SlideShare a Scribd company logo
1 of 37
Download to read offline
Mathematical Induction
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6       which is divisible by 3
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
         i.e. k k  1k  2   3P, where P is an integer
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
         i.e. k k  1k  2   3P, where P is an integer

 Step 3: Prove the result is true for n = k + 1
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
         i.e. k k  1k  2   3P, where P is an integer

 Step 3: Prove the result is true for n = k + 1
        i.e. Prove : k  1k  2 k  3  3Q, where Q is an integer
Proof:
Proof:
         k  1k  2k  3
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
          3Q, where Q  P  k  1k  2  which is an integer
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
          3Q, where Q  P  k  1k  2  which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
          3Q, where Q  P  k  1k  2  which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k


Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.
iv  Prove 33n  2 n2 is divisible by 5
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. 33k  2 k 2  5 P, where P is an integer
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. 33k  2 k 2  5 P, where P is an integer
Step 3: Prove the result is true for n = k + 1
        i.e. Prove : 33k 3  2 k 3  5Q, where Q is an integer
Proof:
Proof: 33k 3  2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3             Exercise 6N;
                                                3bdf, 4 ab(i), 9
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.

More Related Content

Viewers also liked

12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)
Nigel Simmons
 
X2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questionsX2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questions
Nigel Simmons
 
12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion
Nigel Simmons
 
11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)
Nigel Simmons
 
11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval
Nigel Simmons
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
Nigel Simmons
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)
Nigel Simmons
 
X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)
Nigel Simmons
 
11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)
Nigel Simmons
 
12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)
Nigel Simmons
 
11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)
Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
Nigel Simmons
 
11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)
Nigel Simmons
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
Nigel Simmons
 
X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)
Nigel Simmons
 
X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)
Nigel Simmons
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)
Nigel Simmons
 
11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)
Nigel Simmons
 
11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)
Nigel Simmons
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
Nigel Simmons
 

Viewers also liked (20)

12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)
 
X2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questionsX2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questions
 
12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion
 
11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)
 
11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)
 
X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)
 
11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)
 
12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)
 
11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
 
X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)
 
X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)
 
11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)
 
11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 

Similar to 11X1 T10 09 mathematical induction 2

mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
Nigel Simmons
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 
Chapter 4 dis 2011
Chapter 4 dis 2011Chapter 4 dis 2011
Chapter 4 dis 2011
noraidawati
 

Similar to 11X1 T10 09 mathematical induction 2 (20)

mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
Induction.pdf
Induction.pdfInduction.pdf
Induction.pdf
 
Chapter 4 dis 2011
Chapter 4 dis 2011Chapter 4 dis 2011
Chapter 4 dis 2011
 
Proofs by contraposition
Proofs by contrapositionProofs by contraposition
Proofs by contraposition
 
Lect 18
Lect 18Lect 18
Lect 18
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategy
 
Proof By Contradictions
Proof By ContradictionsProof By Contradictions
Proof By Contradictions
 
Lecture_4.pptx
Lecture_4.pptxLecture_4.pptx
Lecture_4.pptx
 
Chapter5.pptx
Chapter5.pptxChapter5.pptx
Chapter5.pptx
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
fonyou31
 

Recently uploaded (20)

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 

11X1 T10 09 mathematical induction 2

  • 2. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3
  • 3. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1
  • 4. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6
  • 5. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3
  • 6. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1
  • 7. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 8. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2   3P, where P is an integer
  • 9. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2   3P, where P is an integer Step 3: Prove the result is true for n = k + 1
  • 10. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2   3P, where P is an integer Step 3: Prove the result is true for n = k + 1 i.e. Prove : k  1k  2 k  3  3Q, where Q is an integer
  • 12. Proof: k  1k  2k  3
  • 13. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2 
  • 14. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2 
  • 15. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2 
  • 16. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2   3Q, where Q  P  k  1k  2  which is an integer
  • 17. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2   3Q, where Q  P  k  1k  2  which is an integer Hence the result is true for n = k + 1 if it is also true for n = k
  • 18. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2   3Q, where Q  P  k  1k  2  which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.
  • 19. iv  Prove 33n  2 n2 is divisible by 5
  • 20. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1
  • 21. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35
  • 22. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5
  • 23. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1
  • 24. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. 33k  2 k 2  5 P, where P is an integer
  • 25. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. 33k  2 k 2  5 P, where P is an integer Step 3: Prove the result is true for n = k + 1 i.e. Prove : 33k 3  2 k 3  5Q, where Q is an integer
  • 27. Proof: 33k 3  2 k 3
  • 28. Proof: 33k 3  2 k 3  27  33k  2 k 3
  • 29. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3
  • 30. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3
  • 31. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2
  • 32. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2
  • 33. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2 
  • 34. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer
  • 35. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k
  • 36. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.
  • 37. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3 Exercise 6N; 3bdf, 4 ab(i), 9  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.