎡ ⎤
[ ]2
1 0 1 0
0 0 0 01
1 0 1 02
MSS
−⎡ ⎤
⎢ ⎥
⎢ ⎥=
−⎢ ⎥1 0 1 02
0 0 0 0
⎢ ⎥
⎢ ⎥
⎣ ⎦
[ ]
0 1 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 01
T
S
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥[ ]3
0 0 0 1 1 0 1 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 1 0
MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
0 1 0 0 0 1 0 1
1 0 0 0 0 0 0 01
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
0 0 0 0
0 1 0 11
⎡ ⎤
⎢ ⎥1 0 0 0 0 0 0 01
0 0 0 1 0 1 0 12
0 0 1 0 0 0 0 0
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥=
−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
0 1 0 11
0 0 0 02
0 1 0 1
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
81
0 0 1 0 0 0 0 0−⎣ ⎦ ⎣ ⎦ 0 1 0 1−⎣ ⎦
1 0 1 0−⎡ ⎤
⎢ ⎥
[ ]4
0 0 0 01
1 0 1 02
0 0 0 0
MSS
⎢ ⎥
⎢ ⎥=
−⎢ ⎥
⎢ ⎥
⎣ ⎦0 0 0 0⎣ ⎦
1 1 0 0 1 0 1 0 1 1 0 0
T
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
[ ]5
1 1 0 0 0 0 0 0 1 1 0 01
0.707 0.707
0 0 1 1 1 0 1 0 0 0 1 12.83
MSS
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
0 0 1 1 0 0 0 0 0 0 1 1
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0
0.1766
0 0 1 1 1 1 1 1
− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
1 1 1 1
1 1 1 1
0.1766
1 1 1 1
− −⎡ ⎤
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥0 0 1 1 1 1 1 1
0 0 1 1 0 0 0 0
− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
1 1 1 1
1 1 1 1
− −⎢ ⎥
⎢ ⎥
− −⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
1 1 0 0 1 0 1 0 1 1 0 0
T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
[ ]6
1 1 0 0 1 0 1 0 1 1 0 0
1 1 0 0 0 0 0 0 1 1 0 01
0.707 0.707
0 0 1 1 1 0 1 0 0 0 1 12.83
MSS
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 1 1 0 1 0 0 0 1 12.83
0 0 1 1 0 0 0 0 0 0 1 1
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 1 1
1 1 1 1
− −⎡ ⎤
⎢ ⎥
1 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0
− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ 1 1 1 1
0.177
1 1 1 1
1 1 1 1
⎢ ⎥− −
⎢ ⎥=
− −⎢ ⎥
⎢ ⎥
− −⎣ ⎦
1 1 0 0 0 0 0 0
0.177
0 0 1 1 1 1 1 1
0 0 1 1 0 0 0 0
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥=
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
−⎣ ⎦ ⎣ ⎦ 1 1 1 1⎣ ⎦0 0 1 1 0 0 0 0⎣ ⎦ ⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
Assembled global stiffness matrix
1 1
0 0.1766 0 0 0.1766 0 0 0.1766 0.1766 0
2 2
1 1
+ + + + − − −
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
g
1 1
0 0 0.1766 0 0.1766 0 0.1766 0.1766 0 0
2 2
1 1
0 0 0 0.1766 0 0 0.1766 0 0.1766 0.1766
2 2
1 1
+ + + + − − −
+ + + − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
[ ]
1 1
0 0 0 0.1766 0 0.1766 0 0 0.1766 0.1766
2 2
1 1
0.1766 0.1766 0 0 0.1766 0 0 0.
2 2
JS
− + − + + −
=
− − − + + + + 1766 0 0
1 1
0 1766 0 1766 0 0 0 0 0 1766 0 0 1766 0
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥1 1
0.1766 0.1766 0 0 0 0 0.1766 0 0.1766 0
2 2
1 1
0 0.1766 0.1766 0 0 0 0.1766 0 0 0.1766
2 2
1 1
0 0 0 1766 0 1766 0 0 0 0 1766 0 0 1766
⎢ ⎥− − + + + + −
⎢ ⎥
⎢ ⎥
⎢ − − + + + − ⎥
⎢ ⎥
⎢ ⎥
+ + +⎢ ⎥0 0 0.1766 0.1766 0 0 0 0.1766 0 0.1766
2 2
− − + − + +⎢ ⎥
⎣ ⎦
1 2 8
0D D D= = =Boundary conditions are:
Dept. of CE, GCE Kannur Dr.RajeshKN
1 2 8
0D D DBoundary conditions are:
0.677 -0.177 -0.500 0.000 -0.177⎡ ⎤
⎢ ⎥
Reduced stiffness matrix
[ ]
-0.177 0.677 0.000 0.000 0.177
-0.500 0.000 0.677 0.177 0.000FFS =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
[ ]
0.000 0.000 0.177 0.677 0.000
-0.177 0.177 0.000 0.000 0.677
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
85
5⎧ ⎫
⎪ ⎪
{ }
0
0FCA
⎪ ⎪
⎪ ⎪⎪ ⎪
= ⎨ ⎬
⎪ ⎪
In this problem, the reduced load vector
(in global coords) can be directly written as
0
0
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
{ } [ ] { }
1
F FF FCD S A
−
=
24.144⎧ ⎫
⎪ ⎪
4.829 1.000 3.829 -1.000 1.000 5⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ 5.000
19.144
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪
=
⎪
1.000 1.793 0.793 -0.207 -0.207
3.829 0.793 4.622 -1.207 0.793=
0
0
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎪ ⎪
⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ -5.000
5.000
⎪
⎪
⎪
⎪
⎪
⎪⎩ ⎭
-1.000 -0.207 -1.207 1.793 -0.207 0
1.000 -0.207 0.793 -0.207 1.793 0
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭
Dept. of CE, GCE Kannur Dr.RajeshKN
⎣ ⎦ ⎩ ⎭
Assignment
Dept. of CE, GCE Kannur Dr.RajeshKN

More Related Content

What's hot

Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirSHAMJITH KM
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Module1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sirModule1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sirSHAMJITH KM
 
Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness methodkasirekha
 
Module1 c - rajesh sir
Module1 c - rajesh sirModule1 c - rajesh sir
Module1 c - rajesh sirSHAMJITH KM
 
Module3 rajesh sir
Module3 rajesh sirModule3 rajesh sir
Module3 rajesh sirSHAMJITH KM
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeanujajape
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525KAMARAN SHEKHA
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Part (1) basics of plastic analysis
Part (1) basics of plastic analysisPart (1) basics of plastic analysis
Part (1) basics of plastic analysisAshraf Sabbagh
 
Ch 1 structural analysis stiffness method
Ch 1 structural analysis stiffness methodCh 1 structural analysis stiffness method
Ch 1 structural analysis stiffness method280632796
 
Matrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisMatrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisDrASSayyad
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 
Structural analysis 1
Structural analysis   1Structural analysis   1
Structural analysis 1R VIJAYAKUMAR
 
Flexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysisFlexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysisMahdi Damghani
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirSHAMJITH KM
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 

What's hot (20)

Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Module1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sirModule1 flexibility-1- rajesh sir
Module1 flexibility-1- rajesh sir
 
Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness method
 
Structural engineering i
Structural engineering iStructural engineering i
Structural engineering i
 
Module1 c - rajesh sir
Module1 c - rajesh sirModule1 c - rajesh sir
Module1 c - rajesh sir
 
Module3 rajesh sir
Module3 rajesh sirModule3 rajesh sir
Module3 rajesh sir
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajape
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Part (1) basics of plastic analysis
Part (1) basics of plastic analysisPart (1) basics of plastic analysis
Part (1) basics of plastic analysis
 
