SlideShare a Scribd company logo
1 of 31
Download to read offline
The t results

                  The t results
Let t  tan
              2

                  The t results
Let t  tan
             2
                
          2 tan
tan           2
                  
        1  tan 2
                  2
          2t
tan  
        1 t 2

                  The t results
Let t  tan
             2
                                      2t
          2 tan
tan           2         
                             1 t 2
        1  tan 2
                  2
          2t
tan  
        1 t 2

                  The t results
Let t  tan
             2                     1 t2
                                                       2t
          2 tan
tan           2              
                                       1 t 2
        1  tan 2
                  2      h   2t   1  t      
                                                 2 2
                          2             2
          2t
tan  
        1 t 2                 4t 2  1  2t 2  t 4
                               t 4  2t 2  1
                                t  1
                                    2       2

                  The t results
Let t  tan
             2                           1 t2
                                                             2t
          2 tan
tan           2                    
                                             1 t 2
        1  tan 2
                  2            h   2t   1  t      
                                                       2 2
                                2             2
          2t
tan  
        1 t 2                       4t 2  1  2t 2  t 4
                                     t 4  2t 2  1
                                     t  1
                                                  2
If t  tan ;
                                          2

          2
                       2t
           tan  
                      1 t 2

                  The t results
Let t  tan
             2                                         1 t2
                                                                           2t
          2 tan
tan           2                                  
                                                           1 t 2
        1  tan 2
                  2                         h   2t   1  t       
                                                                     2 2
                                             2              2
          2t
tan  
        1 t 2                                     4t 2  1  2t 2  t 4
                                                   t 4  2t 2  1
                                                   t  1
                                                                2
If t  tan ;
                                                        2

          2
                       2t                 2t
           tan               sin  
                      1 t 2             1 t 2

                  The t results
Let t  tan
             2                                    1 t2
                                                                      2t
          2 tan
tan           2                             
                                                      1 t 2
        1  tan 2
                  2                    h   2t   1  t       
                                                                2 2
                                        2              2
          2t
tan  
        1 t 2                                4t 2  1  2t 2  t 4
                                              t 4  2t 2  1
                                              t  1
                                                           2
If t  tan ;
                                                   2

          2
                    2t               2t                   1 t2
           tan            sin                  cos 
                   1 t 2           1 t 2                1 t2

                   The t results
 Let t  tan
               2                                    1 t2
                                                                        2t
            2 tan
  tan           2                             
                                                        1 t 2
          1  tan 2
                    2                    h   2t   1  t       
                                                                  2 2
                                          2              2
            2t
  tan  
          1 t 2                                4t 2  1  2t 2  t 4
                                                t 4  2t 2  1
                                                t  1
                                                             2
  If t  tan ;
                                                     2

            2
                      2t               2t                   1 t2
             tan            sin                  cos 
                     1 t 2           1 t 2                1 t2
Note:
                          2t
 If t  tan  ; tan 2 
                         1 t2

                   The t results
 Let t  tan
               2                                    1 t2
                                                                        2t
            2 tan
  tan           2                             
                                                        1 t 2
          1  tan 2
                    2                    h   2t   1  t       
                                                                  2 2
                                          2              2
            2t
  tan  
          1 t 2                                4t 2  1  2t 2  t 4
                                                t 4  2t 2  1
                                                t  1
                                                             2
  If t  tan ;
                                                     2

            2
                      2t               2t                   1 t2
             tan            sin                  cos 
                     1 t 2           1 t 2                1 t2
Note:
                          2t                                   2t
 If t  tan  ; tan 2              If t  tan 2 ; tan 4 
                         1 t2                                1 t2
1  cos x                     x
e.g.  i  Show that            t , where t  tan
                       sin x                       2
1  cos x                        x
e.g.  i  Show that             t , where t  tan
                       sin x                          2
                        1 t2
          1  cos x 1  1  t 2                                x
                                                    x is double ,               
                                                              2               
            sin x       2t                                                     
                      1 t2           so t results can be used for sin x,cos x 
1  cos x                       x
e.g.  i  Show that              t , where t  tan
                         sin x                         2
                          1 t2
                      1                                        x               
          1  cos x       1 t 2
                                                     x is double ,
                                                               2               
            sin x         2t                                                    
                        1 t2          so t results can be used for sin x,cos x 
                       1  t 2  1  t 2 
                   
