Inverse Trigonometric Functions




                                  Mathematics 4


                                 October 24, 2011


1 of 26
Inverse Trigonometric Functions




                            3
                 If sin x = 5 , what is x?




2 of 26
Inverse Trigonometric Functions




                               3
                    If sin x = 5 , what is x?


          How do we isolate x from the equation above?




2 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


•


•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) →


•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) → x = 2y − 1   The variables are interchanged.

•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) → x = 2y − 1    The variables are interchanged.

                   x+1
• f −1 (x) = y =          The y-variable is isolated.
                    2




 3 of 26
Inverse Trigonometric Functions
Let us recall inverses!

                      Given the graph of g(x):




 4 of 26
Inverse Trigonometric Functions
Let us recall inverses!

   The inverse of g(x) can be flipping the graph along the diagonal:




 4 of 26
Inverse Trigonometric Functions
Let us recall inverses!

                     This is the graph of g −1 (x)




 4 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                          f (x) = sin x




 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                          f (x) = sin x




                            No!

 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                           f (x) = sin x




                             No!
           The function f (x) = sin x is NOT one-to-one!



 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                           f (x) = sin x




                             No!
           The function f (x) = sin x is NOT one-to-one!
             It does not pass the Horizontal Line Test!


 5 of 26
Inverse Trigonometric Functions

Do any of the six trigonometric functions have inverses?

                          f (x) = sin x




                          f (x) = cos x




 6 of 26
Inverse Trigonometric Functions
Do any of the six trigonometric functions have inverses?

                          f (x) = tan x




                          f (x) = cot x




 6 of 26
Inverse Trigonometric Functions
Do any of the six trigonometric functions have inverses?

                          f (x) = sec x




                          f (x) = csc x




 6 of 26
Inverse Trigonometric Functions


How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                           f (x) = sin x




 7 of 26
Inverse Trigonometric Functions

How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                    f (x) = Sin x, x ∈ [− π , π ]
                                          2 2




 7 of 26
Inverse Trigonometric Functions

How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                       f (x) = Sin x, x ∈ [− π , π ]
                                             2 2




           Restrict the domain so that it becomes one-to-one.


 7 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


                     f (x) = Sin x, x ∈ [− π , π ]
                                           2 2




 8 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


           Find the graph of the inverse by flipping along the diagonal




 8 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


           f (x) = sin−1 x = Arcsin x = inverse sine of x




 8 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                             Domain:
                             Range:

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                       Domain: x ∈ [−1, 1]
                            Range:

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                       Domain: x ∈ [−1, 1]
                       Range: y ∈ [− π , π ]
                                     2 2

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




10 of 26
The Inverse Sine Function
Determine the following values:

1. sin−1    1
            2   =


2. Arcsin 1 =


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function
Determine the following values:

1. sin−1    1
            2   =   π
                    6


2. Arcsin 1 =


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) = − π
               6       6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) = − π
               6       6


5. sin−1 (sin 4π ) = − π
               3       3


 11 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                          f (x) = cos x




12 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                     f (x) = Cos x, x ∈ [0, π]




12 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                        f (x) = Cos x, x ∈ [0, π]




           Restrict the domain so that it becomes one-to-one.



12 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

                     f (x) = Cos x, x ∈ [0, π]




13 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

       Find the graph of the inverse by flipping along the diagonal




13 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

           f (x) = cos−1 x = Arccos x = inverse cosine of x




13 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                             Domain:
                             Range:


14 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                       Domain: x ∈ [−1, 1]
                            Range:


14 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                       Domain: x ∈ [−1, 1]
                        Range: y ∈ [0, π]


14 of 26
The Inverse cosine Function

Properties of f (x) = cos−1 x:




15 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =


2. Arccos 0 =


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


2. Arccos 0 =


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6
                       5π
                        6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6
                       5π
                        6


4. cos−1 (cos 7π ) =
               4
                       π
                       4