Ch 1 structural analysis stiffness method
Ch 1 structural analysis stiffness methodCh 1 structural analysis stiffness method
Ch 1 structural analysis stiffness method
 
Matrix Methods of Structural Analysis
Matrix Methods of Structural AnalysisMatrix Methods of Structural Analysis
Matrix Methods of Structural Analysis
 
Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
Design of columns as per IS 456-2000
Design of columns as per IS 456-2000Design of columns as per IS 456-2000
Design of columns as per IS 456-2000
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Structural analysis 1
Structural analysis   1Structural analysis   1
Structural analysis 1
 
Flexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysisFlexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysis
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 

Similar to Module3 direct stiffness- rajesh sir

Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sirSHAMJITH KM
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1SHAMJITH KM
 
Definite Integral 1.pptx
Definite Integral 1.pptxDefinite Integral 1.pptx
Definite Integral 1.pptxRajiveGamer
 
Examples of one way and two way ANOVA
Examples of one way and two way ANOVAExamples of one way and two way ANOVA
Examples of one way and two way ANOVANasrunnissa Aziz
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sirSHAMJITH KM
 
assignemts.pdf
assignemts.pdfassignemts.pdf
assignemts.pdframish32
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Computer aided design
Computer aided designComputer aided design
Computer aided designAbhi23396
 
quadcopter modelling and controller design
quadcopter modelling and controller designquadcopter modelling and controller design
quadcopter modelling and controller designVijay Kumar Jadon
 
Mechanics of structures module4
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4SHAMJITH KM
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007Demetrio Ccesa Rayme
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlineareSAT Publishing House
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationFilipe Giesteira
 

Similar to Module3 direct stiffness- rajesh sir (20)

Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sir
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
 
Definite Integral 1.pptx
Definite Integral 1.pptxDefinite Integral 1.pptx
Definite Integral 1.pptx
 
Examples of one way and two way ANOVA
Examples of one way and two way ANOVAExamples of one way and two way ANOVA
Examples of one way and two way ANOVA
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
lec33.ppt
lec33.pptlec33.ppt
lec33.ppt
 
Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sir
 
assignemts.pdf
assignemts.pdfassignemts.pdf
assignemts.pdf
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Mechanics of Quadcopter
Mechanics of QuadcopterMechanics of Quadcopter
Mechanics of Quadcopter
 
Computer aided design
Computer aided designComputer aided design
Computer aided design
 
quadcopter modelling and controller design
quadcopter modelling and controller designquadcopter modelling and controller design
quadcopter modelling and controller design
 
Mechanics of structures module4
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinear
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
 

More from SHAMJITH KM

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSHAMJITH KM
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesSHAMJITH KM
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsSHAMJITH KM
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsSHAMJITH KM
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study NotesSHAMJITH KM
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളുംSHAMJITH KM
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileSHAMJITH KM
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad proSHAMJITH KM
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)SHAMJITH KM
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)SHAMJITH KM
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasserySHAMJITH KM
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)SHAMJITH KM
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)SHAMJITH KM
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)SHAMJITH KM
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions SHAMJITH KM
 
Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPTSHAMJITH KM
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only noteSHAMJITH KM
 

More from SHAMJITH KM (20)

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdf
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture Notes
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture Notes
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture Notes
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture Notes
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - Polytechnics
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - Polytechnics
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study Notes
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc file
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad pro
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - Kalamassery
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions
 
Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPT
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only note
 

Recently uploaded

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 

Recently uploaded (20)

