SlideShare a Scribd company logo
1 of 40
Download to read offline
Aero631
Dr. Eng. Mohammad Tawfik
Vibration of Continuous
Structures
Aero631
Dr. Eng. Mohammad Tawfik
Objectives
• Derive the equation of motion for simple
structures
• Understand the concept of mode shapes
• Apply BC’s and IC’s to obtain structure
response
Aero631
Dr. Eng. Mohammad Tawfik
String and Cables
Aero631
Dr. Eng. Mohammad Tawfik
Strings and Cables
• This type of structures does not bare any
bending or compression loads
• It resists deformations only by inducing
tension stress
• Examples are the strings of musical
instruments, cables of bridges, and
elevator suspension cables
Aero631
Dr. Eng. Mohammad Tawfik
The string/cable equation
• Start by considering a
uniform string
stretched between two
fixed boundaries
• Assume constant,
axial tension  in string
• Let a distributed force
f(x,t) act along the
string
f(x,t)

x
y
Aero631
Dr. Eng. Mohammad Tawfik
Examine a small element of
string
xtxf
t
txw
xFy


),(sinsin
),(
2211
2
2




• Force balance on an infinitesimal element
• Now linearize the sine with the small angle
approximate sinx=tanx=slope of the string
1
2
2
1
x1 x2 = x1 +x
w(x,t)
f (x,t)
Aero631
Dr. Eng. Mohammad Tawfik


















)(
:about/ofseriesTaylortheRecall
2
1
112
xO
x
w
x
x
x
w
x
w
xxw
xxx












x
t
txw
xtxf
x
txw
x
txw
xx












2
2
),(
),(
),(),(
12









2
2
),(
),(
),(
t
txw
txf
x
txw
x 













x
t
txw
xtxfx
x
txw
x x






2
2
),(
),(
),(
1








Aero631
Dr. Eng. Mohammad Tawfik
0,0),(),0(
0at)()0,(),()0,(
,
),(),(
00
2
2
22
2



ttwtw
txwxwxwxw
c
x
txw
tc
txw
t








Since  is constant, and for no external force the equation
of motion becomes:
Second order in time and second order in space, therefore
4 constants of integration. Two from initial conditions:
And two from boundary conditions:
, wave speed
Aero631
Dr. Eng. Mohammad Tawfik
Physical quantities
• Deflection is w(x,t) in the y-direction
• The slope of the string is wx(x,t)
• The restoring force is wxx(x,t)
• The velocity is wt(x,t)
• The acceleration is wtt(x,t) at any point x
along the string at time t
Note that the above applies to cables as well as strings
Aero631
Dr. Eng. Mohammad Tawfik
Modes and Natural Frequencies
2
2
2
2
2
2
2
2
2
)(
)(
)(
)(
0
)(
)(
,
)(
)(
)(
)(
=and=where)()()()(
)()(),(










 





tTc
tT
xX
xX
xX
xX
dx
d
tTc
tT
xX
xX
dt
d
dx
d
tTxXtTxXc
tTxXtxw



Solve by the method of separation of variables:
Substitute into the equation of motion to get:
Results in two second order equations
coupled only by a constant:
Aero631
Dr. Eng. Mohammad Tawfik
Solving the spatial equation:











n
aX
aX
XX
tTXtTX
aaxaxaxX
xXxX
n 









equationsticcharacteri
1
2
2121
2
0sin
0sin)(
0)0(
,0)(,0)0(
0)()(,0)()0(
nintegratioofconstantsareand,cossin)(
0)()(
Since T(t) is not zero
an infinite number of values of 
A second order equation with solution of the form:
Next apply the boundary conditions:
Aero631
Dr. Eng. Mohammad Tawfik
Also an eigenvalue problem
0)()0(,0)(,)(
ofvalueindexedtheofbecauseresultsindextheHere
sin)(,1,2,3=For
2
2











nnnnnn
nn
XXxXXX
x
n
x
n
axXn





The spatial solution becomes:
The spatial problem also can be written as:
Which is also an eigenvalue, eigenfunction problem where
 =2 is the eigenvalue and Xn is the eigenfunction.
Aero631
Dr. Eng. Mohammad Tawfik
Analogy to Matrix Eigenvalue
Problem
happenalsowillexpansionmodal
sfrequencieseigenvalueshapes,modebecomerseigenvecto
rolesametheplays
gnormalizinofconditiontheandresultsalsoityorthoganal
reigenvectoandalso)(
ioneigenfunctreigenvecto),(
operatormatrix,conditionsboundaryplus,2
2
xX
xX
x
A
n
ni






