SlideShare a Scribd company logo
1 of 86
Download to read offline
Inverse Trigonometric Functions




                                  Mathematics 4


                                 October 24, 2011


1 of 26
Inverse Trigonometric Functions




                            3
                 If sin x = 5 , what is x?




2 of 26
Inverse Trigonometric Functions




                               3
                    If sin x = 5 , what is x?


          How do we isolate x from the equation above?




2 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


•


•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) →


•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) → x = 2y − 1   The variables are interchanged.

•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) → x = 2y − 1    The variables are interchanged.

                   x+1
• f −1 (x) = y =          The y-variable is isolated.
                    2




 3 of 26
Inverse Trigonometric Functions
Let us recall inverses!

                      Given the graph of g(x):




 4 of 26
Inverse Trigonometric Functions
Let us recall inverses!

   The inverse of g(x) can be flipping the graph along the diagonal:




 4 of 26
Inverse Trigonometric Functions
Let us recall inverses!

                     This is the graph of g −1 (x)




 4 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                          f (x) = sin x




 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                          f (x) = sin x




                            No!

 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                           f (x) = sin x




                             No!
           The function f (x) = sin x is NOT one-to-one!



 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                           f (x) = sin x




                             No!
           The function f (x) = sin x is NOT one-to-one!
             It does not pass the Horizontal Line Test!


 5 of 26
Inverse Trigonometric Functions

Do any of the six trigonometric functions have inverses?

                          f (x) = sin x




                          f (x) = cos x




 6 of 26
Inverse Trigonometric Functions
Do any of the six trigonometric functions have inverses?

                          f (x) = tan x




                          f (x) = cot x




 6 of 26
Inverse Trigonometric Functions
Do any of the six trigonometric functions have inverses?

                          f (x) = sec x




                          f (x) = csc x




 6 of 26
Inverse Trigonometric Functions


How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                           f (x) = sin x




 7 of 26
Inverse Trigonometric Functions

How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                    f (x) = Sin x, x ∈ [− π , π ]
                                          2 2




 7 of 26
Inverse Trigonometric Functions

How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                       f (x) = Sin x, x ∈ [− π , π ]
                                             2 2




           Restrict the domain so that it becomes one-to-one.


 7 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


                     f (x) = Sin x, x ∈ [− π , π ]
                                           2 2




 8 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


           Find the graph of the inverse by flipping along the diagonal




 8 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


           f (x) = sin−1 x = Arcsin x = inverse sine of x




 8 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                             Domain:
                             Range:

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                       Domain: x ∈ [−1, 1]
                            Range:

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                       Domain: x ∈ [−1, 1]
                       Range: y ∈ [− π , π ]
                                     2 2

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




10 of 26
The Inverse Sine Function
Determine the following values:

1. sin−1    1
            2   =


2. Arcsin 1 =


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function
Determine the following values:

1. sin−1    1
            2   =   π
                    6


2. Arcsin 1 =


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) = − π
               6       6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) = − π
               6       6


5. sin−1 (sin 4π ) = − π
               3       3


 11 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                          f (x) = cos x




12 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                     f (x) = Cos x, x ∈ [0, π]




12 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                        f (x) = Cos x, x ∈ [0, π]




           Restrict the domain so that it becomes one-to-one.



12 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

                     f (x) = Cos x, x ∈ [0, π]




13 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

       Find the graph of the inverse by flipping along the diagonal




13 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

           f (x) = cos−1 x = Arccos x = inverse cosine of x




13 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                             Domain:
                             Range:


14 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                       Domain: x ∈ [−1, 1]
                            Range:


14 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                       Domain: x ∈ [−1, 1]
                        Range: y ∈ [0, π]


14 of 26
The Inverse cosine Function

Properties of f (x) = cos−1 x:




15 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =


2. Arccos 0 =


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


2. Arccos 0 =


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6
                       5π
                        6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6
                       5π
                        6


4. cos−1 (cos 7π ) =
               4
                       π
                       4




16 of 26
Pick-up quiz: Quiz # 1

Evaluate the following values:
              √
                2
1. Arcsin(−    2 )