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 

Module3 direct stiffness- rajesh sir

  • 1. Structural Analysis - III Di t Stiff M th dDirect Stiffness Method Dr. Rajesh K. N. Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKNDept. of CE, GCE Kannur Dr.RajeshKN 1
  • 2. Module IIIModule III Direct stiffness method • Introduction – element stiffness matrix – rotation transformation Direct stiffness method matrix – transformation of displacement and load vectors and stiffness matrix – equivalent nodal forces and load vectors – assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid space frame (without numerical examples)grid – space frame (without numerical examples) Dept. of CE, GCE Kannur Dr.RajeshKN 2
  • 3. Introduction • The formalised stiffness method involves evaluating the displacement transformation matrix CMJ correctlyp y • Generation of matrix CMJ is not suitable for computer programming H th l ti f di t tiff th d• Hence the evolution of direct stiffness method Dept. of CE, GCE Kannur Dr.RajeshKN 3
  • 4. Direct stiffness method • We need to simplify the assembling process of SJ , theJ assembled structure stiffness matrix • The key to this is to use member stiffness matrices for actionsThe key to this is to use member stiffness matrices for actions and displacements at BOTH ends of each member If b di l d i h f• If member displacements are expressed with reference to global co-ordinates, the process of assembling SJ can be made simplesimple Dept. of CE, GCE Kannur Dr.RajeshKN 4
  • 5. Member oriented axes (local coordinates) d t t i t d ( l b l di t )and structure oriented axes (global coordinates) Lδ x y L Local axes LδL Lδ sinLδ θ Lδ θ x YYYY cosLδ θ θ Global axes yGlobal axesGlobal axes θ XXXX Dept. of CE, GCE Kannur Dr.RajeshKN Global axes
  • 6. 1. Plane truss member Stiffness coefficients in local coordinates 1 3 2 4 y 0 0 Degrees of freedom 1 ⎛ ⎞ ⎜ ⎟ Unit displacement xEA L EA L ⎜ ⎟ ⎝ ⎠corr. to DOF 1 0 0 EA EA⎡ ⎤ −⎢ ⎥ [ ] 0 0 0 0 0 0 0 0 M L L S EA EA ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ −⎢ ⎥ = Member stiffness matrix in local coordinates Dept. of CE, GCE Kannur Dr.RajeshKN 0 0 0 0 L L ⎢ ⎥ ⎢ ⎢⎣ ⎦ ⎥ ⎥
  • 7. Transformation of displacement vector θ Displacements in global 22 2 cosU D θ= p g coordinates: U1 and U2 Displacements in local di D d D2D DY iU D θ 12 2 sinU D θ= − θ 1 11 12 1 2cos sinU U U D Dθ θ= + = − coordinates: D1 and D2 1DY 11 1 cosU D θ= 21 1 sinU D θ= 2 21 22 1 2sin cosU U U D Dθ θ= + = + 1 1cos sinU Dθ θ−⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎡ ⎤ 1 1 2 2 cos sin sin cos U D U D θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭ X 1 1 2 2 cos sin sin cos D U D U θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ∴ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN { } [ ]{ }D R U=
  • 8. C id i b th d ⎧ ⎫ ⎧ ⎫ Considering both ends, 1 1 2 2 cos sin 0 0 sin cos 0 0 0 0 i D U D U D U θ θ θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬ ⎢ ⎥3 3 4 4 0 0 cos sin 0 0 sin cos D U D U θ θ θ θ ⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ { } [ ]{ }LOCAL T GLOBALD R D= [ ] [ ]R O⎡ ⎤ [ ] [ ] [ ] [ ] [ ]T R O R O R ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Rotation matrix Dept. of CE, GCE Kannur Dr.RajeshKN
  • 9. Transformation of load vector Actions in global θ coordinates: F1 and F2 22 2 cosF A θ= 1 11 12 1 2cos sinF F F A Aθ θ= + = − 22 2 12 2 sinF A θ= − θ 2A 2 21 22 1 2sin cosF F F A Aθ θ= + = + Y 11 1 cosF A θ= 21 1 sinF A θ=1A 1 1 2 2 cos sin sin cos F A F A θ θ θ θ −⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭ 11 1 1 1cos sinA Fθ θ⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥ X 2 2sin cosA Fθ θ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ { } [ ]{ }A R F= Dept. of CE, GCE Kannur Dr.RajeshKN { } [ ]{ }A R F=
  • 10. C id i b th dConsidering both ends, 1 1 2 2 cos sin 0 0 sin cos 0 0 A F A F θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬ 3 3 4 4 0 0 cos sin 0 0 sin cos A F A F θ θ θ θ ⎢ ⎥=⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ { } [ ]{ }LOCAL T GLOBALi.e., A R A= Dept. of CE, GCE Kannur Dr.RajeshKN 10
  • 11. Transformation of stiffness matrix { } [ ]{ }LOCAL M LOCALA S D= [ ]{ } [ ][ ]{ }T GLOBAL M T GLOBALR A S R D= { } [ ] [ ][ ]{ } 1 GLOBAL T M T GLOBALA R S R D − = [ ]{ } [ ][ ]{ }T GLOBAL M T GLOBAL [ ] [ ]1 T R R −{ } [ ] [ ][ ]{ }GLOBAL T M T GLOBAL { } [ ]{ }A S D [ ] [ ]T TR R= { } [ ]{ }GLOBAL MS GLOBALA S D= [ ] [ ] [ ][ ] T MS T M TS R S R=where, Member stiffness matrix in global coordinates Dept. of CE, GCE Kannur Dr.RajeshKN
  • 12. [ ] [ ] [ ][ ] T S R S R= T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ [ ] [ ] [ ][ ]MS T M TS R S R= 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 T c s c s s c s cEA −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 c s c sL s c s c −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2 2 c cs c cs⎡ ⎤− − ⎢ ⎥ M b tiff t i2 2 2 2 cs s cs sEA L c cs c cs ⎢ ⎥ − −⎢ ⎥= ⎢ ⎥− − ⎢ ⎥ Member stiffness matrix in global coordinates for a plane truss member 2 2 cs s cs s ⎢ ⎥ − −⎣ ⎦ p Dept. of CE, GCE Kannur Dr.RajeshKN 12
  • 13. 2. Plane frame member Stiffness coefficients in local coordinates 2 52 4 5 Degrees of freedom0 0 0 0 EA EA⎡ ⎤ 1 3 4 6 Degrees of freedom 3 2 3 2 0 0 0 0 12 6 12 6 0 0 L L EI EI EI EI L L L L ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ [ ] 2 2 6 4 6 2 0 0 0 0 0 0 Mi EI EI EI EI L L L L S EA EA ⎢ ⎥ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ −⎢ ⎥ Member stiffness matrix in local coordinates 3 2 3 2 0 0 0 0 12 6 12 6 0 0 L L EI EI EI EI L L L L −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − − −⎢ ⎥ ⎢ ⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 6 2 6 4 0 0 EI EI EI EI L L L L ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦
  • 14. Transformation of displacement vector 1 1 2 2 cos sin 0 0 0 0 sin cos 0 0 0 0 D U D U θ θ θ θ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎢ ⎥ 3 3 4 4 0 0 1 0 0 0 0 0 0 cos sin 0 D U D Uθ θ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥5 5 6 6 0 0 0 sin cos 0 0 0 0 0 0 1 D U D U θ θ⎪ ⎪ ⎪ ⎪⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭ { } [ ]{ }LOCAL T GLOBALD R D= [ ] [ ]R O⎡ ⎤ { } [ ]{ }LOCAL T GLOBAL [ ] [ ] [ ] [ ] [ ]T R O R O R ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Rotation matrix Dept. of CE, GCE Kannur Dr.RajeshKN