                               2t
1  cos x                       x
e.g.  i  Show that              t , where t  tan
                         sin x                         2
                          1 t2
                      1                                        x               
          1  cos x       1 t 2
                                                     x is double ,
                                                               2               
            sin x         2t                                                    
                        1 t2          so t results can be used for sin x,cos x 
                       1  t 2  1  t 2 
                   
                               2t
                     2t 2
                   
                     2t
                    t
                2 tan 75
 ii  Use t  tan to simplify
                  2            1  tan 2 75
                2 tan 75
 ii  Use t  tan to simplify
                  2            1  tan 2 75
                        Let t  tan 75 ;
                2 tan 75
 ii  Use t  tan to simplify
                  2            1  tan 2 75
                        Let t  tan 75 ;
                                
                         i.e.        75
                                2
                                  150
                2 tan 75       2 tan 75     2t
 ii  Use t  tan to simplify                              
                  2            1  tan 2 75   1  tan 2 75 1  t 2
                        Let t  tan 75 ;
                                
                         i.e.        75
                                2
                                  150
                2 tan 75       2 tan 75       2t
 ii  Use t  tan to simplify                              
                  2            1  tan 2 75   1  tan 2 75 1  t 2
                        Let t  tan 75 ;                     sin 
                                
                         i.e.        75
                                2
                                  150
                2 tan 75       2 tan 75       2t
 ii  Use t  tan to simplify                              
                  2            1  tan 2 75   1  tan 2 75 1  t 2
                        Let t  tan 75 ;                     sin 
                                                             sin150
                         i.e.        75                       1
                                2                            
                                  150                        2
               2 tan 75       2 tan 75       2t
 ii  Use t  tan to simplify                              
                  2            1  tan 2 75   1  tan 2 75 1  t 2
                        Let t  tan 75 ;                     sin 
                                                             sin150
                          i.e.        75                      1
                                 2                           
                                   150                       2
              1  sin   cos        
 iii  Prove                    tan
              1  sin   cos        2
                2 tan 75                        2 tan 75       2t
 ii  Use t  tan to simplify                                               
                  2            1  tan 2 75                    1  tan 2 75 1  t 2
                        Let t  tan 75 ;                                      sin 
                                                                              sin150
                         i.e.        75                                        1
                                2                                             
                                   150                                        2
              1  sin   cos        
 iii  Prove                    tan
              1  sin   cos        2    2t 1  t 2
                  1  sin   cos  1  1  t 2  1  t 2
     Let t  tan ;                       
                  2 1  sin   cos       2t 1  t 2
                                            1              
                                                 1 t   2
                                                                1 t2
                2 tan 75                         2 tan 75       2t
 ii  Use t  tan to simplify                                                
                  2            1  tan 2 75                     1  tan 2 75 1  t 2
                        Let t  tan 75 ;                                       sin 
                                                                               sin150
                         i.e.        75                                         1
                                2                                              
                                   150                                         2
              1  sin   cos        
 iii  Prove                    tan
              1  sin   cos        2    2t 1  t 2
                  1  sin   cos  1  1  t 2  1  t 2
     Let t  tan ;                       
                  2 1  sin   cos       2t 1  t 2
                                                1           
                                                    1 t 1 t2
                                                         2


                                                1  t 2  2t  1  t 2 
                                            
                                                 1  t 2  2t  1  t 2
                2 tan 75                         2 tan 75       2t
 ii  Use t  tan to simplify                                                
                  2            1  tan 2 75                     1  tan 2 75 1  t 2
                        Let t  tan 75 ;                                       sin 
                                                                               sin150
                         i.e.        75                                         1
                                2                                              
                                   150                                         2
              1  sin   cos        
 iii  Prove                    tan
              1  sin   cos        2    2t 1  t 2
                  1  sin   cos  1  1  t 2  1  t 2
     Let t  tan ;                       
                  2 1  sin   cos       2t 1  t 2
                                                1           
                                                    1 t 1 t2
                                                         2