              √
                3
2. Arccos(−    2 )


3. sin−1 (sin 2π )
               3


4. cos−1 (cos 11π )
               6


5. Arcsin(cos 5π )
               3

 17 of 26
Pick-up quiz: Quiz # 1

Evaluate the following values:
              √
               2
1. Arcsin(−   2 )   = −π
                       4

              √
               3        5π
2. Arccos(−   2 )   =    6


3. sin−1 (sin 2π ) =
               3
                        π
                        3


4. cos−1 (cos 11π ) =
               6
                            π
                            6


5. Arcsin(cos 5π ) =
               3
                            π
                            6

 17 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1   4
                                        5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1   4
                                        5


                           sin θ =




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5


                           cos θ =




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5

                                     3
                           cos θ =   5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                              Let θ = sin−1      4
                                                 5

                                             4
                                 sin θ =     5

                                             3
                                 cos θ =     5


           cos θ > 0 because θ = sin−1   4
                                         5   can only be in Q1 or Q4.




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                           sin θ =




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                           sin θ = − 2
                                     3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3


                   cos θ =




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3

                                           2
                   cos θ =     1 − −2
                                    3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3

                                                   √
                                           2        5
                   cos θ =     1 − −2
                                    3          =   3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                             Let θ = sin−1 − 2
                                             3


                                  sin θ = − 2
                                            3

                                                        √
                                                2        5
                        cos θ =     1 − −2
                                         3          =   3


           cos θ > 0 because θ = sin−1   2
                                         3   can only be in Q1 or Q4.



19 of 26
Inverse Trigonometric Functions of Non-Special Angles




Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles



Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1




20 of 26
Inverse Trigonometric Functions of Non-Special Angles



Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1


             sin α = − 2
                       3                      cos β =   1
                                                        6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1


             sin α = − 2
                       3                      cos β =   1
                                                        6
                       √                               √
                        5                                35
             cos α =   3                     sin β =    6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                       β = cos−1 ( 6 )
                                                            1


             sin α = − 2
                       3                          cos β =   1
                                                            6
                       √                                   √
                        5                                    35
             cos α =   3                         sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β




20 of 26
Inverse Trigonometric Functions of Non-Special Angles

Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                         β = cos−1 ( 6 )
                                                              1


             sin α = − 2
                       3                            cos β =  1
                                                             6
                       √                                    √
                        5                                     35
             cos α =   3                          sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β
                              √               √
                               5   1           35
                       =      3    6   − −2
                                          3    6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles

Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                                β = cos−1 ( 6 )
                                                                     1


             sin α = − 2
                       3                                   cos β =  1
                                                                    6
                       √                                           √
                        5                                            35
             cos α =   3                                 sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β
                              √                      √
                               5      1              35
                       =      3       6    − −2
                                              3      6
                                      √         √
                                          5 + 2 35
                                  =
                                             18

20 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                          f (x) = tan x




21 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                   f (x) = Tan x, x ∈ (− π , π )
                                         2 2




21 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                      f (x) = Tan x, x ∈ (− π , π )
                                            2 2




           Restrict the domain so that it becomes one-to-one.


21 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


                    f (x) = Tan x, x ∈ (− π , π )
                                          2 2




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


       Find the graph of the inverse by flipping along the diagonal




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




                          Domain:    Range:



22 of 26
The Inverse Tangent Function

The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




                          Domain: x ∈ R
                        Range: y ∈ (− π , π )
                                      2 2



22 of 26
Other Inverse Trigonometric Functions
                     f (x) = cot x




                     f (x) = sec x




                     f (x) = csc x




23 of 26
Other Inverse Trigonometric Functions
                 f (x) = Cot x, x ∈ (0, π)




                 f (x) = Sec x, x ∈ [0, π]




                f (x) = Csc x, x ∈ (− π , π )
                                      2 2




23 of 26
Other Inverse Trigonometric Functions
                 f (x) = Cot x, x ∈ (0, π)




                 f (x) = Sec x, x ∈ [0, π]




                f (x) = Csc x, x ∈ (− π , π )
                                      2 2




23 of 26
Other Inverse Trigonometric Functions
                   f (x) = Arccot x