  • 15. Transformation of load vector { } [ ]{ }LOCAL T GLOBALA R A={ } [ ]{ } cos sin 0 0 0 0θ θ⎡ ⎤ ⎢ ⎥ [ ] sin cos 0 0 0 0 0 0 1 0 0 0 R θ θ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥[ ] 0 0 0 cos sin 0 0 0 0 sin cos 0 TR θ θ θ θ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ 0 0 0 0 0 1 ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 16. Transformation of stiffness matrix { } [ ]{ }GLOBAL MS GLOBALA S D= [ ] [ ] [ ][ ]T MS T M TS R S R= Member stiffness matrix in global coordinatesglobal coordinates EA EA⎡ ⎤ 0 0 0 0 0 0 0 0 c s s c ⎡ ⎤ ⎢ ⎥− ⎢ ⎥ 3 2 3 2 0 0 0 0 12 6 12 6 0 0 EA EA L L EI EI EI EI L L L L ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ [ ] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 T c s s c R ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ [ ] 2 2 6 4 6 2 0 0 0 0 0 0 M EI EI EI EI L L L LS EA EA L L ⎢ ⎥ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ −⎢ ⎥ Where, , 0 0 0 0 0 1 ⎢ ⎥ ⎣ ⎦ 3 2 3 2 12 6 12 6 0 0 6 2 6 4 0 0 L L EI EI EI EI L L L L EI EI EI EI ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 0 0 L L L L ⎢ ⎥− ⎢ ⎥⎣ ⎦
  • 17. Assembling global stiffness matrixg g Plane truss 2 Force 21 3 31 3 2 4 1 3 Action/displacement components in local coordinates of members Dept. of CE, GCE Kannur Dr.RajeshKN
  • 18. 4 4 3 4 3 4 2 6 1 56 2 51 4 3 Action/displacement components in 2 5 6 Action/displacement components in global coordinates of the structure Dept. of CE, GCE Kannur Dr.RajeshKN 1 5
  • 19. 1 2 3 4 Global DOF 11 12 13 14 1 1 1 1 21 22 23 24 2 2 2 2 1 2 M M M M s s s s s s s s c cs c cs cs s cs sEA − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ 1 2 3 4 [ ] 1 1 1 1 31 32 33 34 1 1 1 1 41 42 43 44 1 2 2 2 2 2 3 4 M M M M M M M M M s s s s s s s s cs s cs sEA S c cs c csL − − ⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ 41 42 43 44 1 1 1 1 2 2 4M M M M s s s scs s cs s ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦ 1 2 3 4 5 6 1 2 × × × ×⎡ ⎤ ⎢ ⎥× × × × ⎢ ⎥ C t ib ti f [ ] 2 3 4 JS × × × × ⎢ ⎥ × × × ×⎢ ⎥ = ⎢ ⎥ Contribution of Member 1 to global stiffness matrix[ ] 4 5 J ⎢ ⎥ × × × ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 6 ⎢ ⎥ ⎣ ⎦
  • 20. 3 4 5 6 Global DOF 11 12 13 14 2 2 2 2 21 22 23 24 3 4 M M M M s s s s s s s s ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 3 4 5 6 [ ] 2 2 2 2 2 31 32 33 34 2 2 2 2 41 42 43 44 4 5 6 M M M M M M M M M s s s s s s s s s s s s S = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦2 2 2 2 6M M M M s s s s⎣ ⎦ 1 2 3 4 5 6 1 2 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ C t ib ti f [ ] 2 3 4 JS ⎢ ⎥ × × × ×⎢ ⎥ = ⎢ ⎥ × × × ×⎢ ⎥ Contribution of Member 2 to global stiffness matrix 4 5 6 × × × ×⎢ ⎥ ⎢ ⎥× × × × ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 6 ⎢ ⎥ × × × ×⎣ ⎦
  • 21. 11 12 13 14 1⎡ ⎤ 1 2 5 6 Global DOF [ ] 11 12 13 14 3 3 3 3 21 22 23 24 3 3 3 3 1 2 M M M M M M M M s s s s s s s s S ⎡ ⎤ ⎢ ⎥ ⎢ ⎥[ ] 3 3 3 3 3 31 32 33 34 3 3 3 3 41 42 43 44 5 6 M M M M M M M M M s s s s S = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 41 42 43 44 3 3 3 3 6M M M M s s s s ⎢ ⎥ ⎣ ⎦ 1 2 3 4 5 6 1 2 × × × ×⎡ ⎤ ⎢ ⎥ 1 2 3 4 5 6 [ ] 2 3 JS ⎢ ⎥× × × × ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ Contribution of Member 3 to global stiffness matrix[ ] 4 5 JS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥× × × × ⎢ ⎥ stiffness matrix Dept. of CE, GCE Kannur Dr.RajeshKN 6 ⎢ ⎥ × × × ×⎣ ⎦
  • 22. Assembled global stiffness matrix 11 12 13 1411 12 13 14 s s s ss s s s+ + 1⎡ ⎤ 1 2 3 4 5 6 1 1 1 1 21 22 23 24 1 1 1 1 3 3 3 3 21 22 23 24 3 3 3 3 M M M M M M M M M M M M M M M M s s s s s s s s s s s s s s s s + + + + 1 2 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ] 31 32 3 11 12 13 14 2 2 2 2 21 22 23 24 3 34 1 1 1 1 41 42 43 44 M M M MM M M M J s s s s s s s s s s s s s S ss s + + = + + 3 4 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 31 3 2 2 2 2 31 32 33 1 1 2 2 1 1 23 3 32 M M M M M MM M M M M M MM s s s s s s s s s s s s s s + + + 34 2 33 34 3 4 5MM ss + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥41 42 43 44 2 41 42 43 44 3 2 23 32 3 6M M M MM M M M s s s ss s s s+ + ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 23. Imposing boundary conditions 2 p g y Plane truss example 21 1 2 0U U U U= = = =Boundary conditions are: 3 3 11 2 5 6 0U U U UBoundary conditions are: { }GLOBALD 11 12 13 1411 12 13 14 s s s ssF s s s+ +⎧ ⎫ U⎧ ⎫⎡ ⎤ { }GLOBALD 3 3 3 31 1 1 1 2 21 221 22 23 24 1 1 1 1 23 24 1 2 3 3 3 3 M MM M M M M M M M M M M M M M s s s s s s s s sF F s s s s s s s + + + + ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 1 2 U U ⎧ ⎫⎡ ⎤ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥11 12 13 14 2 2 2 2 21 22 23 24 2 31 32 33 34 1 1 1 1 41 42 43 44 1 3 1 1 1 24 2 2 M M M M M M M M M M M M M M M M s s s s s s s s s s s s s s s F F s + + = + + ⎪ ⎪ ⎨ ⎬ ⎪ ⎪ 4 3 U U ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥21 1 1 1 24 5 2 2M M MM M M M M F F s ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 31 32 33 34 2 2 2 2 41 42 43 44 31 32 33 34 3 3 3 3 41 42 43 44 4 5M M M MM M M M s ss s s s s U U + + ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎣ ⎦⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 6 F⎩ ⎭ 41 42 43 44 2 2 2 2 41 42 43 44 3 3 3 3 6M MM M M MM M ss s s s ss s U+ +⎣ ⎦⎩ ⎭
  • 24. Reduced equation systemq y (after imposing boundary conditions) 33 34 1 1 43 44 11 12 2 2 21 22 3 3MM M M F U F U s ss s+ +⎧ ⎫ ⎧ ⎫⎡ ⎤ =⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭1 2 1 24 4M MM M F Us sss⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭ •This reduced equation system can be solved to get the unknown displacement components 3 4 ,U U { } [ ]{ }LOCAL T GLOBALD R D=•From { }LOCALD can be found out. { } { }D D=F h b Dept. of CE, GCE Kannur Dr.RajeshKN { } { }LOCAL MiD D=•For each member,
  • 25. { } { } [ ]{ }A A S D{ } { } [ ]{ }Mi MLi Mi MiA A S D= +Member end actions Where, Fixed end actions on the member,{ }MLiA Member stiffness matrix,[ ]MiS [ ] in local coordinates Displacement components of the member,[ ]MiD { } { } [ ]{ }LOCAL T GLOBALMi D R DD ==As we know, { } { } [ ][ ]{ }i i iM ML M i iT GLOBALA A S R D∴ = + Dept. of CE, GCE Kannur Dr.RajeshKN 25