                                                1  t 2  2t  1  t 2 
                                            
                                              1  t 2  2t  1  t 2
                                              2t 2  2t
                                            
                                               2  2t
                2 tan 75                         2 tan 75       2t
 ii  Use t  tan to simplify                                                
                  2            1  tan 2 75                     1  tan 2 75 1  t 2
                        Let t  tan 75 ;                                       sin 
                                                                               sin150
                         i.e.        75                                         1
                                2                                              
                                   150                                         2
              1  sin   cos        
 iii  Prove                    tan
              1  sin   cos        2    2t 1  t 2
                  1  sin   cos  1  1  t 2  1  t 2
     Let t  tan ;                       
                  2 1  sin   cos       2t 1  t 2
                                                1           
                                                    1 t 1 t2
                                                         2


                                                1  t 2  2t  1  t 2 
                                            
                                              1  t 2  2t  1  t 2
                                              2t 2  2t
                                            
                                               2  2t
                                              2t  t  1
                                            
                                              2 1  t 
                2 tan 75                         2 tan 75       2t
 ii  Use t  tan to simplify                                                
                  2            1  tan 2 75                     1  tan 2 75 1  t 2
                        Let t  tan 75 ;                                       sin 
                                                                               sin150
                         i.e.        75                                         1
                                2                                              
                                   150                                         2
              1  sin   cos        
 iii  Prove                    tan
              1  sin   cos        2    2t 1  t 2
                  1  sin   cos  1  1  t 2  1  t 2
     Let t  tan ;                       
                  2 1  sin   cos       2t 1  t 2
                                                1           
                                                    1 t 1 t2
                                                         2


                                                1  t 2  2t  1  t 2 
                                            
                                              1  t 2  2t  1  t 2
                                              2t 2  2t
                                            
                                               2  2t
                                              2t  t  1            
                                                           t  tan
                                              2 1  t              2

(iv) By making the substitution t  tan       or otherwise,
                                          2
                                     
    show that cosec  cot   cot              2005 Extension 1 HSC Q4b)
                                     2

(iv) By making the substitution t  tan       or otherwise,
                                          2
                                     
    show that cosec  cot   cot              2005 Extension 1 HSC Q4b)
                                     2
                       1 t2 1 t2
      cosec  cot        
                        2t    2t

(iv) By making the substitution t  tan       or otherwise,
                                          2
                                     
    show that cosec  cot   cot              2005 Extension 1 HSC Q4b)
                                     2
                       1 t2 1 t2
      cosec  cot        
                         2t   2t
                        2
                     
                       2t
                       1
                     
                       t

(iv) By making the substitution t  tan       or otherwise,
                                          2
                                     
    show that cosec  cot   cot              2005 Extension 1 HSC Q4b)
                                     2
                       1 t2 1 t2
      cosec  cot          
                         2t     2t
                        2
                     
                       2t
                       1
                     
                       t 
                      cot
                            2

(iv) By making the substitution t  tan       or otherwise,
                                          2
                                     
    show that cosec  cot   cot              2005 Extension 1 HSC Q4b)
                                     2
                       1 t2 1 t2
      cosec  cot          
                         2t     2t
                        2
                     
                       2t
                       1
                     
                       t 
                      cot
                            2



           Exercise 2B; 1def, 3ace, 4bcf, 5aceg, 6, 8bd, 10a

More Related Content

Viewers also liked

12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)Nigel Simmons
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)Nigel Simmons
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)Nigel Simmons
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)Nigel Simmons
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)Nigel Simmons
 
11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)Nigel Simmons
 
11 x1 t08 05 t results (2013)
11 x1 t08 05 t results (2013)11 x1 t08 05 t results (2013)
11 x1 t08 05 t results (2013)Nigel Simmons
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)Nigel Simmons
 