16 of 26
Pick-up quiz: Quiz # 1

Evaluate the following values:
              √
                2
1. Arcsin(−    2 )

              √
                3
2. Arccos(−    2 )


3. sin−1 (sin 2π )
               3


4. cos−1 (cos 11π )
               6


5. Arcsin(cos 5π )
               3

 17 of 26
Pick-up quiz: Quiz # 1

Evaluate the following values:
              √
               2
1. Arcsin(−   2 )   = −π
                       4

              √
               3        5π
2. Arccos(−   2 )   =    6


3. sin−1 (sin 2π ) =
               3
                        π
                        3


4. cos−1 (cos 11π ) =
               6
                            π
                            6


5. Arcsin(cos 5π ) =
               3
                            π
                            6

 17 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1   4
                                        5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1   4
                                        5


                           sin θ =




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5


                           cos θ =




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5

                                     3
                           cos θ =   5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                              Let θ = sin−1      4
                                                 5

                                             4
                                 sin θ =     5

                                             3
                                 cos θ =     5


           cos θ > 0 because θ = sin−1   4
                                         5   can only be in Q1 or Q4.




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                           sin θ =




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                           sin θ = − 2
                                     3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3


                   cos θ =




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3

                                           2
                   cos θ =     1 − −2
                                    3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3

                                                   √
                                           2        5
                   cos θ =     1 − −2
                                    3          =   3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                             Let θ = sin−1 − 2
                                             3


                                  sin θ = − 2
                                            3

                                                        √
                                                2        5
                        cos θ =     1 − −2
                                         3          =   3


           cos θ > 0 because θ = sin−1   2
                                         3   can only be in Q1 or Q4.



19 of 26
Inverse Trigonometric Functions of Non-Special Angles




Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles



Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1




20 of 26
Inverse Trigonometric Functions of Non-Special Angles



Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1


             sin α = − 2
                       3                      cos β =   1
                                                        6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1


             sin α = − 2
                       3                      cos β =   1
                                                        6
                       √                               √
                        5                                35
             cos α =   3                     sin β =    6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                       β = cos−1 ( 6 )
                                                            1


             sin α = − 2
                       3                          cos β =   1
                                                            6
                       √                                   √
                        5                                    35
             cos α =   3                         sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β




20 of 26
Inverse Trigonometric Functions of Non-Special Angles

Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                         β = cos−1 ( 6 )
                                                              1


             sin α = − 2
                       3                            cos β =  1
                                                             6
                       √                                    √
                        5                                     35
             cos α =   3                          sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β
                              √               √
                               5   1           35
                       =      3    6   − −2
                                          3    6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles

Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                                β = cos−1 ( 6 )
                                                                     1


             sin α = − 2
                       3                                   cos β =  1
                                                                    6
                       √                                           √
                        5                                            35
             cos α =   3                                 sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β
                              √                      √
                               5      1              35
                       =      3       6    − −2
                                              3      6
                                      √         √
                                          5 + 2 35
                                  =
                                             18

20 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                          f (x) = tan x




21 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                   f (x) = Tan x, x ∈ (− π , π )
                                         2 2




21 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                      f (x) = Tan x, x ∈ (− π , π )
                                            2 2




           Restrict the domain so that it becomes one-to-one.


21 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


                    f (x) = Tan x, x ∈ (− π , π )
                                          2 2




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


       Find the graph of the inverse by flipping along the diagonal




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




                          Domain:    Range:



22 of 26
The Inverse Tangent Function

The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




                          Domain: x ∈ R
                        Range: y ∈ (− π , π )
                                      2 2