                    f (x) = Arcsec x




                    f (x) = Arccsc x




23 of 26
Other Inverse Trigonometric Functions

           f (x) = Arccot x         Domain: x ∈ R
                                  Range: {0 < y < π}



           f (x) = Arcsec x   Domain: {x ≤ −1} ∪ {x ≥ 1}
                               Range: {0 ≤ y ≤ π, y = π }
                                                      2




           f (x) = Arccsc x   Domain: {x ≤ −1} ∪ {x ≥ 1}
                              Range: {− π ≤ y ≤ π , y = 0}
                                        2       2


24 of 26
Ranges of the Inverse Trigonometric Functions




25 of 26
Ranges of the Inverse Trigonometric Functions




           f (x) = Arcsin(x)     f (x) = Arccos(x)
           f (x) = Arctan(x)     f (x) = Arccot(x)
           f (x) = Arccsc(x)     f (x) = Arcsec(x)

25 of 26
Any questions?




26 of 26

More Related Content

What's hot

Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
swartzje
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
seltzermath
 
6.2 vertex form
6.2 vertex form6.2 vertex form
6.2 vertex form
hisema01
 
Trigonometric identities simplify
Trigonometric identities simplifyTrigonometric identities simplify
Trigonometric identities simplify
Jessica Garcia
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical induction
math260
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
hisema01
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
itutor
 
Verifying trigonometric identities
Verifying trigonometric identitiesVerifying trigonometric identities
Verifying trigonometric identities
Jessica Garcia
 

What's hot (20)

Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
 
6.2 vertex form
6.2 vertex form6.2 vertex form
6.2 vertex form
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Trigonometric identities simplify
Trigonometric identities simplifyTrigonometric identities simplify
Trigonometric identities simplify
 
Solving absolute values
Solving absolute valuesSolving absolute values
Solving absolute values
 
The inverse trigonometric functions
The inverse trigonometric functionsThe inverse trigonometric functions
The inverse trigonometric functions
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 
Benginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuityBenginning Calculus Lecture notes 2 - limits and continuity
Benginning Calculus Lecture notes 2 - limits and continuity
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
5.4 mathematical induction
5.4 mathematical induction5.4 mathematical induction
5.4 mathematical induction
 
Adding and subtracting radical expressions
Adding and subtracting radical expressionsAdding and subtracting radical expressions
Adding and subtracting radical expressions
 
Special angles
Special anglesSpecial angles
Special angles
 
5 4 function notation
5 4 function notation5 4 function notation
5 4 function notation
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Analytic geometry basic concepts
Analytic geometry basic conceptsAnalytic geometry basic concepts
Analytic geometry basic concepts
 
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Verifying trigonometric identities
Verifying trigonometric identitiesVerifying trigonometric identities
Verifying trigonometric identities
 

Viewers also liked

Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
indu thakur
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
Azurah Razak
 
Trigonometric Function Of Any Angle
Trigonometric Function Of Any AngleTrigonometric Function Of Any Angle
Trigonometric Function Of Any Angle
guest793408
 
10 4 solving trig equations
10 4 solving trig equations10 4 solving trig equations
10 4 solving trig equations
hisema01
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
Matthew Leingang
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
Fadhel Hizham
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
jrosebus
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
Debra Wallace
 
t2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functionst2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functions
math260
 
5.2.1 trigonometric functions
5.2.1 trigonometric functions5.2.1 trigonometric functions
5.2.1 trigonometric functions
Northside ISD
 

Viewers also liked (20)

Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Math12 lesson5
Math12 lesson5Math12 lesson5
Math12 lesson5
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
 
Trigonometric Function Of Any Angle
Trigonometric Function Of Any AngleTrigonometric Function Of Any Angle
Trigonometric Function Of Any Angle
 
10 4 solving trig equations
10 4 solving trig equations10 4 solving trig equations
10 4 solving trig equations
 
Trigonometry review slide show
Trigonometry review slide showTrigonometry review slide show
Trigonometry review slide show
 
