Advances in Telesurgery and Surgical Robotics Dr Sanjoy Sanyal MBBS, MS (Surgery), ADPHA, ADHRD Presented at 9 th  Nationa...
Preface (added 2009) <ul><li>This PPT represents developments in the field during late ‘90s and early 2000s, in: </li></ul...
The research pioneers  <ul><li>Stanford Research Institute (SRI) @ Stanford University School of Medicine </li></ul><ul><l...
World’s first telesurgery <ul><li>September 2001 : Tele- chole </li></ul><ul><li>Prof Jacques Marescaux , New York & Europ...
Background <ul><li>Traditional surgery </li></ul><ul><li>Tri-dimensional </li></ul><ul><li>Cognitive input </li></ul><ul><...
Definitions <ul><li>Telepresence surgery : Computerized interface @ surgical workstation  ↔  remote operative site; force ...
Definitions – cont’d <ul><li>Telerobotics : Remote control with a robotic arm, in conjunction with a laparoscope </li></ul...
Definitions – cont’d <ul><li>Telementoring : Experienced surgeon acts as tutor / instructor ( preceptor ) for remote surge...
Technical aspects <ul><li>Image transmission : T1 transmission (H-320 compression standard) </li></ul><ul><ul><li>Fibre-op...
Haptic <ul><li>Force reflection / feedback; Graduated tactile input </li></ul><ul><ul><li>–  resistance at remote site is ...
Robotic vs. human arm <ul><li>DOF : Number of ways an arm can move </li></ul><ul><li>Human arm : 7-DOF </li></ul><ul><li>H...
Telesurg dynamics @ MIT <ul><li>Surgeon’s fingers placed in rings of instruments  </li></ul><ul><li>Rings are connected to...
Telesurg components @ MIT
Surgeon’s master tool handle @ MIT
Surgeon’s master tool handle @ MIT
Master phantom haptic interface arm
Slave phantom haptic interface arm
Tele-operation slave tool
Tele-operation slave tool
Tele-operational details – Tool
Tele-operational details – Interchangeable tool tips
Experimental task - grasp / transfer
Experimental task - Grasp and transfer with orientation
Experimental task - Clip application
Experimental task – grasper / gripper and shear / scissors
Lap experiment box @ MIT
Lap simulator-1 @ MIT
Lap simulator-2 @ MIT
Dynamics of robotics @ UC <ul><li>Surgeon  – remote location – TV console – set of handheld controls ~ videogame joysticks...
Details of robots <ul><li>‘ Robo-doc ’: 2 robots working in concert </li></ul><ul><ul><li>Holding robots </li></ul></ul><u...
Holding robots <ul><li>Pair of large robotic arms  </li></ul><ul><li>Hydraulic-actuated </li></ul><ul><li>Sits on moveable...
Holding robots – cont’d <ul><li>Holds 2 nd  robot, wheels instruments into position by patient’s side </li></ul><ul><li>Gu...
Companion / Milli-robots / Robotic manipulators <ul><li>Sterile, disposable, steel, mm-scale, fingertip-sized  </li></ul><...
Companion robot – cont’d <ul><li>Inserted into body for actual surgical tasks (cutting, suturing) – 10-20 mm incisions </l...
Setup @ UC Berkeley
Equipment @ UCB
Robotic manipulator @ UCB
Mini robot controls @ UCB Roll-pitch-roll ‘wrist’, gripper and multi-fingered manipulators
Robotic endo-manipulator Endo-platform with biopsy forceps
Minute threading
Threaded robotic instruments – knot tying
2-G RTWL @ UCSF In a joint project between  RIML  of  UCB  and  Department of Surgery  of  University of California San Fr...
Lap interface @ UCSF
4-DOF lap haptic interface
Robotic Cardiac Surgery @ EHIRC  <ul><li>Escort Heart Inst. Research Centre in New Delhi, India  </li></ul><ul><li>Impleme...
Surgeon’s console @ EHIRC <ul><li>Display system : 3-D pictures of chest cavity </li></ul><ul><li>Surgeon  sits at console...
Robotic manipulators @ EHIRC <ul><li>Robot is not autonomous; surgeon-controlled  </li></ul><ul><li>Hold tiny instruments,...
