SlideShare a Scribd company logo
1 of 75
Download to read offline
Projectile Motion
Projectile Motion
    y




           x
Projectile Motion
    y




          /s
        vm
         
               x
Projectile Motion
    y




          /s
        vm
         
               x
Projectile Motion
                     y          maximum range
                                      45




                           /s
                         vm
                          
                                x

Initial conditions
Projectile Motion
                     y            maximum range
                                        45




                           /s
                         vm
                          
                                  x

Initial conditions   when t = 0


          v
      
Projectile Motion
                         y            maximum range
                                            45




                               /s
                             vm
                              
                                      x

Initial conditions       when t = 0


          v          
                     y
      
              
              x
Projectile Motion
                         y                     maximum range
                                                     45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x
          v                          cos
                     
                     y            v
                                 x  v cos
                                  
              
              x
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
                                     cos        sin 
          v          
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
                                     cos        sin 
          v          
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x                     x0
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
          v                          cos        sin 
                     
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x                     x0        y0
  0
x           g
         y
  0
x           g
         y
x  c1

  0
x           g
         y
x  c1
        y   gt  c2
         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
   c1  v cos
    x  v cos
    
  0
       x                      g
                           y
      x  c1
                          y   gt  c2
                           
when t  0, x  v cos
                          y  v sin 
                           
   c1  v cos              c2  v sin 
    x  v cos
                        y   gt  v sin 
                         
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
       c3  0
    x  vt cos
  0
       x                          g
                               y
      x  c1
                             y   gt  c2
                              
when t  0, x  v cos
                             y  v sin 
                              
   c1  v cos                 c2  v sin 
    x  v cos
                           y   gt  v sin 
                            

                               1 2
   x  vt cos  c3       y   gt  vt sin   c4
                               2
    when t  0, x  0           y0
       c3  0                   c4  0
    x  vt cos               1
                         y   gt 2  vt sin 
                              2
Common Questions
Common Questions
(1) When does the particle hit the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
    i  find when y  0
                   
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
     i  find when y  0
    ii  substitute into y
                          
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
   ii  substitute into y
                                    
                                     y
   iii  tan  
                  y
                                                   
                 
                 x                             
                                               x
Summary
Summary
 A particle undergoing projectile motion obeys
Summary
 A particle undergoing projectile motion obeys
              0
            x           and            g
                                    y
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions

           x  v cos
                          and    y  v sin 
                                  
Summary
   A particle undergoing projectile motion obeys
                  0
                x            and             g
                                          y

   with initial conditions

             x  v cos
                            and        y  v sin 
                                        

e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                 3
        tan 1 to the ground. Determine;.
                 4
Summary
    A particle undergoing projectile motion obeys
                  0
                x             and             g
                                           y

    with initial conditions

              x  v cos
                             and        y  v sin 
                                         

 e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                  3
         tan 1 to the ground. Determine;.
                  4
a) greatest height obtained
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions                                       5
                                                                            3
                                                                    3
                                                         tan 1
                                                                    4
                                                               4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                            3
                                                                    3
                                                         tan 1
                                                                    4
                                                               4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                          3
                            4
                     x  25 
                                                       tan 1
                                                                 3
                           5                                   4
                        20m/s                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                        5
                                                                          3
                            4
                     x  25 
                                                       tan 1
                                                                 3
                           5                                   4
                        20m/s                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                        5
                                                                          3
                            4            3
                     x  25 
                                  y  25 
                                                       tan 1
                                                                 3
                           5            5                    4
                        20m/s         15m/s                 4
  0
x          10
         y
  0
x          10
         y
x  c1

  0
x          10
         y
x  c1
        y  10t  c2
         
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20
   x  20
   
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3      y  5t 2  15t  c4
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
   c3  0
   x  20t
  0
    x                    10
                       y
   x  c1
                      y  10t  c2
                       
when t  0, x  20
                        y  15
                         
  c1  20                  c2  15
   x  20
                      y  10t  15
                       
  x  20t  c3        y  5t 2  15t  c4
 when t  0, x  0       y0
   c3  0               c4  0
   x  20t           y  5t 2  15t
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
           10t  15  0
                   3
              t
                   2
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
          x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                           3
                                                            2
                                                       3   15 3 
           10t  15  0            when t  , y  5          
                                            2          2       2
                   3                               45
              t                                 
                   2                               4
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
         x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                              3         3
                                                             2
                                                                3
           10t  15  0             when t  , y  5   15 
                                               2         2    2
                   3                                 45
              t                                   
                   2                                 4
                                 1
           greatest height is 11 m above the ground
                                 4
b) range
b) range
  time of flight is 3 seconds
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
   range is 60m
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                           
             2                    2
                              10
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                    10 5
             2                    2                         10
                              10                    
                                                         20
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                    10 5
             2                    2                         10
                              10                    
         1
 tan                                                   20
         2
       2634
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                       10 5
             2                    2                              10
                              10                      
         1
 tan                                                     20
         2
       2634
                       1
                after second, velocity  10 5m/s and it is traveling at
                       2
                  an angle of 2634 to the horizontal
d) cartesian equation of the path
d) cartesian equation of the path

        x  20t
             x
        t
            20
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x
                             y  5   15 
        t                            x       x
                                          