CSEC Mathematics Review - Introduction To Functions & Relations
CSEC Mathematics Review - Introduction To Functions & RelationsCSEC Mathematics Review - Introduction To Functions & Relations
CSEC Mathematics Review - Introduction To Functions & Relations
 
Module on Relations in a function
Module on Relations in a functionModule on Relations in a function
Module on Relations in a function
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Anunaad 1
Anunaad 1Anunaad 1
Anunaad 1
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
t2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functionst2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functions
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Section 6.2 trigonometric functions unit circle approach
Section 6.2 trigonometric functions unit circle approachSection 6.2 trigonometric functions unit circle approach
Section 6.2 trigonometric functions unit circle approach
 
5.2.1 trigonometric functions
5.2.1 trigonometric functions5.2.1 trigonometric functions
5.2.1 trigonometric functions
 

Similar to Inverse trigonometric functions

WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
ExtremelyDarkness2
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
swartzje
 
MA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscapeMA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscape
ReyRoluna1
 

Similar to Inverse trigonometric functions (20)

Inverse trignometry
Inverse trignometryInverse trignometry
Inverse trignometry
 
Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
 
0708 ch 7 day 8
0708 ch 7 day 80708 ch 7 day 8
0708 ch 7 day 8
 
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdf
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
Graphing quadratics
Graphing quadraticsGraphing quadratics
Graphing quadratics
 
Graphs of trigonometric exponential functions lecture
Graphs of trigonometric exponential functions lectureGraphs of trigonometric exponential functions lecture
Graphs of trigonometric exponential functions lecture
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
BSFi_Group_2_Final.pptx
BSFi_Group_2_Final.pptxBSFi_Group_2_Final.pptx
BSFi_Group_2_Final.pptx
 
MATHS-1.ppt
MATHS-1.pptMATHS-1.ppt
MATHS-1.ppt
 
Unit 2.6
Unit 2.6Unit 2.6
Unit 2.6
 
MA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscapeMA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscape
 
Rational Function
Rational FunctionRational Function
Rational Function
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Fun37
Fun37Fun37
Fun37
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Cse41
Cse41Cse41
Cse41
 

More from Leo Crisologo

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functions
Leo Crisologo
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
Leo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
Leo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
Leo Crisologo
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
Leo Crisologo
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
Leo Crisologo
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
Leo Crisologo
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
Leo Crisologo
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
Leo Crisologo
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
Leo Crisologo
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
Leo Crisologo
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problems
Leo Crisologo
 

More from Leo Crisologo (20)

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functions
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functions
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Completeness axiom
Completeness axiomCompleteness axiom
Completeness axiom
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Functions
FunctionsFunctions
Functions
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
 
Permutations
PermutationsPermutations
Permutations
 
Counting examples
Counting examplesCounting examples
Counting examples
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problems
 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