IMA – LAD CABG
Totally endoscopic CABG  <ul><li>Advantages </li></ul><ul><ul><li>Only 3-incisions, each 1 cm on the side and lower chest ...
Technical innovations  <ul><li>Teletactation (Tactile feedback) </li></ul><ul><li>CyberGlove ®  with CyberTouch </li></ul>...
Teletactation – Tactile feedback <ul><li>Sensing tactile information through  tactile sensors  that transmit feel of tissu...
CyberTouch – CyberGlove ® <ul><li>Vibro-tactile, thermal simulators on each  finger  and  palm </li></ul><ul><li>Tactile f...
CyberGlove ® <ul><li>Flexible sensors  measure position  /  movement  of  fingers  and  wrist </li></ul>
Dextrous master glove <ul><li>Thumb ,  index ,  wrist  flexion sensors and wrist rotation sensor </li></ul><ul><li>Senses ...
Spatial cognition – Hand assist in telesurgery Non-dominant hand in-vivo possibly enhances spatial skills through tactile ...
Lap chole simulation Simulated fat and fascia Dissected away; cystic duct clipped
Lap chole simulation – cont’d Cystic artery and duct divided successfully in simulated conditions
Karlsruhe Gynec endo surgery simulations
Gynec surgery simulations – cont’d http://www- kismet.iai.fzk.de/VRTRAIN/phD_main.html   http://www- kismet.iai.fzk.de/VRT...
Dextrous mini robots <ul><li>1 – Camera attachment </li></ul><ul><li>2 – Equipped with a needle for biopsy </li></ul><ul><...
Summary <ul><li>Technically demanding, labor intensive, time consuming, expensive research </li></ul><ul><li>Learning curv...
Future applications <ul><li>Emergency trauma care  </li></ul><ul><ul><li>–  1 st  ‘Golden Hour’ </li></ul></ul><ul><li>Bat...
Cutting edge research today, surgical technology tomorrow
Conclusion <ul><li>“ Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates t...
Upcoming SlideShare
Loading in...5
×

Advances in Telesurgery and Surgical Robotics

5,476

Published on

Presented by Dr Sanjoy Sanyal Surgeon in Victoria Hospital, Ministry of Health, Seychelles, and Associate Professor of Surgical Anatomy and Neuroscience (then), at 9th National Medical Dental Conference in Seychelles, February 2006. It talks of remote surgery using Internet.

Published in: Technology
2 Comments
1 Like
Statistics
Notes
No Downloads
Views
Total Views
5,476
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
242
Comments
2
Likes
1
Embeds 0
No embeds

No notes for slide

Advances in Telesurgery and Surgical Robotics

  1. 1. Advances in Telesurgery and Surgical Robotics Dr Sanjoy Sanyal MBBS, MS (Surgery), ADPHA, ADHRD Presented at 9 th National Medical Dental Conference in Seychelles, February 2006
  2. 2. Preface (added 2009) <ul><li>This PPT represents developments in the field during late ‘90s and early 2000s, in: </li></ul><ul><ul><li>Stanford University School of Medicine </li></ul></ul><ul><ul><li>University of California Berkeley (UCB) </li></ul></ul><ul><ul><li>UC San Francisco (UCSF) </li></ul></ul><ul><ul><li>Massachusetts Inst. of Technology (MIT) </li></ul></ul><ul><ul><li>Escort Heart Institute Research Centre (EHIRC), New Delhi, India </li></ul></ul><ul><li>Telesurgery / surgical robotics has advanced considerably now. </li></ul>
  3. 3. The research pioneers <ul><li>Stanford Research Institute (SRI) @ Stanford University School of Medicine </li></ul><ul><li>Human Machine Systems Lab (HMSL) @ MIT </li></ul><ul><li>Robotic Intelligent Machines Laboratory (RIML) @ UC Berkeley </li></ul><ul><li>Robotic Telesurgical Workstation for Laparoscopy (RTWL) @ UCSF </li></ul>