  • 26. Direct Stiffness Method: Procedure STEP 1: Get member stiffness matrices for all members [ ]MiS STEP 2: Get rotation matrices for all members [ ]TiR STEP 3: Transform member stiffness matrices from local coordinates into global coordinates to get [ ]MSiS[ ]MSi STEP 4: Assemble global stiffness matrix [ ]JS STEP 5: Impose boundary conditions to get the reduced stiffness matrix [ ]S[ ]FFS Dept. of CE, GCE Kannur Dr.RajeshKN 26
  • 27. STEP 6: Find equivalent joint loads from applied loads on eachq j pp member (loads other than those applied at joints directly) STEP 7 T f b ti f l l di t i t l b lSTEP 7: Transform member actions from local coordinates into global coordinates to get the transformed load vector STEP 8: Find combined load vector by adding the above transformed load vector and the loads applied directly at joints [ ]CA STEP 9: Find the reduced load vector by removing members in h l d di b d di i [ ]FCA the load vector corresponding to boundary conditions STEP 10: Get displacement components of the structure in global coordinates { } [ ] { } 1 F FF FCD S A − = Dept. of CE, GCE Kannur Dr.RajeshKN 27
  • 28. { } [ ]{ }LOCAL T GLOBALD R D= STEP 11: Get displacement components of each member in local coordinates STEP 12: Get member end actions from { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + { } { } [ ][ ]R RC RF FA A S D= − +STEP 13: Get reactions from { }RCA represents combined joint loads (actual and equivalent) applied directly to the supports.q ) pp y pp Dept. of CE, GCE Kannur Dr.RajeshKN 28
  • 29. • Problem 1: 1 Member stiffness matrices in local co ordinates 1EA ⎡ ⎤⎡ ⎤ 1. Member stiffness matrices in local co-ordinates (without considering restraint DOF) [ ]1 1 00 1.155 0 0 0 0 M EA S L ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦0 0 0 0⎣ ⎦ ⎣ ⎦ [ ] 1 0⎡ ⎤ [ ] 1 2 0⎡ ⎤ Dept. of CE, GCE Kannur Dr.RajeshKN [ ]2 1 0 0 0 MS ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ [ ]3 1 2 0 0 0MS ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦
  • 30. 2. Rotation (transformation) matrices [ ]1 cos sin 0.5 0.866 i 0 866 0 5 TR θ θ θ θ −⎡ ⎤ ⎡ ⎤ = =⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ [ ]1 60 sin cos 0.866 0.5 T θ θ θ=− ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ [ ]2 90 0 1 1 0 TR θ −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦90 1 0θ =− ⎣ ⎦ [ ]3 150 0.866 0.5 0.5 0.866 TR θ =− − −⎡ ⎤ = ⎢ ⎥−⎣ ⎦⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 30
  • 31. 3. Member stiffness matrices in global co-ordinates (Transformed member stiffness matrices) [ ] [ ] [ ][ ]1 1 1 1 T MS T M TS R S R= 0.5 0.866 1 0 0.5 0.8661 0 866 0 5 0 0 0 866 0 51 155 T − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦0.866 0.5 0 0 0.866 0.51.155⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 216 0 375−⎡ ⎤0.216 0.375 0.375 0.649 −⎡ ⎤ = ⎢ ⎥−⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 32. [ ]2 0 1 1 0 0 1 1 0 0 0 1 0 T MSS − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 0⎡ ⎤ = ⎢ ⎥0 1 = ⎢ ⎥ ⎣ ⎦ [ ]3 0.866 0.5 1 0 0.866 0.51 0 5 0 866 0 0 0 5 0 8662 T MSS − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ [ ]3 0.5 0.866 0 0 0.5 0.8662 MS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0.375 0.217⎡ ⎤ ⎢ ⎥0.217 0.125 = ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 32
  • 33. 4. Global stiffness matrix 0 216 0 0 375 0 375 0 0 217⎡ ⎤ (by assembling transformed member stiffness matrices) [ ] 0.216 0 0.375 0.375 0 0.217 0.375 0 0.217 0.649 1 0.125 FFS + + − + +⎡ ⎤ = ⎢ ⎥− + + + +⎣ ⎦ 0.591 0.158 0 158 1 774 −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦0.158 1.774⎢ ⎥−⎣ ⎦ This is the reduced global stiffness matrix, since restraint DOF were not considered. Hence, boundary conditions are automatically incorporatedautomatically incorporated. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 34. 5. Loads { } 0 5 FCA ⎧ ⎫ = ⎨ ⎬ −⎩ ⎭ 6. Joint displacements6. Joint displacements 0 772⎧ ⎫ { } [ ] { } 1 F FF FCD S A − = 0.772 2.89 −⎧ ⎫ = ⎨ ⎬ −⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 34
  • 35. 7. Member forces { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + Member 1 { } { } [ ][ ]{ } { } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + [ ][ ]{ }1 1 1T GLOBALM R DS= 1 0.5 0.8660 1 155 0.772⎡ ⎤ −⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ −⎧ ⎥ ⎫ ⎨ ⎬ 1.833 = ⎧ ⎫ ⎨ ⎬1.155 0.866 0.5 0 0 2.89⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎨ ⎬ −⎩ ⎭ 0 ⎨ ⎬ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 35
  • 36. { } [ ][ ]{ }R DA SM b 2 { } [ ][ ]{ }2 2 2 2T GLOBALM M R DA S=Member 2 0.772 2 1 0 0 1 0 0 1 0 .89 −⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ −⎧ ⎫ ⎨ ⎦ −⎩⎣ ⎬ ⎭ 2.89 0 ⎧ = ⎫ ⎨ ⎬ ⎩ ⎭ Member 3 { } [ ][ ]{ }3 3 3 3T GLOBALM M R DA S= 1 2 0 0.866 0.5 0 0 0.5 0.866 0.772 2.89 − −⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥−⎣ ⎦ −⎧ ⎫ ⎨ ⎣ ⎦ ⎬ −⎩ ⎭ 1.057 0 = ⎧ ⎫ ⎨ ⎬ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 36
  • 37. • Problem 2 : 10kN m 5 4 8 4m 0kN m C B 20kN 2 4 6 7 94m 1 9 4m 1 2 A EI is constant. 1 2 3 Displacements in global co-ordinates Dept. of CE, GCE Kannur Dr.RajeshKN 37 global co ordinates
  • 38. 2 5 6 9 2 1 4 3 6 4 6 2 6 9 2 5 1 1 Ki ti 1Kinematic indeterminacy DOF in local co- ordinates 1 2 33 Dept. of CE, GCE Kannur Dr.RajeshKN 38
  • 39. 0 0 0 0 12 6 12 6 EA EA L L EI EI EI EI ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 3 2 3 2 2 2 12 6 12 6 0 0 6 4 6 2 0 0 EI EI EI EI L L L L EI EI EI EI L L L L ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ Member stiffness matrix [ ] 0 0 0 0 12 6 12 6 Mi L L L LS EA EA L L EI EI EI EI ⎢ ⎥= ⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ of a 2D frame member in local coordinates 3 2 3 2 2 2 12 6 12 6 0 0 6 2 6 4 0 0 EI EI EI EI L L L L EI EI EI EI L L L L ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦L L L L⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 39
  • 40. 1. Member stiffness matrices in local co-ordinates ( ith t id i t i t DOF) 6Local DOFMember 1 (without considering restraint DOF) [ ] 4EI S ⎡ ⎤= ⎢ ⎥ [ ]1EI EI= = 6Global DOF [ ]1MS L = ⎢ ⎥⎣ ⎦ [ ]1EI EI Member 2 6 9Global DOF 3 6Local DOF Member 2 [ ] 4 2EI EI L LS ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 6 9Global DOF 0.5EI EI⎡ ⎤ [ ]2 2 4 M L LS EI EI L L = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ 0.5EI EI ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 40