22 of 26
Other Inverse Trigonometric Functions
                     f (x) = cot x




                     f (x) = sec x




                     f (x) = csc x




23 of 26
Other Inverse Trigonometric Functions
                 f (x) = Cot x, x ∈ (0, π)




                 f (x) = Sec x, x ∈ [0, π]




                f (x) = Csc x, x ∈ (− π , π )
                                      2 2




23 of 26
Other Inverse Trigonometric Functions
                 f (x) = Cot x, x ∈ (0, π)




                 f (x) = Sec x, x ∈ [0, π]




                f (x) = Csc x, x ∈ (− π , π )
                                      2 2




23 of 26
Other Inverse Trigonometric Functions
                   f (x) = Arccot x




                    f (x) = Arcsec x




                    f (x) = Arccsc x




23 of 26
Other Inverse Trigonometric Functions

           f (x) = Arccot x         Domain: x ∈ R
                                  Range: {0 < y < π}



           f (x) = Arcsec x   Domain: {x ≤ −1} ∪ {x ≥ 1}
                               Range: {0 ≤ y ≤ π, y = π }
                                                      2




           f (x) = Arccsc x   Domain: {x ≤ −1} ∪ {x ≥ 1}
                              Range: {− π ≤ y ≤ π , y = 0}
                                        2       2


24 of 26
Ranges of the Inverse Trigonometric Functions




25 of 26
Ranges of the Inverse Trigonometric Functions




           f (x) = Arcsin(x)     f (x) = Arccos(x)
           f (x) = Arctan(x)     f (x) = Arccot(x)
           f (x) = Arccsc(x)     f (x) = Arcsec(x)

25 of 26
Any questions?