  4. 4. World’s first telesurgery <ul><li>September 2001 : Tele- chole </li></ul><ul><li>Prof Jacques Marescaux , New York & European Institute of Telesurgery, Strasbourg </li></ul><ul><li>Round distance =14,000 km </li></ul><ul><li>Round Trip Time = 200 msec; video and hi-speed fibre-optic link </li></ul><ul><li>June 2001 : Johns Hopkins University, Baltimore & Rome Policlinico Casilino University </li></ul><ul><li>http://news.bbc.co.uk/2/hi/science/nature/1552211.stm </li></ul>
  5. 5. Background <ul><li>Traditional surgery </li></ul><ul><li>Tri-dimensional </li></ul><ul><li>Cognitive input </li></ul><ul><li>Tactile feedback </li></ul><ul><li>Stereoscopic vision with depth perception </li></ul><ul><li>Time lag -ve </li></ul><ul><li>Telesurgery </li></ul><ul><li>Two-dimensional </li></ul><ul><li>Cognitive feedback limited </li></ul><ul><li>Tactile feedback –ve </li></ul><ul><li>Binocular vision without depth perception </li></ul><ul><li>Time lag +ve </li></ul>
  6. 6. Definitions <ul><li>Telepresence surgery : Computerized interface @ surgical workstation ↔ remote operative site; force feedback (haptic) </li></ul><ul><li>Cooperative telesurgery : tele-surgeon / local (remote) assistant cooperation </li></ul><ul><li>http://www2.telemedtoday.com/articles/telesurgery.shtml </li></ul><ul><li>http:// web.mit.edu/hmsl/www/Telesurgery / </li></ul>
  7. 7. Definitions – cont’d <ul><li>Telerobotics : Remote control with a robotic arm, in conjunction with a laparoscope </li></ul><ul><li>http://www2.telemedtoday.com/articles/telesurgery.shtml </li></ul>
  8. 8. Definitions – cont’d <ul><li>Telementoring : Experienced surgeon acts as tutor / instructor ( preceptor ) for remote surgeon via interactive video </li></ul><ul><li>Teleproctoring ( proctor=supervisor of exams ): Documentation of performance for privileging purposes </li></ul><ul><li>http://www2.telemedtoday.com/articles/telesurgery.shtml </li></ul>
  9. 9. Technical aspects <ul><li>Image transmission : T1 transmission (H-320 compression standard) </li></ul><ul><ul><li>Fibre-optic cable </li></ul></ul><ul><ul><li>Microwave </li></ul></ul><ul><ul><li>Satellite </li></ul></ul><ul><li>Lag time : should be < 330 ms </li></ul><ul><ul><li>Vestibulo-Ocular Reflex disruption (3-D vertigo; Simulator sickness within 20 minutes) </li></ul></ul><ul><li>Movement scaling : 1cm -> 1mm </li></ul><ul><li>Haptic : Force feedback </li></ul>
  10. 10. Haptic <ul><li>Force reflection / feedback; Graduated tactile input </li></ul><ul><ul><li>– resistance at remote site is transmitted to near site by servo motors @ both sites </li></ul></ul>
  11. 11. Robotic vs. human arm <ul><li>DOF : Number of ways an arm can move </li></ul><ul><li>Human arm : 7-DOF </li></ul><ul><li>Human hand : >20-DOF </li></ul><ul><li>Robotic arm : Like human hand, arm and moveable elbow - but with a fused wrist </li></ul><ul><li>Robotic arm : 4-6 DOF </li></ul>
  12. 12. Telesurg dynamics @ MIT <ul><li>Surgeon’s fingers placed in rings of instruments </li></ul><ul><li>Rings are connected to motors , gears and belts </li></ul><ul><li>Precisely translate surgeon’s hand / finger motions into digital signals </li></ul><ul><li>Transmitted through computer- telecomm link </li></ul><ul><li>To robotic arms @ remote surgical station </li></ul><ul><li>Visual input : 2 remote CCD cameras (15 fps each -> 3-D effect ) -> Surgeon’s monitor -> Mirror -> Optical 3-D glasses (stereoscopic vision) </li></ul>http:// web.mit.edu/hmsl/www/Telesurgery
  13. 13. Telesurg components @ MIT
  14. 14. Surgeon’s master tool handle @ MIT
  15. 15. Surgeon’s master tool handle @ MIT
  16. 16. Master phantom haptic interface arm
  17. 17. Slave phantom haptic interface arm
  18. 18. Tele-operation slave tool
  19. 19. Tele-operation slave tool
  20. 20. Tele-operational details – Tool
  21. 21. Tele-operational details – Interchangeable tool tips