  • 41. 2. Rotation (transformation) matrices In this case, transformation matrices are: [ ] [ ]1 1TR = corresponding to local DOF 6 [ ]2 1 0 0 1 TR ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ corresponding to local DOFs 3 & 6 ⎣ ⎦ 3. Member stiffness matrices in global co-ordinates (Transformed member stiffness matrices) [ ]1MSS EI= [ ]2 0.5 0.5 MS EI EI S EI EI ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN ⎣ ⎦
  • 42. 4 A bl d ( d d d) l b l tiff t i 6 9Gl b l DOF 4. Assembled (and reduced) global stiffness matrix [ ] 0.5EI EI S IE⎡ + ⎤ = ⎢ ⎥ 6 9Global DOF 2 0.5 EI ⎡ ⎤ = ⎢ ⎥[ ] 0.5FFS EI EI = ⎢ ⎥ ⎣ ⎦ 0.5 1 EI= ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 43. 5. Loads 20 13.33 13.33 B C 20 13.33 20 13.33B C20 B 20 20 C C20 Fi d d ti A Combined (Eqlt.+ actual) joint loads A Fixed end actions A (Loads in global co-ordinates) { } 13.33 13 33FCA −⎧ ⎫ = ⎨ ⎬ ⎩ ⎭ Loads corresponding to global DOF 6, 9: Dept. of CE, GCE Kannur Dr.RajeshKN 43 { } 13.33FC ⎨ ⎬ ⎩ ⎭ Loads corresponding to global DOF 6, 9:
  • 44. 6 Joint displacements 11 431 ⎧ ⎫ 6. Joint displacements { } [ ] { } 1 F FF FCD S A − = 11.43 19.04 1 EI −⎧ = ⎫ ⎨ ⎬ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 44
  • 45. 7. Member end actions { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + : fixed end actions for member i{ }MLiA Member 1 { } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + { } [ ]{ }DA S { } { } 4 1 0 11 43 EI⎡ ⎤ { } [ ]{ }1 1 1ML M GLOBALDA S= + { } { }0 11.43 11.43 L EI ⎡ ⎤ = + −⎢ ⎥⎣ ⎦ = − This is the member end action corresponding to local DOF 6 f M b 1 i b d h d f Dept. of CE, GCE Kannur Dr.RajeshKN 45 of Member 1. i.e., member end moment at the top edge of Member 1.
  • 46. Member 2 { } { } [ ]{ }2 2 2 2M ML M GLOBALA A DS= + Member 2 13.33 11.43 13.33 1 0.5 9.04 1 0.5 EI EI EI EI EI −⎧ ⎫ ⎧ ⎫ + ⎡ ⎤ = ⎢ ⎥ ⎣ ⎨ ⎬ ⎨ −⎩ ⎭ ⎩⎦ ⎬ ⎭ 13.33 1.91−⎧ ⎫ ⎧ ⎫ +⎨ ⎬ ⎨= ⎬ 11.42 = ⎧ ⎫ ⎨ ⎬ Th th b ti di t l l DOF 3 13.33 13.325 +⎨ ⎬ ⎨ ⎩ ⎭ ⎬ − ⎩ ⎭ 0 ⎨ ⎬ ⎩ ⎭ These are the member actions corresponding to local DOFs 3 and 6 of Member 2. i.e., member end moments of Member 2. Dept. of CE, GCE Kannur Dr.RajeshKN 46
  • 47. 11.43 0B 0B C 11.43 Member end moments A Dept. of CE, GCE Kannur Dr.RajeshKN 47
  • 48. • Problem 3 : 10 kips0.24 kips/in. 20 kips 1000 kips-in 75 in 100 in 50 in 50 in100 in 50 in 50 in Dept. of CE, GCE Kannur Dr.RajeshKN 48
  • 49. 2 5 1 3 4 6 8 7 9 8 Global DOF 7 Dept. of CE, GCE Kannur Dr.RajeshKN 49
  • 50. 21 3 5 6Local DOF 4 6Local DOF Dept. of CE, GCE Kannur Dr.RajeshKN 50 4
  • 51. Free DOF Dept. of CE, GCE Kannur Dr.RajeshKN 51
  • 52. 1. Member stiffness matrices in local co-ordinates ( ith t id i t i t DOF)(without considering restraint DOF) 0 0 12 6 XEA L EI EI ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 1000 0 0⎡ ⎤ ⎢ ⎥[ ]1 3 2 12 6 0 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− 5 0 120 6000 0 6000 4 10 ⎢ ⎥= − ⎢ ⎥ − ×⎢ ⎥⎣ ⎦ 2 0 L L ⎢ ⎥− ⎣ ⎦ 0 0 12 6 XEA L EI EI ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 800 0 0⎡ ⎤ ⎢ ⎥ [ ]2 3 2 12 6 0 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 5 0 61.44 3840 0 3840 3.2 10 ⎢ ⎥= ⎢ ⎥ ×⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 52 2 0 L L ⎢ ⎥ ⎣ ⎦
  • 53. 2. Rotation (transformation) matrices [ ] cos sin 0 i 0R ⎡ ⎤ ⎢ ⎥ θ θ θ θ[ ] sin cos 0 0 0 1 TR ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥⎣ ⎦ θ θ Member 1 Member 2 [ ]2 0.8 0.6 0 0.6 0.8 0R −⎡ ⎤ ⎢ ⎥= ⎢ ⎥[ ]1 1 0 0 0 1 0R ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ [ ] 0 0 1 ⎢ ⎥ ⎢ ⎥⎣ ⎦ [ ]1 0 0 1 ⎢ ⎥ ⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 53
  • 54. 3. Member stiffness matrices in global co-ordinates (Transformed member stiffness matrices) [ ] [ ] [ ][ ]1 1 1 1 T MS T M TS R S R= 1 0 0 1000 0 0 1 0 0 0 1 0 0 120 6000 0 1 0 T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 5 0 1 0 0 120 6000 0 1 0 0 0 1 0 6000 4 10 0 0 1 = − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 5 1000 0 0 0 120 6000 ⎡ ⎤ ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥5 0 6000 4 10− ×⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 54
  • 55. [ ] 0.8 0.6 0 800 0 0 0.8 0.6 0 0 6 0 8 0 0 61 44 3840 0 6 0 8 0 T S − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ]2 5 0.6 0.8 0 0 61.44 3840 0.6 0.8 0 0 0 1 0 3840 3.2 10 0 0 1 MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0.8 0.6 0 640 480 0 0 6 0 8 0 36 86 49 15 3840 −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ 5 0.6 0.8 0 36.86 49.15 3840 0 0 1 2304 3072 3.2 10 = − ⎢ ⎥ ⎢ ⎥ ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ 534.12 354.51 2304 354 51 327 32 3072 −⎡ ⎤ ⎢ ⎥= − ⎢ ⎥ 5 354.51 327.32 3072 2304 3072 3.2 10 ⎢ ⎥ ×⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 56. 4. Assembled (reduced) global stiffness matrix 1000 534.12 0 354.51 0 2304+ − +⎡ ⎤ . sse b ed ( educed) g oba st ess at x [ ] 5 5 0 354.51 120 327.32 6000 3072 0 2304 6000 3072 4 10 3.2 10 FFS ⎡ ⎤ ⎢ ⎥= − + − + ⎢ ⎥ + − + × + ×⎢ ⎥⎣ ⎦0 2304 6000 3072 4 10 3.2 10+ + × + ×⎢ ⎥⎣ ⎦ 1534 12 354 51 2304⎡ ⎤ 5 1534.12 354.51 2304 354.51 447.32 2928 −⎡ ⎤ ⎢ ⎥− − ⎢ ⎢ = ⎥ ⎥5 2304 2928 7.2 10− ×⎢⎣ ⎦⎥ Dept. of CE, GCE Kannur Dr.RajeshKN 56
  • 57. 5. Loads ⎧ ⎫ { } 0 10JA ⎧ ⎫ ⎪ ⎪ = −⎨ ⎬ ⎪ ⎪ Actual joint loads 1000⎪ ⎪−⎩ ⎭ { } 0 22A ⎧ ⎫ ⎪ ⎪ ⎨ ⎬Equivalent joint loads { } 22 50 EA = −⎨ ⎬ ⎪ ⎪−⎩ ⎭ Equivalent joint loads 0⎧ ⎫ ⎪ ⎪ { } { } { } 32 1050 FC J EA A A ⎪ ⎪ = + = −⎨ ⎬ ⎪ ⎪−⎩ ⎭ Hence, combined joint loads Dept. of CE, GCE Kannur Dr.RajeshKN ⎩ ⎭
  • 58. 6. Joint displacements { } [ ] { } 1 F FF FCD S A − ={ } [ ] { }F FF FCD S A 1 { } 1 1534.12 354.51 2304 0 354.51 447.32 2928 32FD − − ⎧ ⎫⎡ ⎤ ⎪ ⎪⎢ ⎥∴ = − − −⎨ ⎬⎢ ⎥ ⎪ ⎪5 2304 2928 7.2 10 1050 ⎢ ⎥ ⎪ ⎪− × −⎢ ⎥ ⎩ ⎭⎣ ⎦ 0.0206 0.09936 −⎧ ⎫ ⎪ ⎪ = −⎨ ⎬0.09936 0.001797 ⎨ ⎬ ⎪ ⎪−⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 59. 7. Member end actions { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + 1000 0 0 1 0 0 0.0206⎡ ⎤ ⎡ ⎤ −⎧ ⎫ ⎪ ⎪ { } 5 0 120 6000 0 1 0 0.0993 0 6000 4 10 0 6 0 1 0.001797 MLiA ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= + − ⎢ ⎥ ⎢ ⎥ − ×⎢ ⎥ ⎢ ⎥ ⎧ ⎫ ⎪ ⎪ −⎨ ⎣ ⎦ ⎣ ⎪ ⎩⎦ ⎬ ⎪− ⎭0 6000 4 10 0 0 1 0.001797⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎩⎦ ⎭ 8. Reactions { } { } [ ][ ]R RC RF FA A S D= − + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 61. 1 2 31 2 3 4 C ti itConnectivity: Member Node 1 Node 2 1 1 2 2 2 3 3 2 4 Dept. of CE, GCE Kannur Dr.RajeshKN 61 3 2 4
