SlideShare a Scribd company logo
1 of 24
Download to read offline
Polynomial Functions
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
n
leading term: pn x
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
n
leading term: pn x
leading coefficient: pn
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
where : pn  0
n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
n
leading term: pn x
leading coefficient: pn
monic polynomial: leading coefficient is equal to one.
P(x) = 0: polynomial equation
P(x) = 0: polynomial equation
y = P(x): polynomial function
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
4
b) 2
x 3
x2  3
c)
4
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
4
b) 2
x 3
x2  3
c)
4
d) 7

NO, can’t have fraction as a power
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
x2  3
c)
4
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
 x3  2 x 2  7 x  8
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
x 
c)
YES,
4
4
4
YES, 7x 0
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
 monic, degree = 3
 x3  2 x 2  7 x  8
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
1
2

a) 5 x 3  7 x  2
NO, can’t have fraction as a power
4
1
2
b) 2
NO, can’t have negative as a power 4  x  3
x 3
1 2 3
x2  3
Exercise 4A; 1, 2acehi, 3bdf,
x 
c)
YES,
4
4
4
6bdf, 7, 9d, 10ad, 13
0
YES, 7x
d) 7
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
monic and state its degree.
P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
 monic, degree = 3
 x3  2 x 2  7 x  8

More Related Content

What's hot

13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system xmath260
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas ymath260
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functionssmiller5
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functionsmath265
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equationsalg1testreview
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities imath260
 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of divisionmath260
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i xmath260
 
5.1 sequences
5.1 sequences5.1 sequences
5.1 sequencesmath123c
 

What's hot (17)

13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
 
3
33
3
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities i
 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of division
 
2 5 zeros of poly fn
2 5 zeros of poly fn2 5 zeros of poly fn
2 5 zeros of poly fn
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i x
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
5.1 sequences
5.1 sequences5.1 sequences
5.1 sequences
 

Viewers also liked

11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)Nigel Simmons
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain ruleNigel Simmons
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)Nigel Simmons
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)Nigel Simmons
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)Nigel Simmons
 
11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)Nigel Simmons
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2Nigel Simmons
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)Nigel Simmons
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)Nigel Simmons
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)Nigel Simmons
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)Nigel Simmons
 

Viewers also liked (20)

11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)
 
11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 

Similar to 11 x1 t15 01 definitions (2013)

11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitionsNigel Simmons
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)Nigel Simmons
 
11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitionsNigel Simmons
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)Nigel Simmons
 
Chapter 5 Polynomials
Chapter 5 PolynomialsChapter 5 Polynomials
Chapter 5 PolynomialsReema
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllingsTarun Gehlot
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomialstoni dimella
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functionsmorrobea
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functionsmorrobea
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functionsdionesioable
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signsswartzje
 
Rational Root Theorem.ppt
Rational Root Theorem.pptRational Root Theorem.ppt
Rational Root Theorem.pptALEXANDERMORRON
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementationQuasar Chunawala
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notestoni dimella
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsPaco Marcos
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphsJerlyn Fernandez
 
Evaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial FunctionsEvaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial Functionsswartzje
 

Similar to 11 x1 t15 01 definitions (2013) (20)

11X1 T16 01 definitions
11X1 T16 01 definitions11X1 T16 01 definitions
11X1 T16 01 definitions
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)
 
11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions
 
11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)11 x1 t15 01 polynomial definitions (2012)
11 x1 t15 01 polynomial definitions (2012)
 
Chapter 5 Polynomials
Chapter 5 PolynomialsChapter 5 Polynomials
Chapter 5 Polynomials
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functions
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signs
 
Functions (Theory)
Functions (Theory)Functions (Theory)
Functions (Theory)
 
Rational Root Theorem.ppt
Rational Root Theorem.pptRational Root Theorem.ppt
Rational Root Theorem.ppt
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notes
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
 
Evaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial FunctionsEvaluating and Graphing Polynomial Functions
Evaluating and Graphing Polynomial Functions
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 

Recently uploaded (20)

Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 

11 x1 t15 01 definitions (2013)

  • 2. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
  • 3. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0
  • 4. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer
  • 5. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn
  • 6. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals.
  • 7. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n”
  • 8. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x
  • 9. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn
  • 10. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn monic polynomial: leading coefficient is equal to one.
  • 11. P(x) = 0: polynomial equation
  • 12. P(x) = 0: polynomial equation y = P(x): polynomial function
  • 13. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0
  • 14. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial.
  • 15. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 4 b) 2 x 3 x2  3 c) 4 d) 7
  • 16. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 4 b) 2 x 3 x2  3 c) 4 d) 7 NO, can’t have fraction as a power
  • 17. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 x2  3 c) 4 d) 7
  • 18. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 d) 7
  • 19. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7
  • 20. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree.
  • 21. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
  • 22. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8
  • 23. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 x  c) YES, 4 4 4 YES, 7x 0 d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  monic, degree = 3  x3  2 x 2  7 x  8
  • 24. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 2 a) 5 x 3  7 x  2 NO, can’t have fraction as a power 4 1 2 b) 2 NO, can’t have negative as a power 4  x  3 x 3 1 2 3 x2  3 Exercise 4A; 1, 2acehi, 3bdf, x  c) YES, 4 4 4 6bdf, 7, 9d, 10ad, 13 0 YES, 7x d) 7 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  monic, degree = 3  x3  2 x 2  7 x  8