Inverse trigonometric functions

  • 1. Inverse Trigonometric Functions Mathematics 4 October 24, 2011 1 of 26
  • 2. Inverse Trigonometric Functions 3 If sin x = 5 , what is x? 2 of 26
  • 3. Inverse Trigonometric Functions 3 If sin x = 5 , what is x? How do we isolate x from the equation above? 2 of 26
  • 4. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • • 3 of 26
  • 5. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → • 3 of 26
  • 6. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → x = 2y − 1 The variables are interchanged. • 3 of 26
  • 7. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → x = 2y − 1 The variables are interchanged. x+1 • f −1 (x) = y = The y-variable is isolated. 2 3 of 26
  • 8. Inverse Trigonometric Functions Let us recall inverses! Given the graph of g(x): 4 of 26
  • 9. Inverse Trigonometric Functions Let us recall inverses! The inverse of g(x) can be flipping the graph along the diagonal: 4 of 26
  • 10. Inverse Trigonometric Functions Let us recall inverses! This is the graph of g −1 (x) 4 of 26
  • 11. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x 5 of 26
  • 12. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x No! 5 of 26
  • 13. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x No! The function f (x) = sin x is NOT one-to-one! 5 of 26
  • 14. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x No! The function f (x) = sin x is NOT one-to-one! It does not pass the Horizontal Line Test! 5 of 26
  • 15. Inverse Trigonometric Functions Do any of the six trigonometric functions have inverses? f (x) = sin x f (x) = cos x 6 of 26
  • 16. Inverse Trigonometric Functions Do any of the six trigonometric functions have inverses? f (x) = tan x f (x) = cot x 6 of 26
  • 17. Inverse Trigonometric Functions Do any of the six trigonometric functions have inverses? f (x) = sec x f (x) = csc x 6 of 26
  • 18. Inverse Trigonometric Functions How can we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = sin x 7 of 26
  • 19. Inverse Trigonometric Functions How can we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = Sin x, x ∈ [− π , π ] 2 2 7 of 26
  • 20. Inverse Trigonometric Functions How can we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = Sin x, x ∈ [− π , π ] 2 2 Restrict the domain so that it becomes one-to-one. 7 of 26
  • 21. Inverse Trigonometric Functions The inverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 f (x) = Sin x, x ∈ [− π , π ] 2 2 8 of 26
  • 22. Inverse Trigonometric Functions The inverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 Find the graph of the inverse by flipping along the diagonal 8 of 26
  • 23. Inverse Trigonometric Functions The inverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 f (x) = sin−1 x = Arcsin x = inverse sine of x 8 of 26
  • 24. The Inverse Sine Function Properties of f (x) = sin−1 x: Domain: Range: 9 of 26
  • 25. The Inverse Sine Function Properties of f (x) = sin−1 x: Domain: x ∈ [−1, 1] Range: 9 of 26
  • 26. The Inverse Sine Function Properties of f (x) = sin−1 x: Domain: x ∈ [−1, 1] Range: y ∈ [− π , π ] 2 2 9 of 26
  • 27. The Inverse Sine Function Properties of f (x) = sin−1 x: 10 of 26
  • 28. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = 2. Arcsin 1 = 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 29. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 2. Arcsin 1 = 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 30. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 31. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 32. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = − π 6 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 33. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = − π 6 6 5. sin−1 (sin 4π ) = − π 3 3 11 of 26
  • 34. The Inverse Cosine Function Graphing the inverse cosine function f (x) = cos x 12 of 26
  • 35. The Inverse Cosine Function Graphing the inverse cosine function f (x) = Cos x, x ∈ [0, π] 12 of 26
  • 36. The Inverse Cosine Function Graphing the inverse cosine function f (x) = Cos x, x ∈ [0, π] Restrict the domain so that it becomes one-to-one. 12 of 26
  • 37. The Inverse Cosine Function The inverse of f (x) = Cos x, x ∈ [0, π] f (x) = Cos x, x ∈ [0, π] 13 of 26
  • 38. The Inverse Cosine Function The inverse of f (x) = Cos x, x ∈ [0, π] Find the graph of the inverse by flipping along the diagonal 13 of 26
  • 39. The Inverse Cosine Function The inverse of f (x) = Cos x, x ∈ [0, π] f (x) = cos−1 x = Arccos x = inverse cosine of x 13 of 26
  • 40. The Inverse Cosine Function Properties of f (x) = cos−1 x: Domain: Range: 14 of 26
  • 41. The Inverse Cosine Function Properties of f (x) = cos−1 x: Domain: x ∈ [−1, 1] Range: 14 of 26