  • 62. 46 5 46 Free DOF Dept. of CE, GCE Kannur Dr.RajeshKN 62
  • 63. 1. Member stiffness matrices in local co-ordinates ( ith t id i t i t DOF)(without considering restraint DOF) 5 0 0 3.5 10 0 0 12 6 XEA L EI EI ⎡ ⎤ ⎢ ⎥ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥[ ]1 3 2 12 6 0 0 6562.5 13125 0 13125 35000 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥⎢ ⎥= − = −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎢ ⎥− 2 0 L L ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ [ ] 5 0 0 3.5 10 0 0 12 6 X Z Z EA L EI EI ⎡ ⎤ ⎢ ⎥ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥[ ]2 3 2 2 12 6 0 0 3888.89 11666.67 0 11666.67 46666.67 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 63 2 L L ⎢ ⎥ ⎣ ⎦
  • 64. ⎡ ⎤ [ ] 5 0 0 3.5 10 0 0 12 6 0 0 6 62 1312 X Z Z EA L EI EI S ⎡ ⎤ ⎢ ⎥ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥[ ]3 3 2 2 12 6 0 0 6562.5 13125 0 13125 35000 6 4 0 Z Z M Z Z EI EI S L L EI EI ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦ 2 L L ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 64
  • 65. 2. Rotation (transformation) matrices 0 1 0−⎡ ⎤1 0 0⎡ ⎤ 1 0 0⎡ ⎤ [ ]3 90 0 1 0 1 0 0 0 0 1 R θ =− ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ [ ]1 0 1 0 0 0 1 0 0 0 1 R θ = ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ [ ]2 0 0 1 0 0 0 1 R θ = ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ Member 1 0 0 1⎢ ⎥⎣ ⎦ Member 2 0 0 1⎢ ⎥⎣ ⎦ Member 3 ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 65
  • 66. 3. Member stiffness matrices in global co-ordinates (Transformed member stiffness matrices) [ ] [ ] [ ][ ]1 1 1 1 T MS T M TS R S R= 5 3.5 10 0 0 0 6562.5 13125 ⎡ ⎤× ⎢ ⎥ = −⎢ ⎥ 0 13125 35000 ⎢ ⎥ ⎢ ⎥−⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 66
  • 67. 5T ⎡ ⎤⎡ ⎤ ⎡ ⎤ [ ] 5 2 1 0 0 3.5 10 0 0 1 0 0 0 1 0 0 3888.89 11666.67 0 1 0 T MSS ⎡ ⎤×⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥0 0 1 0 11666.67 46666.67 0 0 1⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 5 3.5 10 0 0 0 3888.89 11666.67 ⎡ ⎤× ⎢ ⎥ = ⎢ ⎥ 0 11666.67 46666.67 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 67
  • 68. [ ] 5 3 0 1 0 3.5 10 0 0 0 1 0 1 0 0 0 6562.5 13125 1 0 0 T MSS ⎡ ⎤− × −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ 0 0 1 0 13125 35000 0 0 1 ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 5 0 1 0 0 3.5 10 0 1 0 0 6562 5 0 13125 ⎡ ⎤− ×⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥1 0 0 6562.5 0 13125 0 0 1 13125 0 35000 ⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ 6562.5 0 13125⎡ ⎤ ⎢ ⎥5 0 3.5 10 0 13125 0 35000 ⎢ ⎥= × ⎢ ⎥ ⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 68 ⎣ ⎦
  • 69. 4. Assembled (and reduced) global stiffness matrix. sse b ed (a d educed) g oba st ess at x 5 5 3.5 10 3.5 10 6562.5 0 0 0 0 0 13125⎡ ⎤× + × + + + + + ⎢ ⎥ [ ] 5 0 0 0 6562.5 3888.89 3.5 10 13125 11666.67 0 0 0 13125 13125 11666.67 0 35000 46666.67 35000 FFS ⎢ ⎥ = + + + + × − + +⎢ ⎥ ⎢ ⎥+ + − + + + +⎣ ⎦ 706562 5 0 13125⎡ ⎤706562.5 0 13125 0 360451.39 1458.33 ⎡ ⎤ ⎢ ⎥= − ⎢ ⎥ 13125 1458.33 116666.67 ⎢ ⎥ −⎢ ⎥⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 70. 60 5. Loads 20 20 kNm 60 60 2020 60 60 40 4040 40 Fixed end actions Dept. of CE, GCE Kannur Dr.RajeshKN 7040 Fixed end actions
  • 71. 80kN 0+16=16 kNm0 16 16 kNm 40kN Combined (equivalent + actual) joint loads Dept. of CE, GCE Kannur Dr.RajeshKN 71 ( q ) j
  • 72. 0⎧ ⎫ 0⎧ ⎫ 0⎧ ⎫ 0⎧ ⎫ ⎪ ⎪0 0 0 ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 0 20 20 ⎧ ⎫ ⎪ ⎪− ⎪ ⎪ −⎪ ⎪ 0 20 20 ⎧ ⎫ ⎪ ⎪− ⎪ ⎪ −⎪ ⎪ 20 20 0 ⎪ ⎪− ⎪ ⎪ −⎪ ⎪ ⎪ ⎪ 0 0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 40 80 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ 40 80 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ { } 0 60 60 RCA ⎪ ⎪ ⎪ ⎪⎪ ⎪ = −⎨ ⎬ ⎪ ⎪ ⎪ ⎪ { } 16 ; 0 0 JA ⎪ ⎪ −⎪ ⎪ = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪ { } 0 ; 0 60 EA ⎪ ⎪ ⎪ ⎪ = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪− { } { } { } 16 ; 0 60 C J EA A A ⎪ ⎪ −⎪ ⎪ = + = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪− 40 80 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪ 0 0 0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 60 60 40 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 40⎧ ⎫ ⎪ ⎪ 60 60 40 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 40⎪ ⎪−⎩ ⎭ 80 0 ⎪ ⎪ −⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 0 40 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎩ ⎭ { } 80 16 FCA ⎪ ⎪ = −⎨ ⎬ ⎪ ⎪−⎩ ⎭ 80 40 ⎪ ⎪ −⎪ ⎪ ⎪ ⎪−⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 72
  • 73. [ ] [ ] { } 1 D S A − =6. Joint displacements 1 706562.5 0 13125 40 − ⎡ ⎤ ⎧ ⎫ ⎪ ⎪ [ ] [ ] { }F FF FCD S A=6. Jo t d sp ace e ts 0 360451.39 1458.33 80 13125 1458.33 116666.67 16 ⎡ ⎤ ⎧ ⎫ ⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥ ⎪ ⎪− −⎢ ⎥⎣ ⎦ ⎩ ⎭⎢ ⎥⎣ ⎦ ⎩ ⎭ 5 9 6 0.142 10 0.646 10 0.160 10 40 − − − ⎡ ⎤× − × − × ⎧ ⎫ ⎢ ⎥9 5 7 6 7 5 40 0.646 10 0.277 10 0.348 10 80 160 160 10 0 348 10 0 859 10 − − − − − − ⎡ ⎤ ⎧ ⎫ ⎢ ⎥ ⎪ ⎪ = − × × × −⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ −× × × ⎩ ⎭⎣ ⎦ 160.160 10 0.348 10 0.859 10⎢ ⎥− × × × ⎩ ⎭⎣ ⎦ 4 0.594 10− ⎧ ⎫× ⎪ ⎪3 3 0.222 10 0.147 10 − − ⎪ ⎪ = − ×⎨ ⎬ ⎪ ⎪− ×⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN 73 ⎩ ⎭
  • 74. 7. Member end actions { } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 75. Summary Direct stiffness method Summary • Introduction – element stiffness matrix – rotation transformation matrix – transformation of displacement and load vectors and stiffness matrix – equivalent nodal forces and load vectors – assembly of stiffness matrix and load vector – determination ofassembly of stiffness matrix and load vector determination of nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid space frame (without numerical examples)grid – space frame (without numerical examples) Dept. of CE, GCE Kannur Dr.RajeshKN 75
  • 76. • Problem X: 2 6 1 3 5 6 4 5 Dept. of CE, GCE Kannur Dr.RajeshKN 76