u
Aero631
Dr. Eng. Mohammad Tawfik
The temporal solution








1
22
)sin()cos()sin()sin(),(
)sin()cos()sin()sin(
sincossinsin),(
)conditionsinitialfrom(getnintegratioofconstantsare,
cossin)(
3,2,1,0)()(
n
nn
nn
nnnnnnn
nn
nnnnn
nnn
x
n
ct
n
dx
n
ct
n
ctxw
x
n
ct
n
dx
n
ct
n
c
xctdxctctxw
BA
ctBctAtT
ntTctT








Again a second order ode with solution of the form:
Substitution back into the separated form X(x)T(t) yields:
The total solution becomes:
Aero631
Dr. Eng. Mohammad Tawfik
Using orthogonality to evaluate the remaining
constants from the initial conditions






















010
0
1
0
2
0
)sin()sin()sin()(
)0cos()sin()()0,(
:conditionsinitialtheFrom
2,0
,
)sin()sin(
dxx
m
x
n
ddxx
m
xw
x
n
dxwxw
mn
mn
dxx
m
x
n
n
n
n
n
nm




Aero631
Dr. Eng. Mohammad Tawfik












3,2,1,)sin()(
2
)0cos()sin(c)(
3,2,1,)sin()(
2
3,2,1,)sin()(
2
0
0
1
0
0
0
0
0











ndxx
n
xw
cn
c
x
n
cxw
ndxx
n
xwd
nm
mdxx
m
xwd
n
n
nn
n
m






Aero631
Dr. Eng. Mohammad Tawfik
A mode shape












t
c
xtxw
d
ndxx
n
xd
ncxw
nxxw
n
n









cos)sin(),(
1
3,2,0)sin()sin(
2
,0,0)(
1)=(ioneigenfunctfirsttheiswhich,sin)(
1
0
0
0
Causes vibration in the first mode
shape
Aero631
Dr. Eng. Mohammad Tawfik
Plots of mode shapes
0 0.5 1 1.5 2
1
0.5
0.5
1
X ,1 x
X ,2 x
X ,3 x
x
sin
n
2
x




nodes
Aero631
Dr. Eng. Mohammad Tawfik
Homework #3
1. Solve the cable problem with one side
fixed and the other supported by a flexible
support with stiffness k N/m
2. Solve the cable problem for a cable that
is hanging from one end and the tension
is changing due to the weight  N/m
Aero631
Dr. Eng. Mohammad Tawfik
Bar Vibration
Aero631
Dr. Eng. Mohammad Tawfik
Bar Vibration
• The bar is a structural element that bears
compression and tension loads
• It deflects in the axial direction only
• Examples of bars may be the columns of
buildings, car shock absorbers, legs of
chairs and tables, and human legs!
Aero631
Dr. Eng. Mohammad Tawfik
Vibration of Rods and Bars
• Consider a small
element of the bar
• Deflection is now along
x (called longitudinal
vibration)
• F= ma on small element
yields the following:
x x +dx
w(x,t)
x
dx
F+dFF
Equilibrium
position
Infinitesimal
element
0 l
Aero631
Dr. Eng. Mohammad Tawfik
0
),(
:endfreeAt the
,0),0(:endclampedAt the
),(),(
constant)(
),(
)(
),(
)(
),(
)(
),(
)(
),(
)(
2
2
2
2
2
2
2
2

















xx
txw
EA
tw
t
txw
x
txwE
xA
t
txw
xA
x
txw
xEA
x
dx
x
txw
xEA
x
dF
x
txw
xEAF
t
txw
dxxAFdFF























Force balance:
Constitutive relation:
Aero631
Dr. Eng. Mohammad Tawfik
Note
• The equation of motion of the bar is similar
to that of the cable/string  the response
should have similar form
• The bar may have different boundary
conditions
Aero631
Dr. Eng. Mohammad Tawfik
Homework #4
• Solve the equation of motion of a bar
with constant cross-section properties
with
1. Fixed-Fixed boundary conditions
2. Free-Free boundary conditions
• Compare the natural frequencies for all
three cases
Aero631
Dr. Eng. Mohammad Tawfik
Beam Vibration
Aero631
Dr. Eng. Mohammad Tawfik
Beam Vibration
• The beam element is the most famous
structural element as it presents a lot of
realistic structural elements
• It bears loads normal to its longitudinal
axis
• It resists deformations by inducing bending
stresses
Aero631
Dr. Eng. Mohammad Tawfik
Bending vibrations of a beam
2
2
),(
)(),(
aboutinertia
ofmomentareasect.-cross)(
modulusYoungs
)(stiffnessbending
x
txw
xEItxM
z
xI
E
xEI