  • 42. The Inverse Cosine Function Properties of f (x) = cos−1 x: Domain: x ∈ [−1, 1] Range: y ∈ [0, π] 14 of 26
  • 43. The Inverse cosine Function Properties of f (x) = cos−1 x: 15 of 26
  • 44. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = 2. Arccos 0 = 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 45. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 2. Arccos 0 = 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 46. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 47. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 5π 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 48. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 5π 6 4. cos−1 (cos 7π ) = 4 π 4 16 of 26
  • 49. Pick-up quiz: Quiz # 1 Evaluate the following values: √ 2 1. Arcsin(− 2 ) √ 3 2. Arccos(− 2 ) 3. sin−1 (sin 2π ) 3 4. cos−1 (cos 11π ) 6 5. Arcsin(cos 5π ) 3 17 of 26
  • 50. Pick-up quiz: Quiz # 1 Evaluate the following values: √ 2 1. Arcsin(− 2 ) = −π 4 √ 3 5π 2. Arccos(− 2 ) = 6 3. sin−1 (sin 2π ) = 3 π 3 4. cos−1 (cos 11π ) = 6 π 6 5. Arcsin(cos 5π ) = 3 π 6 17 of 26
  • 51. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 18 of 26
  • 52. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 sin θ = 18 of 26
  • 53. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 18 of 26
  • 54. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 cos θ = 18 of 26
  • 55. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 3 cos θ = 5 18 of 26
  • 56. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 3 cos θ = 5 cos θ > 0 because θ = sin−1 4 5 can only be in Q1 or Q4. 18 of 26
  • 57. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 19 of 26
  • 58. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = 19 of 26
  • 59. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 19 of 26
  • 60. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 cos θ = 19 of 26
  • 61. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 2 cos θ = 1 − −2 3 19 of 26
  • 62. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 √ 2 5 cos θ = 1 − −2 3 = 3 19 of 26
  • 63. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 √ 2 5 cos θ = 1 − −2 3 = 3 cos θ > 0 because θ = sin−1 2 3 can only be in Q1 or Q4. 19 of 26
  • 64. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 20 of 26
  • 65. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 20 of 26
  • 66. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 20 of 26
  • 67. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 20 of 26
  • 68. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β 20 of 26
  • 69. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β √ √ 5 1 35 = 3 6 − −2 3 6 20 of 26
  • 70. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β √ √ 5 1 35 = 3 6 − −2 3 6 √ √ 5 + 2 35 = 18 20 of 26
  • 71. The Inverse Tangent Function Finding the graph of f (x) = tan−1 x f (x) = tan x 21 of 26
  • 72. The Inverse Tangent Function Finding the graph of f (x) = tan−1 x f (x) = Tan x, x ∈ (− π , π ) 2 2 21 of 26
  • 73. The Inverse Tangent Function Finding the graph of f (x) = tan−1 x f (x) = Tan x, x ∈ (− π , π ) 2 2 Restrict the domain so that it becomes one-to-one. 21 of 26
  • 74. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = Tan x, x ∈ (− π , π ) 2 2 22 of 26
  • 75. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 Find the graph of the inverse by flipping along the diagonal 22 of 26
  • 76. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x 22 of 26
  • 77. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x Domain: Range: 22 of 26
  • 78. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x Domain: x ∈ R Range: y ∈ (− π , π ) 2 2 22 of 26
  • 79. Other Inverse Trigonometric Functions f (x) = cot x f (x) = sec x f (x) = csc x 23 of 26
  • 80. Other Inverse Trigonometric Functions f (x) = Cot x, x ∈ (0, π) f (x) = Sec x, x ∈ [0, π] f (x) = Csc x, x ∈ (− π , π ) 2 2 23 of 26
  • 81. Other Inverse Trigonometric Functions f (x) = Cot x, x ∈ (0, π) f (x) = Sec x, x ∈ [0, π] f (x) = Csc x, x ∈ (− π , π ) 2 2 23 of 26
  • 82. Other Inverse Trigonometric Functions f (x) = Arccot x f (x) = Arcsec x f (x) = Arccsc x 23 of 26
  • 83. Other Inverse Trigonometric Functions f (x) = Arccot x Domain: x ∈ R Range: {0 < y < π} f (x) = Arcsec x Domain: {x ≤ −1} ∪ {x ≥ 1} Range: {0 ≤ y ≤ π, y = π } 2 f (x) = Arccsc x Domain: {x ≤ −1} ∪ {x ≥ 1} Range: {− π ≤ y ≤ π , y = 0} 2 2 24 of 26
  • 84. Ranges of the Inverse Trigonometric Functions 25 of 26
  • 85. Ranges of the Inverse Trigonometric Functions f (x) = Arcsin(x) f (x) = Arccos(x) f (x) = Arctan(x) f (x) = Arccot(x) f (x) = Arccsc(x) f (x) = Arcsec(x) 25 of 26