  • 77. 0 0 EA EA⎡ ⎤ [ ]1 0 0 1 0 1 0 0 0 0 0 0 0 0 01 M L L S ⎡ ⎤ −⎢ ⎥ −⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥ [ ]1 1 0 1 02 0 0 0 0 0 0 0 0 0 0 M EA EA L L ⎢ ⎥ −⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦0 0 0 0⎢ ⎥⎣ ⎦ [ ] [ ] [ ]2 3 4S S S= = =[ ] [ ] [ ]2 3 4M M MS S S 1 0 1 0 0 0 0 01 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 1 0 1 0 0 0 0 01 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥[ ]5 0 0 0 01 1 0 1 02.83 0 0 0 0 MS ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦ [ ]6 0 0 0 01 1 0 1 02.83 0 0 0 0 MS ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 77 ⎣ ⎦ ⎣ ⎦
  • 78. Rotation matrices cos sin 0 0 0 1 0 0 sin cos 0 0 1 0 0 0 θ θ θ θ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ [ ]1 90 sin cos 0 0 1 0 0 0 0 0 cos sin 0 0 0 1 TR θ θ θ θ θ= ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 sin cos 0 0 1 0θ θ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ 0 1 0 0−⎡ ⎤ ⎢ ⎥ 1 0 0 0 0 1 0 0 ⎡ ⎤ ⎢ ⎥ [ ]3 90 1 0 0 0 0 0 0 1 TR θ =− ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ [ ]2 0 0 1 0 0 0 0 1 0 0 0 0 1 TR θ = ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 0 0 1 0 ⎢ ⎥ ⎣ ⎦0 0 0 1 ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 79. [ ] 1 1 0 0 1 1 0 0 0 707R ⎡ ⎤ ⎢ ⎥− ⎢ ⎥=[ ] 1 0 0 0 0 1 0 0 R −⎡ ⎤ ⎢ ⎥− ⎢ ⎥ [ ]5 45 0.707 0 0 1 1 0 0 1 1 TR θ = ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ −⎣ ⎦ [ ]4 180 0 0 1 0 0 0 0 1 TR θ = ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ −⎣ ⎦⎣ ⎦ [ ] 1 1 0 0 1 1 0 0 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥[ ]6 45 1 1 0 0 0.707 0 0 1 1 0 0 1 1 TR θ =− ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦0 0 1 1⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 79
  • 80. [ ] [ ] [ ][ ]T S R S R[ ] [ ] [ ][ ]1 1 1 1MS T M TS R S R= 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 01 T −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= 0 0 0 1 1 0 1 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0 1 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 0 0 0⎡ ⎤0 1 0 0 0 1 0 1− −⎡ ⎤ ⎡ ⎤ 0 1 0 11 0 0 0 02 ⎡ ⎤ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ 1 0 0 0 0 0 0 01 0 0 0 1 0 1 0 12 ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 1 0 1 ⎢ ⎥ −⎣ ⎦0 0 1 0 0 0 0 0 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 81. 1 0 1 0−⎡ ⎤ [ ]2 1 0 1 0 0 0 0 01 1 0 1 02 MSS −⎡ ⎤ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥1 0 1 02 0 0 0 0 ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ [ ] 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 01 T S − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥[ ]3 0 0 0 1 1 0 1 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0 1 0 MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 01 −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 0 0 0 0 0 1 0 11 ⎡ ⎤ ⎢ ⎥1 0 0 0 0 0 0 01 0 0 0 1 0 1 0 12 0 0 1 0 0 0 0 0 ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 0 1 0 11 0 0 0 02 0 1 0 1 ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 81 0 0 1 0 0 0 0 0−⎣ ⎦ ⎣ ⎦ 0 1 0 1−⎣ ⎦
  • 82. 1 0 1 0−⎡ ⎤ ⎢ ⎥ [ ]4 0 0 0 01 1 0 1 02 0 0 0 0 MSS ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦0 0 0 0⎣ ⎦ 1 1 0 0 1 0 1 0 1 1 0 0 T −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ]5 1 1 0 0 0 0 0 0 1 1 0 01 0.707 0.707 0 0 1 1 1 0 1 0 0 0 1 12.83 MSS ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 1 1 0 0 0 0 0 0 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0.1766 0 0 1 1 1 1 1 1 − − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ 1 1 1 1 1 1 1 1 0.1766 1 1 1 1 − −⎡ ⎤ ⎢ ⎥− − ⎢ ⎥= ⎢ ⎥0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 1 1 1 1 1 1 1 1 − −⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 83. 1 1 0 0 1 0 1 0 1 1 0 0 T ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ [ ]6 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 01 0.707 0.707 0 0 1 1 1 0 1 0 0 0 1 12.83 MSS − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 1 1 0 1 0 0 0 1 12.83 0 0 1 1 0 0 0 0 0 0 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1 1 1 1 1 1 1 1 − −⎡ ⎤ ⎢ ⎥ 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 1 1 1 1 0.177 1 1 1 1 1 1 1 1 ⎢ ⎥− − ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ 1 1 0 0 0 0 0 0 0.177 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ 1 1 1 1⎣ ⎦0 0 1 1 0 0 0 0⎣ ⎦ ⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 84. Assembled global stiffness matrix 1 1 0 0.1766 0 0 0.1766 0 0 0.1766 0.1766 0 2 2 1 1 + + + + − − − ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ g 1 1 0 0 0.1766 0 0.1766 0 0.1766 0.1766 0 0 2 2 1 1 0 0 0 0.1766 0 0 0.1766 0 0.1766 0.1766 2 2 1 1 + + + + − − − + + + − − − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ] 1 1 0 0 0 0.1766 0 0.1766 0 0 0.1766 0.1766 2 2 1 1 0.1766 0.1766 0 0 0.1766 0 0 0. 2 2 JS − + − + + − = − − − + + + + 1766 0 0 1 1 0 1766 0 1766 0 0 0 0 0 1766 0 0 1766 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥1 1 0.1766 0.1766 0 0 0 0 0.1766 0 0.1766 0 2 2 1 1 0 0.1766 0.1766 0 0 0 0.1766 0 0 0.1766 2 2 1 1 0 0 0 1766 0 1766 0 0 0 0 1766 0 0 1766 ⎢ ⎥− − + + + + − ⎢ ⎥ ⎢ ⎥ ⎢ − − + + + − ⎥ ⎢ ⎥ ⎢ ⎥ + + +⎢ ⎥0 0 0.1766 0.1766 0 0 0 0.1766 0 0.1766 2 2 − − + − + +⎢ ⎥ ⎣ ⎦ 1 2 8 0D D D= = =Boundary conditions are: Dept. of CE, GCE Kannur Dr.RajeshKN 1 2 8 0D D DBoundary conditions are:
  • 85. 0.677 -0.177 -0.500 0.000 -0.177⎡ ⎤ ⎢ ⎥ Reduced stiffness matrix [ ] -0.177 0.677 0.000 0.000 0.177 -0.500 0.000 0.677 0.177 0.000FFS = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ ] 0.000 0.000 0.177 0.677 0.000 -0.177 0.177 0.000 0.000 0.677 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 85
  • 86. 5⎧ ⎫ ⎪ ⎪ { } 0 0FCA ⎪ ⎪ ⎪ ⎪⎪ ⎪ = ⎨ ⎬ ⎪ ⎪ In this problem, the reduced load vector (in global coords) can be directly written as 0 0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ { } [ ] { } 1 F FF FCD S A − = 24.144⎧ ⎫ ⎪ ⎪ 4.829 1.000 3.829 -1.000 1.000 5⎡ ⎤ ⎧ ⎫ ⎢ ⎥ ⎪ ⎪ 5.000 19.144 ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎨ ⎬ ⎪ = ⎪ 1.000 1.793 0.793 -0.207 -0.207 3.829 0.793 4.622 -1.207 0.793= 0 0 ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎨ ⎬ ⎢ ⎥ ⎪ ⎪ -5.000 5.000 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ -1.000 -0.207 -1.207 1.793 -0.207 0 1.000 -0.207 0.793 -0.207 1.793 0 ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭ Dept. of CE, GCE Kannur Dr.RajeshKN ⎣ ⎦ ⎩ ⎭
  • 87. Assignment Dept. of CE, GCE Kannur Dr.RajeshKN