Next sum forces in the y- direction (up, down)
Sum moments about the point Q
Use the moment given from
stenght of materials
Assume sides do not bend
(no shear deformation)
f (x,t)
w (x,t)
x
dx A(x)= h1h2
h1
h2
M(x,t)+Mx(x,t)dx
M(x,t)
V(x,t)
V(x,t)+Vx(x,t)dx
f(x,t)
w(x,t)
x x +dx
·Q
Aero631
Dr. Eng. Mohammad Tawfik
Summing forces and moments
0)(
2
),(),(
),(
),(
0
2
),(
),(
),(),(
),(
),(
),(
)(),(),(
),(
),(
2
2
2


































dx
txf
x
txV
dxtxVdx
x
txM
dx
dxtxf
dxdx
x
txV
txVtxMdx
x
txM
txM
t
txw
dxxAdxtxftxVdx
x
txV
txV













0
Aero631
Dr. Eng. Mohammad Tawfik
A
EI
c
x
txw
c
t
txw
txf
x
txw
xEI
xt
txw
xA
t
txw
dxxAdxtxfdx
x
txM
x
txM
txV




























,0
),(),(
),(
),(
)(
),(
)(
),(
)(),(
),(
),(
),(
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
Substitute into force balance equation yields:
Dividing by dx and substituting for M yields
Assume constant stiffness to get:
Aero631
Dr. Eng. Mohammad Tawfik
Boundary conditions (4)
0forceshear
0momentbending
endFree
2
2
2
2








x
w
EI
x
x
w
EI






0slope
0deflection
endfixed)(orClamped


x
w
w


0momentbending
0deflection
endsupported)simply(orPinned
2
2


x
w
EI
w


0forceshear
0slope
endSliding
2
2








x
w
EI
x
x
w






Aero631
Dr. Eng. Mohammad Tawfik
Solution of the time equation:
)()0,(),()0,(
:conditionsinitialTwo
cossin)(
0)()(
)(
)(
)(
)(
00
2
22
xwxwxwxw
tBtAtT
tTtT
tT
tT
xX
xX
c
t











Aero631
Dr. Eng. Mohammad Tawfik
Spatial equation (BVP)
xaxaxaxaxX
AexX
EI
A
c
xX
c
xX
x





coshsinhcossin)(
:getto)(Let
Define
.0)()(
4321
22
4
2
















Apply boundary conditions to get 3
constants and the characteristic equation
Aero631
Dr. Eng. Mohammad Tawfik
Example: compute the mode shapes and
natural frequencies for a clamped-pinned
beam.
0)coshsinhcossin(
0)(
0coshsinhcossin
0)(
andend,pinnedAt the
0)(0)0(
00)0(
and0endfixedAt
4321
2
4321
31
42
















aaaa
XEI
aaaa
X
x
aaX
aaX
x
Aero631
Dr. Eng. Mohammad Tawfik


  






tanhtan
0)det(,
0
0
0
0
coshsinhcossin
coshsinhcossin
00
1010
4
3
2
1
2222








































BB
a
a
a
a
B
0a0a
a
The 4 boundary conditions in the 4 constants can be
written as the matrix equation:
The characteristic equation
Aero631
Dr. Eng. Mohammad Tawfik
Solve numerically to obtain solution to
transcendental equation
4
)14(
5
493361.16351768.13
210176.10068583.7926602.3
54
321









n
n
n


Next solve Ba=0 for 3 of the constants:
Aero631
Dr. Eng. Mohammad Tawfik
Solving for the eigenfunctions:

