11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)Nigel Simmons
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)Nigel Simmons
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Trianglesjtentinger
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)Nigel Simmons
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)Nigel Simmons
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two LinesNigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Viewers also liked (18)

12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)12 x1 t08 04 greatest coefficients & terms (2012)
12 x1 t08 04 greatest coefficients & terms (2012)
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)
 
11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)
 
11 x1 t08 05 t results (2013)
11 x1 t08 05 t results (2013)11 x1 t08 05 t results (2013)
11 x1 t08 05 t results (2013)
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
 
11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11 x1 t08 05 t results (2012)

  • 2. The t results Let t  tan 2
  • 3. The t results Let t  tan 2  2 tan tan   2  1  tan 2 2 2t tan   1 t 2
  • 4. The t results Let t  tan 2  2t 2 tan tan   2   1 t 2 1  tan 2 2 2t tan   1 t 2
  • 5. The t results Let t  tan 2 1 t2  2t 2 tan tan   2   1 t 2 1  tan 2 2 h   2t   1  t  2 2 2 2 2t tan   1 t 2  4t 2  1  2t 2  t 4  t 4  2t 2  1   t  1 2 2
  • 6. The t results Let t  tan 2 1 t2  2t 2 tan tan   2   1 t 2 1  tan 2 2 h   2t   1  t  2 2 2 2 2t tan   1 t 2  4t 2  1  2t 2  t 4  t 4  2t 2  1    t  1 2 If t  tan ; 2 2 2t tan   1 t 2
  • 7. The t results Let t  tan 2 1 t2  2t 2 tan tan   2   1 t 2 1  tan 2 2 h   2t   1  t  2 2 2 2 2t tan   1 t 2  4t 2  1  2t 2  t 4  t 4  2t 2  1    t  1 2 If t  tan ; 2 2 2t 2t tan   sin   1 t 2 1 t 2
  • 8. The t results Let t  tan 2 1 t2  2t 2 tan tan   2   1 t 2 1  tan 2 2 h   2t   1  t  2 2 2 2 2t tan   1 t 2  4t 2  1  2t 2  t 4  t 4  2t 2  1    t  1 2 If t  tan ; 2 2 2t 2t 1 t2 tan   sin   cos  1 t 2 1 t 2 1 t2
  • 9. The t results Let t  tan 2 1 t2  2t 2 tan tan   2   1 t 2 1  tan 2 2 h   2t   1  t  2 2 2 2 2t tan   1 t 2  4t 2  1  2t 2  t 4  t 4  2t 2  1    t  1 2 If t  tan ; 2 2 2t 2t 1 t2 tan   sin   cos  1 t 2 1 t 2 1 t2 Note: 2t If t  tan  ; tan 2  1 t2
  • 10. The t results Let t  tan 2 1 t2  2t 2 tan tan   2   1 t 2 1  tan 2 2 h   2t   1  t  2 2 2 2 2t tan   1 t 2  4t 2  1  2t 2  t 4  t 4  2t 2  1    t  1 2 If t  tan ; 2 2 2t 2t 1 t2 tan   sin   cos  1 t 2 1 t 2 1 t2 Note: 2t 2t If t  tan  ; tan 2  If t  tan 2 ; tan 4  1 t2 1 t2
  • 11. 1  cos x x e.g.  i  Show that  t , where t  tan sin x 2
  • 12. 1  cos x x e.g.  i  Show that  t , where t  tan sin x 2 1 t2 1  cos x 1  1  t 2  x x is double ,    2  sin x 2t   1 t2  so t results can be used for sin x,cos x 
  • 13. 1  cos x x e.g.  i  Show that  t , where t  tan sin x 2 1 t2 1  x  1  cos x 1 t 2 x is double ,   2  sin x 2t   1 t2  so t results can be used for sin x,cos x  1  t 2  1  t 2   2t