  22. 22. Experimental task - grasp / transfer
  23. 23. Experimental task - Grasp and transfer with orientation
  24. 24. Experimental task - Clip application
  25. 25. Experimental task – grasper / gripper and shear / scissors
  26. 26. Lap experiment box @ MIT
  27. 27. Lap simulator-1 @ MIT
  28. 28. Lap simulator-2 @ MIT
  29. 29. Dynamics of robotics @ UC <ul><li>Surgeon – remote location – TV console – set of handheld controls ~ videogame joysticks </li></ul><ul><li>Joystick : Pencil-sized; 1 for each hand </li></ul><ul><li>Computer : Program translates surgeon’s movements </li></ul><ul><li>End-effectors : Robotic instruments enter body to perform actual operation </li></ul><ul><ul><li>Early models : 3-fingered hand </li></ul></ul><ul><ul><li>Present : Hydraulic-powered, single-digit, 3-4” x ½”, 4-jointed (rotate, swivel, to-fro), 2-pronged end grasper </li></ul></ul><ul><li>Anthropomorphic movements </li></ul>http:// robotics.eecs.berkeley.edu /medical/
  30. 30. Details of robots <ul><li>‘ Robo-doc ’: 2 robots working in concert </li></ul><ul><ul><li>Holding robots </li></ul></ul><ul><ul><li>Companion robots / milli-robots / robotic manipulators </li></ul></ul>
  31. 31. Holding robots <ul><li>Pair of large robotic arms </li></ul><ul><li>Hydraulic-actuated </li></ul><ul><li>Sits on moveable platform </li></ul><ul><li>Driven remotely by surgeon’s joysticks </li></ul><ul><li>Performs like a surgeon’s shoulder, allowing positioning of its hydraulic arms </li></ul>
  32. 32. Holding robots – cont’d <ul><li>Holds 2 nd robot, wheels instruments into position by patient’s side </li></ul><ul><li>Guides them through dexterity-requiring surgical procedures (suturing, dissection) </li></ul><ul><li>Holds instruments steady while surgeon sutures and ties knots </li></ul>
  33. 33. Companion / Milli-robots / Robotic manipulators <ul><li>Sterile, disposable, steel, mm-scale, fingertip-sized </li></ul><ul><li>Slender, jointed, finger-like tools </li></ul><ul><li>Connected by wires and tubes to larger robot </li></ul><ul><li>Pair of gripping forceps at one end to carry surgical tools </li></ul><ul><li>Contains miniscule video-camera </li></ul>
  34. 34. Companion robot – cont’d <ul><li>Inserted into body for actual surgical tasks (cutting, suturing) – 10-20 mm incisions </li></ul><ul><li>Inserts cameras </li></ul><ul><li>Provide tactile feedback though force-deflecting joysticks </li></ul><ul><li>Provides 7 DOF </li></ul>
  35. 35. Setup @ UC Berkeley
  36. 36. Equipment @ UCB
  37. 37. Robotic manipulator @ UCB
  38. 38. Mini robot controls @ UCB Roll-pitch-roll ‘wrist’, gripper and multi-fingered manipulators
  39. 39. Robotic endo-manipulator Endo-platform with biopsy forceps
  40. 40. Minute threading
  41. 41. Threaded robotic instruments – knot tying
  42. 42. 2-G RTWL @ UCSF In a joint project between RIML of UCB and Department of Surgery of University of California San Francisco ( UCSF ), a Robotic Telesurgical Workstation for Laparoscopy (RTWL) was developed
  43. 43. Lap interface @ UCSF
  44. 44. 4-DOF lap haptic interface
  45. 45. Robotic Cardiac Surgery @ EHIRC <ul><li>Escort Heart Inst. Research Centre in New Delhi, India </li></ul><ul><li>Implemented da Vinci Tele-manipulation system </li></ul><ul><li>Intuitive Surgical Inc., Mountain View, CA, USA </li></ul><ul><li>Computer enhanced system </li></ul><ul><ul><li>Surgeon’s console </li></ul></ul><ul><ul><li>Cart-mounted robotic manipulators </li></ul></ul><ul><ul><li>http://www.ehirc.com/individuals/services/treatment/robotic_surgery.html# </li></ul></ul>