xxxxaxX
aa
aa
aa
aa
B
nnnn
nn
nn
nn
nn
nn
nnnn












coscosh)sin(sinh
sinsinh
coscosh
)()(
sinsinh
coscosh
:yieldsSolving
equationfourth)(orthirdthefrom
0)cos(cosh)sinsinh(
equationsecondthefrom
equationfirstthefrom
:4ththeofin termsconstants3yields
4
43
43
42
31
0a
Aero631
Dr. Eng. Mohammad Tawfik
Mode shapes
X ,n x .cosh n cos n
sinh n sin n
sinh .n x sin .n x cosh .n x cos .n x
0 0.2 0.4 0.6 0.8 1
2
1.5
1
0.5
0.5
1
1.5
X ,3.926602 x
X ,7.068583 x
X ,10.210176 x
x
Mode 1
Mode 2
Mode 3
Note zero slope
Non zero slope
Aero631
Dr. Eng. Mohammad Tawfik
Summary of the Euler-Bernoulli
Beam
• Uniform along its span and slender
• Linear, homogenous, isotropic elastic
material without axial loads
• Plane sections remain plane
• Plane of symmetry is plane of vibration so
that rotation & translation decoupled
• Rotary inertia and shear deformation
neglected
Aero631
Dr. Eng. Mohammad Tawfik
Homework #5
• Get an expression for  for the cases of a
uniform Euler-Bernoulli beam with BC’s as
follows:
– Clamped-Clamped
– Pinned-Pinned
– Clamped-Free
– Free-Free

More Related Content

What's hot

Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationFilipe Giesteira
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
 
Finite Element Analysis - UNIT-4
Finite Element Analysis - UNIT-4Finite Element Analysis - UNIT-4
Finite Element Analysis - UNIT-4propaul
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5propaul
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitationUniversity of Glasgow
 
Engineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth JebarajEngineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth JebarajVinoth Jebaraj A
 
Dynamics of Machine - Unit III-Transverse Vibration
Dynamics of Machine - Unit III-Transverse VibrationDynamics of Machine - Unit III-Transverse Vibration
Dynamics of Machine - Unit III-Transverse VibrationDr.S.SURESH
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and ShellsDrASSayyad
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shafttejasp
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations KESHAV
 

What's hot (20)

Strength of materials
Strength of materialsStrength of materials
Strength of materials
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
OTA.pdf
OTA.pdfOTA.pdf
OTA.pdf
 
Rayleigh Ritz Method
Rayleigh Ritz MethodRayleigh Ritz Method
Rayleigh Ritz Method
 
Timoshenko beam-element
Timoshenko beam-elementTimoshenko beam-element
Timoshenko beam-element
 
Finite Element Analysis - UNIT-4
Finite Element Analysis - UNIT-4Finite Element Analysis - UNIT-4
Finite Element Analysis - UNIT-4
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Mechanical Vibration- An introduction
Mechanical Vibration- An introductionMechanical Vibration- An introduction
Mechanical Vibration- An introduction
 
Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5Finite Element Analysis - UNIT-5
Finite Element Analysis - UNIT-5
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitation
 
Engineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth JebarajEngineering mechanics by A.Vinoth Jebaraj
Engineering mechanics by A.Vinoth Jebaraj
 
Dynamics of Machine - Unit III-Transverse Vibration
Dynamics of Machine - Unit III-Transverse VibrationDynamics of Machine - Unit III-Transverse Vibration
Dynamics of Machine - Unit III-Transverse Vibration
 
Complex stresses
Complex stressesComplex stresses
Complex stresses
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
 
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
 
Vibration lab manual 1
Vibration lab manual 1Vibration lab manual 1
Vibration lab manual 1
 

Similar to Vibration of Continuous Structures

Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Muhammad Luthfan
 
EC6602-Antenna fundamentals
EC6602-Antenna fundamentals EC6602-Antenna fundamentals
EC6602-Antenna fundamentals krishnamrm
 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxinfantsuk
 
On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...
On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...
On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...BRNSS Publication Hub
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptxOSMANGONI35
 
unit6 RL-transient.ppt
unit6 RL-transient.pptunit6 RL-transient.ppt
unit6 RL-transient.pptiamultapromax
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1Alberto de Mesquita
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Alexander Litvinenko
 
Unit22 maxwells equation
Unit22 maxwells equationUnit22 maxwells equation
Unit22 maxwells equationAmit Rastogi
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
 
Engineering Analysis Final Lab
Engineering Analysis Final LabEngineering Analysis Final Lab
Engineering Analysis Final LabShawn Robinson
 

Similar to Vibration of Continuous Structures (20)

Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
EC6602-Antenna fundamentals
EC6602-Antenna fundamentals EC6602-Antenna fundamentals
EC6602-Antenna fundamentals
 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
 
INPhO-2014-QP-Solutions
INPhO-2014-QP-SolutionsINPhO-2014-QP-Solutions
INPhO-2014-QP-Solutions
 