  • 14. 1  cos x x e.g.  i  Show that  t , where t  tan sin x 2 1 t2 1  x  1  cos x 1 t 2 x is double ,   2  sin x 2t   1 t2  so t results can be used for sin x,cos x  1  t 2  1  t 2   2t 2t 2  2t t
  • 15. 2 tan 75  ii  Use t  tan to simplify 2 1  tan 2 75
  • 16. 2 tan 75  ii  Use t  tan to simplify 2 1  tan 2 75 Let t  tan 75 ;
  • 17. 2 tan 75  ii  Use t  tan to simplify 2 1  tan 2 75 Let t  tan 75 ;  i.e.  75 2   150
  • 18. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  i.e.  75 2   150
  • 19. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin   i.e.  75 2   150
  • 20. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2
  • 21. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2 1  sin   cos    iii  Prove  tan 1  sin   cos  2
  • 22. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2 1  sin   cos    iii  Prove  tan 1  sin   cos  2 2t 1  t 2  1  sin   cos  1  1  t 2  1  t 2 Let t  tan ;  2 1  sin   cos  2t 1  t 2 1  1 t 2 1 t2
  • 23. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2 1  sin   cos    iii  Prove  tan 1  sin   cos  2 2t 1  t 2  1  sin   cos  1  1  t 2  1  t 2 Let t  tan ;  2 1  sin   cos  2t 1  t 2 1  1 t 1 t2 2 1  t 2  2t  1  t 2   1  t 2  2t  1  t 2
  • 24. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2 1  sin   cos    iii  Prove  tan 1  sin   cos  2 2t 1  t 2  1  sin   cos  1  1  t 2  1  t 2 Let t  tan ;  2 1  sin   cos  2t 1  t 2 1  1 t 1 t2 2 1  t 2  2t  1  t 2   1  t 2  2t  1  t 2 2t 2  2t  2  2t
  • 25. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2 1  sin   cos    iii  Prove  tan 1  sin   cos  2 2t 1  t 2  1  sin   cos  1  1  t 2  1  t 2 Let t  tan ;  2 1  sin   cos  2t 1  t 2 1  1 t 1 t2 2 1  t 2  2t  1  t 2   1  t 2  2t  1  t 2 2t 2  2t  2  2t 2t  t  1  2 1  t 
  • 26. 2 tan 75 2 tan 75 2t  ii  Use t  tan to simplify  2 1  tan 2 75 1  tan 2 75 1  t 2 Let t  tan 75 ;  sin    sin150 i.e.  75 1 2    150 2 1  sin   cos    iii  Prove  tan 1  sin   cos  2 2t 1  t 2  1  sin   cos  1  1  t 2  1  t 2 Let t  tan ;  2 1  sin   cos  2t 1  t 2 1  1 t 1 t2 2 1  t 2  2t  1  t 2   1  t 2  2t  1  t 2 2t 2  2t  2  2t 2t  t  1    t  tan 2 1  t  2
  • 27.  (iv) By making the substitution t  tan or otherwise, 2  show that cosec  cot   cot 2005 Extension 1 HSC Q4b) 2
  • 28.  (iv) By making the substitution t  tan or otherwise, 2  show that cosec  cot   cot 2005 Extension 1 HSC Q4b) 2 1 t2 1 t2 cosec  cot    2t 2t
  • 29.  (iv) By making the substitution t  tan or otherwise, 2  show that cosec  cot   cot 2005 Extension 1 HSC Q4b) 2 1 t2 1 t2 cosec  cot    2t 2t 2  2t 1  t
  • 30.  (iv) By making the substitution t  tan or otherwise, 2  show that cosec  cot   cot 2005 Extension 1 HSC Q4b) 2 1 t2 1 t2 cosec  cot    2t 2t 2  2t 1  t   cot 2
  • 31.  (iv) By making the substitution t  tan or otherwise, 2  show that cosec  cot   cot 2005 Extension 1 HSC Q4b) 2 1 t2 1 t2 cosec  cot    2t 2t 2  2t 1  t   cot 2 Exercise 2B; 1def, 3ace, 4bcf, 5aceg, 6, 8bd, 10a