Masayuki Tanaka
Jun. 22, 2016
Least Square with
L0, L1, and L2 Constraint
Cost Functions
𝐸2 𝑥 = 𝑦 − 𝑥 2 + 𝜆2 𝑥 2 𝑥 2 = 𝑥2
𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 =
𝑥 (𝑥 ≥ 0)
−𝑥 (𝑥 < 0)
𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
Least Square with L0 constraint
𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
𝑥0 =
0 (𝑦2 < 𝜆0)
𝑦 (𝑦2
≥ 𝜆0)
Hard threshold
Solution:
Least Square with L1 constraint
𝑥1 = sign 𝑦 𝑦 − 𝜆1/2 +
sign 𝜉 =
−1 (𝜉 < 0)
0 (𝜉 = 0)
1 (𝜉 > 0)
𝜉 + = max 𝜉, 0 =
𝜉 (𝜉 > 0)
0 (𝜉 ≤ 0)
Soft threshold
𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 =
𝑥 (𝑥 ≥ 0)
−𝑥 (𝑥 < 0)
Solution:
Least Square with L2 constraint
𝜕𝐸2
𝜕𝑥
= 𝑥 − 𝑦 + 𝜆2 𝑥 = 0
𝑥2 =
𝑦
1 + 𝜆2
𝐸2 𝑥 = 𝑦 − 𝑥 2
+ 𝜆2 𝑥 2 𝑥 2 = 𝑥2
Solution:
Derivation of
Least Square with L0 constraint
𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
𝑥 = 0 𝑥 ≠ 0
𝐸0 0 = y2 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 min
𝑥≠0
𝐸0 𝑥 = 𝜆0
𝑦
𝜆0− 𝜆0
𝑥0 = 0
𝐸0 𝑥0 = 𝑦2
𝑥0 = 𝑦
𝐸0 𝑥0 = 𝜆0
𝑥0 = 𝑦
𝐸0 𝑥0 = 𝜆0
𝑥0 =
0 (𝑦2 < 𝜆0)
𝑦 (𝑦2
≥ 𝜆0)
Hard threshold
Formulation as a Proximal Operator
prox 𝐿0,𝜌 𝑦 = arg min
𝑥
𝑥 0 +
𝜌
2
𝑦 − 𝑥 2 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
=
0, 𝑦2
<
2
𝜌
1, 𝑦2 ≥
2
𝜌
Formulation as a Proximal Operator
prox 𝐿1,𝜌 𝑦 = arg min
𝑥
𝑥 1 +
𝜌
2
𝑦 − 𝑥 2 𝑥 1 =
𝑥 (𝑥 ≥ 0)
−𝑥 (𝑥 < 0)
= sign 𝑦 𝑦 − 1/𝜌 +
sign 𝜉 =
−1 (𝜉 < 0)
0 (𝜉 = 0)
1 (𝜉 > 0)
𝜉 + = max 𝜉, 0 =
𝜉 (𝜉 > 0)
0 (𝜉 ≤ 0)

Least Square with L0, L1, and L2 Constraint

  • 1.
    Masayuki Tanaka Jun. 22,2016 Least Square with L0, L1, and L2 Constraint
  • 2.
    Cost Functions 𝐸2 𝑥= 𝑦 − 𝑥 2 + 𝜆2 𝑥 2 𝑥 2 = 𝑥2 𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 = 𝑥 (𝑥 ≥ 0) −𝑥 (𝑥 < 0) 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0)
  • 3.
    Least Square withL0 constraint 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0) 𝑥0 = 0 (𝑦2 < 𝜆0) 𝑦 (𝑦2 ≥ 𝜆0) Hard threshold Solution:
  • 4.
    Least Square withL1 constraint 𝑥1 = sign 𝑦 𝑦 − 𝜆1/2 + sign 𝜉 = −1 (𝜉 < 0) 0 (𝜉 = 0) 1 (𝜉 > 0) 𝜉 + = max 𝜉, 0 = 𝜉 (𝜉 > 0) 0 (𝜉 ≤ 0) Soft threshold 𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 = 𝑥 (𝑥 ≥ 0) −𝑥 (𝑥 < 0) Solution:
  • 5.
    Least Square withL2 constraint 𝜕𝐸2 𝜕𝑥 = 𝑥 − 𝑦 + 𝜆2 𝑥 = 0 𝑥2 = 𝑦 1 + 𝜆2 𝐸2 𝑥 = 𝑦 − 𝑥 2 + 𝜆2 𝑥 2 𝑥 2 = 𝑥2 Solution:
  • 6.
    Derivation of Least Squarewith L0 constraint 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0) 𝑥 = 0 𝑥 ≠ 0 𝐸0 0 = y2 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 min 𝑥≠0 𝐸0 𝑥 = 𝜆0 𝑦 𝜆0− 𝜆0 𝑥0 = 0 𝐸0 𝑥0 = 𝑦2 𝑥0 = 𝑦 𝐸0 𝑥0 = 𝜆0 𝑥0 = 𝑦 𝐸0 𝑥0 = 𝜆0 𝑥0 = 0 (𝑦2 < 𝜆0) 𝑦 (𝑦2 ≥ 𝜆0) Hard threshold
  • 7.
    Formulation as aProximal Operator prox 𝐿0,𝜌 𝑦 = arg min 𝑥 𝑥 0 + 𝜌 2 𝑦 − 𝑥 2 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0) = 0, 𝑦2 < 2 𝜌 1, 𝑦2 ≥ 2 𝜌
  • 8.
    Formulation as aProximal Operator prox 𝐿1,𝜌 𝑦 = arg min 𝑥 𝑥 1 + 𝜌 2 𝑦 − 𝑥 2 𝑥 1 = 𝑥 (𝑥 ≥ 0) −𝑥 (𝑥 < 0) = sign 𝑦 𝑦 − 1/𝜌 + sign 𝜉 = −1 (𝜉 < 0) 0 (𝜉 = 0) 1 (𝜉 > 0) 𝜉 + = max 𝜉, 0 = 𝜉 (𝜉 > 0) 0 (𝜉 ≤ 0)