02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf
 
02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf
 
On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...
On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...
On Application of the Fixed-Point Theorem to the Solution of Ordinary Differe...
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptx
 
unit6 RL-transient.ppt
unit6 RL-transient.pptunit6 RL-transient.ppt
unit6 RL-transient.ppt
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
 
Online Signals and Systems Assignment Help
Online Signals and Systems Assignment HelpOnline Signals and Systems Assignment Help
Online Signals and Systems Assignment Help
 
maxwells equation
 maxwells equation maxwells equation
maxwells equation
 
Unit22 maxwells equation
Unit22 maxwells equationUnit22 maxwells equation
Unit22 maxwells equation
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Engineering Analysis Final Lab
Engineering Analysis Final LabEngineering Analysis Final Lab
Engineering Analysis Final Lab
 
Problem a ph o 3
Problem a ph o 3Problem a ph o 3
Problem a ph o 3
 
ME 245_ 2.pptx
ME 245_ 2.pptxME 245_ 2.pptx
ME 245_ 2.pptx
 
Fourier series
Fourier seriesFourier series
Fourier series
 

More from Mohammad Tawfik

Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Mohammad Tawfik
 
Supply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionSupply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionMohammad Tawfik
 
Supply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsSupply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsMohammad Tawfik
 
Supply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementSupply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementMohammad Tawfik
 
Creative problem solving and decision making
Creative problem solving and decision makingCreative problem solving and decision making
Creative problem solving and decision makingMohammad Tawfik
 
Digital content for teaching introduction
Digital content for teaching introductionDigital content for teaching introduction
Digital content for teaching introductionMohammad Tawfik
 
Crisis Management Basics
Crisis Management BasicsCrisis Management Basics
Crisis Management BasicsMohammad Tawfik
 
Effective Delegation Skills
Effective Delegation SkillsEffective Delegation Skills
Effective Delegation SkillsMohammad Tawfik
 
Business Management - Marketing
Business Management - MarketingBusiness Management - Marketing
Business Management - MarketingMohammad Tawfik
 
Project Management (CAPM) - Integration
Project Management (CAPM) - IntegrationProject Management (CAPM) - Integration
Project Management (CAPM) - IntegrationMohammad Tawfik
 
Project Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkProject Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkMohammad Tawfik
 
Project Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionProject Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionMohammad Tawfik
 
Introduction to Wind Energy
Introduction to Wind EnergyIntroduction to Wind Energy
Introduction to Wind EnergyMohammad Tawfik
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-DMohammad Tawfik
 

More from Mohammad Tawfik (20)

Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073
 
Supply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionSupply Chain Management 01 - Introduction
Supply Chain Management 01 - Introduction
 
Supply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsSupply Chain Management 02 - Logistics
Supply Chain Management 02 - Logistics
 
Supply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementSupply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory Management
 
Creative problem solving and decision making
Creative problem solving and decision makingCreative problem solving and decision making
Creative problem solving and decision making
 
Digital content for teaching introduction
Digital content for teaching introductionDigital content for teaching introduction
Digital content for teaching introduction
 
Crisis Management Basics
Crisis Management BasicsCrisis Management Basics
Crisis Management Basics
 
DISC Personality Model
DISC Personality ModelDISC Personality Model
DISC Personality Model
 
Training of Trainers
Training of TrainersTraining of Trainers
Training of Trainers
 
Effective Delegation Skills
Effective Delegation SkillsEffective Delegation Skills
Effective Delegation Skills
 
Train The Trainer
Train The TrainerTrain The Trainer
Train The Trainer
 
Business Management - Marketing
Business Management - MarketingBusiness Management - Marketing
Business Management - Marketing
 
Stress Management
Stress ManagementStress Management
Stress Management
 
Project Management (CAPM) - Integration
Project Management (CAPM) - IntegrationProject Management (CAPM) - Integration
Project Management (CAPM) - Integration
 
Project Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkProject Management (CAPM) - The Framework
Project Management (CAPM) - The Framework
 
Project Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionProject Management (CAPM) - Introduction
Project Management (CAPM) - Introduction
 
The Creative Individual
The Creative IndividualThe Creative Individual
The Creative Individual
 
Introduction to Wind Energy
Introduction to Wind EnergyIntroduction to Wind Energy
Introduction to Wind Energy
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-D
 
Future of Drones ITW'16
Future of Drones ITW'16Future of Drones ITW'16
Future of Drones ITW'16
 

Recently uploaded

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Recently uploaded (20)