            20                      20    20 
                                  x 2 3x
                             y       
                                  80     4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x
                             y  5   15 
        t                            x       x
                                          
            20                      20    20 
                                  x 2 3x
                             y       
                                  80     4




          Exercise 3G; 1ac, 2ac, 4, 6, 8, 9, 11, 13, 16, 18

                   Exercise 3H; 2, 4, 6, 7, 10, 11

More Related Content

More from Nigel Simmons

12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 

More from Nigel Simmons (20)

12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 

Recently uploaded

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 

Recently uploaded (20)

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 

12 X1 T07 03 Projectile Motion

  • 3. Projectile Motion y /s vm  x
  • 4. Projectile Motion y /s vm  x
  • 5. Projectile Motion y maximum range   45 /s vm  x Initial conditions
  • 6. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0 v 
  • 7. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0 v  y   x
  • 8. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x v  cos  y v  x  v cos   x
  • 9. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x
  • 10. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x x0
  • 11. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y v  cos  sin   y v v  x  v cos  y  v sin    x x0 y0
  • 12.   0 x    g y
  • 13.   0 x    g y x  c1 
  • 14.   0 x    g y x  c1  y   gt  c2 
  • 15.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin  
  • 16.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos x  v cos 
  • 17.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin  
  • 18.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2
  • 19.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0
  • 20.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 x  vt cos
  • 21.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 y   gt 2  vt sin  2
  • 23. Common Questions (1) When does the particle hit the ground?
  • 24. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0
  • 25. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle?
  • 26. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0
  • 27. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x
  • 28. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle?
  • 29. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0 
  • 30. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y
  • 31. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground?
  • 32. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0
  • 33. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y 
  • 34. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y   y iii  tan   y   x  x
  • 36. Summary A particle undergoing projectile motion obeys
  • 37. Summary A particle undergoing projectile motion obeys   0 x and    g y
  • 38. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions
  • 39. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin  
  • 40. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4
  • 41. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained
  • 42. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions
  • 43. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions 5 3 3   tan 1 4 4
  • 44. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 3   tan 1 4 4
  • 45. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3  4 x  25     tan 1 3 5 4  20m/s 4
  • 46. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3  4 x  25     tan 1 3 5 4  20m/s 4
  • 47. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3  4  3 x  25   y  25     tan 1 3 5 5 4  20m/s  15m/s 4
  • 48.   0 x   10 y
  • 49.   0 x   10 y x  c1 
  • 50.   0 x   10 y x  c1  y  10t  c2 
  • 51.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15 
  • 52.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 x  20 
  • 53.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15 
  • 54.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3
  • 55.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4
  • 56.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0
  • 57.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 x  20t
  • 58.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t
  • 59.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0 
  • 60.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0   10t  15  0 3 t 2
  • 61.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3 2  3   15 3   10t  15  0 when t  , y  5    2  2  2 3 45 t  2 4
  • 62.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3  3 2  3  10t  15  0 when t  , y  5   15  2  2  2 3 45 t  2 4 1  greatest height is 11 m above the ground 4
  • 64. b) range time of flight is 3 seconds
  • 65. b) range time of flight is 3 seconds when t  3, x  203  60
  • 66. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m
  • 67. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2
  • 68. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   2 2  10
  • 69. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  20
  • 70. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  1 tan   20 2   2634
  • 71. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  1 tan   20 2   2634 1  after second, velocity  10 5m/s and it is traveling at 2 an angle of 2634 to the horizontal
  • 72. d) cartesian equation of the path
  • 73. d) cartesian equation of the path x  20t x t 20
  • 74. d) cartesian equation of the path x  20t y  5t 2  15t 2 x y  5   15  t x x     20  20   20   x 2 3x y  80 4
  • 75. d) cartesian equation of the path x  20t y  5t 2  15t 2 x y  5   15  t x x     20  20   20   x 2 3x y  80 4 Exercise 3G; 1ac, 2ac, 4, 6, 8, 9, 11, 13, 16, 18 Exercise 3H; 2, 4, 6, 7, 10, 11