  46. 46. Surgeon’s console @ EHIRC <ul><li>Display system : 3-D pictures of chest cavity </li></ul><ul><li>Surgeon sits at console and gets 3-D view of chest interior </li></ul><ul><li>Hand motions are captured, transformed and transmitted to tiny robotic manipulators </li></ul>
  47. 47. Robotic manipulators @ EHIRC <ul><li>Robot is not autonomous; surgeon-controlled </li></ul><ul><li>Hold tiny instruments, which go inside the patient's chest. </li></ul><ul><li>Surgeon's hand movements transmitted to these instruments </li></ul><ul><li>CABG, mitral valve repair, ASD closure </li></ul>
  48. 48. IMA – LAD CABG
  49. 49. Totally endoscopic CABG <ul><li>Advantages </li></ul><ul><ul><li>Only 3-incisions, each 1 cm on the side and lower chest </li></ul></ul><ul><ul><li>Less pain </li></ul></ul><ul><ul><li>Faster healing and recovery </li></ul></ul><ul><ul><li>Short hospital stay </li></ul></ul>
  50. 50. Technical innovations <ul><li>Teletactation (Tactile feedback) </li></ul><ul><li>CyberGlove ® with CyberTouch </li></ul><ul><li>Dextrous master glove </li></ul><ul><li>Spatial cognition – Hand assist </li></ul><ul><li>Surgical simulations / Virtual reality </li></ul><ul><li>Dextrous mini-robots </li></ul>
  51. 51. Teletactation – Tactile feedback <ul><li>Sensing tactile information through tactile sensors that transmit feel of tissue to surgeon’s finger </li></ul>
  52. 52. CyberTouch – CyberGlove ® <ul><li>Vibro-tactile, thermal simulators on each finger and palm </li></ul><ul><li>Tactile feedback option enables feel of virtual object </li></ul>
  53. 53. CyberGlove ® <ul><li>Flexible sensors measure position / movement of fingers and wrist </li></ul>
  54. 54. Dextrous master glove <ul><li>Thumb , index , wrist flexion sensors and wrist rotation sensor </li></ul><ul><li>Senses positions of surgeon's fingers/wrist </li></ul><ul><li>Used as master to drive slave robotic hand </li></ul>
  55. 55. Spatial cognition – Hand assist in telesurgery Non-dominant hand in-vivo possibly enhances spatial skills through tactile cues, which generate a more accurate 3-D representation of anatomy
  56. 56. Lap chole simulation Simulated fat and fascia Dissected away; cystic duct clipped
  57. 57. Lap chole simulation – cont’d Cystic artery and duct divided successfully in simulated conditions
  58. 58. Karlsruhe Gynec endo surgery simulations
  59. 59. Gynec surgery simulations – cont’d http://www- kismet.iai.fzk.de/VRTRAIN/phD_main.html http://www- kismet.iai.fzk.de/VRTRAIN/GIF/PHD/surgSim.jpg
  60. 60. Dextrous mini robots <ul><li>1 – Camera attachment </li></ul><ul><li>2 – Equipped with a needle for biopsy </li></ul><ul><li>3 – Moves around abdominal cavity – spiral pattern – moves without slipping </li></ul><ul><li>http://news.bbc.co.uk/1/hi/health/4647258.stm </li></ul>
  61. 61. Summary <ul><li>Technically demanding, labor intensive, time consuming, expensive research </li></ul><ul><li>Learning curve with similar characteristics </li></ul><ul><li>Expensive installation, maintenance and infrastructure </li></ul>
  62. 62. Future applications <ul><li>Emergency trauma care </li></ul><ul><ul><li>– 1 st ‘Golden Hour’ </li></ul></ul><ul><li>Battlefield surgery </li></ul><ul><li>Remote area assistance </li></ul><ul><li>One-to-many telementoring </li></ul><ul><li>Space station surgery </li></ul>
  63. 63. Cutting edge research today, surgical technology tomorrow
  64. 64. Conclusion <ul><li>“ Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world .” Louis Pasteur </li></ul><ul><li>“ Don't be afraid to take a big step. You can't cross a chasm in two small jumps .” </li></ul><ul><ul><ul><ul><ul><li>David Lloyd George </li></ul></ul></ul></ul></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×