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

Vibration of Continuous Structures

  • 1. Aero631 Dr. Eng. Mohammad Tawfik Vibration of Continuous Structures
  • 2. Aero631 Dr. Eng. Mohammad Tawfik Objectives • Derive the equation of motion for simple structures • Understand the concept of mode shapes • Apply BC’s and IC’s to obtain structure response
  • 3. Aero631 Dr. Eng. Mohammad Tawfik String and Cables
  • 4. Aero631 Dr. Eng. Mohammad Tawfik Strings and Cables • This type of structures does not bare any bending or compression loads • It resists deformations only by inducing tension stress • Examples are the strings of musical instruments, cables of bridges, and elevator suspension cables
  • 5. Aero631 Dr. Eng. Mohammad Tawfik The string/cable equation • Start by considering a uniform string stretched between two fixed boundaries • Assume constant, axial tension  in string • Let a distributed force f(x,t) act along the string f(x,t)  x y
  • 6. Aero631 Dr. Eng. Mohammad Tawfik Examine a small element of string xtxf t txw xFy   ),(sinsin ),( 2211 2 2     • Force balance on an infinitesimal element • Now linearize the sine with the small angle approximate sinx=tanx=slope of the string 1 2 2 1 x1 x2 = x1 +x w(x,t) f (x,t)
  • 7. Aero631 Dr. Eng. Mohammad Tawfik                   )( :about/ofseriesTaylortheRecall 2 1 112 xO x w x x x w x w xxw xxx             x t txw xtxf x txw x txw xx             2 2 ),( ),( ),(),( 12          2 2 ),( ),( ),( t txw txf x txw x               x t txw xtxfx x txw x x       2 2 ),( ),( ),( 1        
  • 8. Aero631 Dr. Eng. Mohammad Tawfik 0,0),(),0( 0at)()0,(),()0,( , ),(),( 00 2 2 22 2    ttwtw txwxwxwxw c x txw tc txw t         Since  is constant, and for no external force the equation of motion becomes: Second order in time and second order in space, therefore 4 constants of integration. Two from initial conditions: And two from boundary conditions: , wave speed
  • 9. Aero631 Dr. Eng. Mohammad Tawfik Physical quantities • Deflection is w(x,t) in the y-direction • The slope of the string is wx(x,t) • The restoring force is wxx(x,t) • The velocity is wt(x,t) • The acceleration is wtt(x,t) at any point x along the string at time t Note that the above applies to cables as well as strings
  • 10. Aero631 Dr. Eng. Mohammad Tawfik Modes and Natural Frequencies 2 2 2 2 2 2 2 2 2 )( )( )( )( 0 )( )( , )( )( )( )( =and=where)()()()( )()(),(                  tTc tT xX xX xX xX dx d tTc tT xX xX dt d dx d tTxXtTxXc tTxXtxw    Solve by the method of separation of variables: Substitute into the equation of motion to get: Results in two second order equations coupled only by a constant:
  • 11. Aero631 Dr. Eng. Mohammad Tawfik Solving the spatial equation:            n aX aX XX tTXtTX aaxaxaxX xXxX n           equationsticcharacteri 1 2 2121 2 0sin 0sin)( 0)0( ,0)(,0)0( 0)()(,0)()0( nintegratioofconstantsareand,cossin)( 0)()( Since T(t) is not zero an infinite number of values of  A second order equation with solution of the form: Next apply the boundary conditions:
  • 12. Aero631 Dr. Eng. Mohammad Tawfik Also an eigenvalue problem 0)()0(,0)(,)( ofvalueindexedtheofbecauseresultsindextheHere sin)(,1,2,3=For 2 2            nnnnnn nn XXxXXX x n x n axXn      The spatial solution becomes: The spatial problem also can be written as: Which is also an eigenvalue, eigenfunction problem where  =2 is the eigenvalue and Xn is the eigenfunction.
  • 13. Aero631 Dr. Eng. Mohammad Tawfik Analogy to Matrix Eigenvalue Problem happenalsowillexpansionmodal sfrequencieseigenvalueshapes,modebecomerseigenvecto rolesametheplays gnormalizinofconditiontheandresultsalsoityorthoganal reigenvectoandalso)( ioneigenfunctreigenvecto),( operatormatrix,conditionsboundaryplus,2 2 xX xX x A n ni       u
  • 14. Aero631 Dr. Eng. Mohammad Tawfik The temporal solution         1 22 )sin()cos()sin()sin(),( )sin()cos()sin()sin( sincossinsin),( )conditionsinitialfrom(getnintegratioofconstantsare, cossin)( 3,2,1,0)()( n nn nn nnnnnnn nn nnnnn nnn x n ct n dx n ct n ctxw x n ct n dx n ct n c xctdxctctxw BA ctBctAtT ntTctT         Again a second order ode with solution of the form: Substitution back into the separated form X(x)T(t) yields: The total solution becomes:
  • 15. Aero631 Dr. Eng. Mohammad Tawfik Using orthogonality to evaluate the remaining constants from the initial conditions                       010 0 1 0 2 0 )sin()sin()sin()( )0cos()sin()()0,( :conditionsinitialtheFrom 2,0 , )sin()sin( dxx m x n ddxx m xw x n dxwxw mn mn dxx m x n n n n n nm    
  • 16. Aero631 Dr. Eng. Mohammad Tawfik             3,2,1,)sin()( 2 )0cos()sin(c)( 3,2,1,)sin()( 2 3,2,1,)sin()( 2 0 0 1 0 0 0 0 0            ndxx n xw cn c x n cxw ndxx n xwd nm mdxx m xwd n n nn n m      
  • 17. Aero631 Dr. Eng. Mohammad Tawfik A mode shape             t c xtxw d ndxx n xd ncxw nxxw n n          cos)sin(),( 1 3,2,0)sin()sin( 2 ,0,0)( 1)=(ioneigenfunctfirsttheiswhich,sin)( 1 0 0 0 Causes vibration in the first mode shape
  • 18. Aero631 Dr. Eng. Mohammad Tawfik Plots of mode shapes 0 0.5 1 1.5 2 1 0.5 0.5 1 X ,1 x X ,2 x X ,3 x x sin n 2 x     nodes
  • 19. Aero631 Dr. Eng. Mohammad Tawfik Homework #3 1. Solve the cable problem with one side fixed and the other supported by a flexible support with stiffness k N/m 2. Solve the cable problem for a cable that is hanging from one end and the tension is changing due to the weight  N/m
  • 20. Aero631 Dr. Eng. Mohammad Tawfik Bar Vibration
  • 21. Aero631 Dr. Eng. Mohammad Tawfik Bar Vibration • The bar is a structural element that bears compression and tension loads • It deflects in the axial direction only • Examples of bars may be the columns of buildings, car shock absorbers, legs of chairs and tables, and human legs!
  • 22. Aero631 Dr. Eng. Mohammad Tawfik Vibration of Rods and Bars • Consider a small element of the bar • Deflection is now along x (called longitudinal vibration) • F= ma on small element yields the following: x x +dx w(x,t) x dx F+dFF Equilibrium position Infinitesimal element 0 l
  • 23. Aero631 Dr. Eng. Mohammad Tawfik 0 ),( :endfreeAt the ,0),0(:endclampedAt the ),(),( constant)( ),( )( ),( )( ),( )( ),( )( ),( )( 2 2 2 2 2 2 2 2                  xx txw EA tw t txw x txwE xA t txw xA x txw xEA x dx x txw xEA x dF x txw xEAF t txw dxxAFdFF                        Force balance: Constitutive relation:
  • 24. Aero631 Dr. Eng. Mohammad Tawfik Note • The equation of motion of the bar is similar to that of the cable/string  the response should have similar form • The bar may have different boundary conditions
  • 25. Aero631 Dr. Eng. Mohammad Tawfik Homework #4 • Solve the equation of motion of a bar with constant cross-section properties with 1. Fixed-Fixed boundary conditions 2. Free-Free boundary conditions • Compare the natural frequencies for all three cases
  • 26. Aero631 Dr. Eng. Mohammad Tawfik Beam Vibration
  • 27. Aero631 Dr. Eng. Mohammad Tawfik Beam Vibration • The beam element is the most famous structural element as it presents a lot of realistic structural elements • It bears loads normal to its longitudinal axis • It resists deformations by inducing bending stresses
  • 28. Aero631 Dr. Eng. Mohammad Tawfik Bending vibrations of a beam 2 2 ),( )(),( aboutinertia ofmomentareasect.-cross)( modulusYoungs )(stiffnessbending x txw xEItxM z xI E xEI       Next sum forces in the y- direction (up, down) Sum moments about the point Q Use the moment given from stenght of materials Assume sides do not bend (no shear deformation) f (x,t) w (x,t) x dx A(x)= h1h2 h1 h2 M(x,t)+Mx(x,t)dx M(x,t) V(x,t) V(x,t)+Vx(x,t)dx f(x,t) w(x,t) x x +dx ·Q
  • 29. Aero631 Dr. Eng. Mohammad Tawfik Summing forces and moments 0)( 2 ),(),( ),( ),( 0 2 ),( ),( ),(),( ),( ),( ),( )(),(),( ),( ),( 2 2 2                                   dx txf x txV dxtxVdx x txM dx dxtxf dxdx x txV txVtxMdx x txM txM t txw dxxAdxtxftxVdx x txV txV              0
  • 30. Aero631 Dr. Eng. Mohammad Tawfik A EI c x txw c t txw txf x txw xEI xt txw xA t txw dxxAdxtxfdx x txM x txM txV                             ,0 ),(),( ),( ),( )( ),( )( ),( )(),( ),( ),( ),( 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 Substitute into force balance equation yields: Dividing by dx and substituting for M yields Assume constant stiffness to get:
  • 31. Aero631 Dr. Eng. Mohammad Tawfik Boundary conditions (4) 0forceshear 0momentbending endFree 2 2 2 2         x w EI x x w EI       0slope 0deflection endfixed)(orClamped   x w w   0momentbending 0deflection endsupported)simply(orPinned 2 2   x w EI w   0forceshear 0slope endSliding 2 2         x w EI x x w      
  • 32. Aero631 Dr. Eng. Mohammad Tawfik Solution of the time equation: )()0,(),()0,( :conditionsinitialTwo cossin)( 0)()( )( )( )( )( 00 2 22 xwxwxwxw tBtAtT tTtT tT tT xX xX c t           
  • 33. Aero631 Dr. Eng. Mohammad Tawfik Spatial equation (BVP) xaxaxaxaxX AexX EI A c xX c xX x      coshsinhcossin)( :getto)(Let Define .0)()( 4321 22 4 2                 Apply boundary conditions to get 3 constants and the characteristic equation
  • 34. Aero631 Dr. Eng. Mohammad Tawfik Example: compute the mode shapes and natural frequencies for a clamped-pinned beam. 0)coshsinhcossin( 0)( 0coshsinhcossin 0)( andend,pinnedAt the 0)(0)0( 00)0( and0endfixedAt 4321 2 4321 31 42                 aaaa XEI aaaa X x aaX aaX x
  • 35. Aero631 Dr. Eng. Mohammad Tawfik            tanhtan 0)det(, 0 0 0 0 coshsinhcossin coshsinhcossin 00 1010 4 3 2 1 2222                                         BB a a a a B 0a0a a The 4 boundary conditions in the 4 constants can be written as the matrix equation: The characteristic equation
  • 36. Aero631 Dr. Eng. Mohammad Tawfik Solve numerically to obtain solution to transcendental equation 4 )14( 5 493361.16351768.13 210176.10068583.7926602.3 54 321          n n n   Next solve Ba=0 for 3 of the constants:
  • 37. Aero631 Dr. Eng. Mohammad Tawfik Solving for the eigenfunctions:                  xxxxaxX aa aa aa aa B nnnn nn nn nn nn nn nnnn             coscosh)sin(sinh sinsinh coscosh )()( sinsinh coscosh :yieldsSolving equationfourth)(orthirdthefrom 0)cos(cosh)sinsinh( equationsecondthefrom equationfirstthefrom :4ththeofin termsconstants3yields 4 43 43 42 31 0a
  • 38. Aero631 Dr. Eng. Mohammad Tawfik Mode shapes X ,n x .cosh n cos n sinh n sin n sinh .n x sin .n x cosh .n x cos .n x 0 0.2 0.4 0.6 0.8 1 2 1.5 1 0.5 0.5 1 1.5 X ,3.926602 x X ,7.068583 x X ,10.210176 x x Mode 1 Mode 2 Mode 3 Note zero slope Non zero slope
  • 39. Aero631 Dr. Eng. Mohammad Tawfik Summary of the Euler-Bernoulli Beam • Uniform along its span and slender • Linear, homogenous, isotropic elastic material without axial loads • Plane sections remain plane • Plane of symmetry is plane of vibration so that rotation & translation decoupled • Rotary inertia and shear deformation neglected
  • 40. Aero631 Dr. Eng. Mohammad Tawfik Homework #5 • Get an expression for  for the cases of a uniform Euler-Bernoulli beam with BC’s as follows: – Clamped-Clamped – Pinned-Pinned – Clamped-Free – Free-Free