26 of 26

Inverse trigonometric functions

  • 1.
    Inverse Trigonometric Functions Mathematics 4 October 24, 2011 1 of 26
  • 2.
    Inverse Trigonometric Functions 3 If sin x = 5 , what is x? 2 of 26
  • 3.
    Inverse Trigonometric Functions 3 If sin x = 5 , what is x? How do we isolate x from the equation above? 2 of 26
  • 4.
    Inverse Trigonometric Functions Letus recall inverses! • f (x) = y = 2x − 1 • • 3 of 26
  • 5.
    Inverse Trigonometric Functions Letus recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → • 3 of 26
  • 6.
    Inverse Trigonometric Functions Letus recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → x = 2y − 1 The variables are interchanged. • 3 of 26
  • 7.
    Inverse Trigonometric Functions Letus recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → x = 2y − 1 The variables are interchanged. x+1 • f −1 (x) = y = The y-variable is isolated. 2 3 of 26
  • 8.
    Inverse Trigonometric Functions Letus recall inverses! Given the graph of g(x): 4 of 26
  • 9.
    Inverse Trigonometric Functions Letus recall inverses! The inverse of g(x) can be flipping the graph along the diagonal: 4 of 26
  • 10.
    Inverse Trigonometric Functions Letus recall inverses! This is the graph of g −1 (x) 4 of 26
  • 11.
    Inverse Trigonometric Functions Doesthe function f (x) = sin x have an inverse? f (x) = sin x 5 of 26
  • 12.
    Inverse Trigonometric Functions Doesthe function f (x) = sin x have an inverse? f (x) = sin x No! 5 of 26
  • 13.
    Inverse Trigonometric Functions Doesthe function f (x) = sin x have an inverse? f (x) = sin x No! The function f (x) = sin x is NOT one-to-one! 5 of 26
  • 14.
    Inverse Trigonometric Functions Doesthe function f (x) = sin x have an inverse? f (x) = sin x No! The function f (x) = sin x is NOT one-to-one! It does not pass the Horizontal Line Test! 5 of 26
  • 15.
    Inverse Trigonometric Functions Doany of the six trigonometric functions have inverses? f (x) = sin x f (x) = cos x 6 of 26
  • 16.
    Inverse Trigonometric Functions Doany of the six trigonometric functions have inverses? f (x) = tan x f (x) = cot x 6 of 26
  • 17.
    Inverse Trigonometric Functions Doany of the six trigonometric functions have inverses? f (x) = sec x f (x) = csc x 6 of 26
  • 18.
    Inverse Trigonometric Functions Howcan we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = sin x 7 of 26
  • 19.
    Inverse Trigonometric Functions Howcan we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = Sin x, x ∈ [− π , π ] 2 2 7 of 26
  • 20.
    Inverse Trigonometric Functions Howcan we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = Sin x, x ∈ [− π , π ] 2 2 Restrict the domain so that it becomes one-to-one. 7 of 26
  • 21.
    Inverse Trigonometric Functions Theinverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 f (x) = Sin x, x ∈ [− π , π ] 2 2 8 of 26
  • 22.
    Inverse Trigonometric Functions Theinverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 Find the graph of the inverse by flipping along the diagonal 8 of 26
  • 23.
    Inverse Trigonometric Functions Theinverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 f (x) = sin−1 x = Arcsin x = inverse sine of x 8 of 26
  • 24.
    The Inverse SineFunction Properties of f (x) = sin−1 x: Domain: Range: 9 of 26
  • 25.
    The Inverse SineFunction Properties of f (x) = sin−1 x: Domain: x ∈ [−1, 1] Range: 9 of 26
  • 26.
    The Inverse SineFunction Properties of f (x) = sin−1 x: Domain: x ∈ [−1, 1] Range: y ∈ [− π , π ] 2 2 9 of 26
  • 27.
    The Inverse SineFunction Properties of f (x) = sin−1 x: 10 of 26
  • 28.
    The Inverse SineFunction Determine the following values: 1. sin−1 1 2 = 2. Arcsin 1 = 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 29.
    The Inverse SineFunction Determine the following values: 1. sin−1 1 2 = π 6 2. Arcsin 1 = 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 30.
    The Inverse SineFunction Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 31.
    The Inverse SineFunction Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 32.
    The Inverse SineFunction Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = − π 6 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 33.
    The Inverse SineFunction Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = − π 6 6 5. sin−1 (sin 4π ) = − π 3 3 11 of 26
  • 34.
    The Inverse CosineFunction Graphing the inverse cosine function f (x) = cos x 12 of 26
  • 35.
    The Inverse CosineFunction Graphing the inverse cosine function f (x) = Cos x, x ∈ [0, π] 12 of 26
  • 36.
    The Inverse CosineFunction Graphing the inverse cosine function f (x) = Cos x, x ∈ [0, π] Restrict the domain so that it becomes one-to-one. 12 of 26
  • 37.
    The Inverse CosineFunction The inverse of f (x) = Cos x, x ∈ [0, π] f (x) = Cos x, x ∈ [0, π] 13 of 26
  • 38.
    The Inverse CosineFunction The inverse of f (x) = Cos x, x ∈ [0, π] Find the graph of the inverse by flipping along the diagonal 13 of 26
  • 39.
    The Inverse CosineFunction The inverse of f (x) = Cos x, x ∈ [0, π] f (x) = cos−1 x = Arccos x = inverse cosine of x 13 of 26
  • 40.
    The Inverse CosineFunction Properties of f (x) = cos−1 x: Domain: Range: 14 of 26
  • 41.
    The Inverse CosineFunction Properties of f (x) = cos−1 x: Domain: x ∈ [−1, 1] Range: 14 of 26
  • 42.
    The Inverse CosineFunction Properties of f (x) = cos−1 x: Domain: x ∈ [−1, 1] Range: y ∈ [0, π] 14 of 26
  • 43.
    The Inverse cosineFunction Properties of f (x) = cos−1 x: 15 of 26
  • 44.
    The Inverse CosineFunction Determine the following values: 1. cos−1 1 2 = 2. Arccos 0 = 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 45.
    The Inverse CosineFunction Determine the following values: 1. cos−1 1 2 = π 3 2. Arccos 0 = 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 46.
    The Inverse CosineFunction Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 47.
    The Inverse CosineFunction Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 5π 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 48.
    The Inverse CosineFunction Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 5π 6 4. cos−1 (cos 7π ) = 4 π 4 16 of 26
  • 49.
    Pick-up quiz: Quiz# 1 Evaluate the following values: √ 2 1. Arcsin(− 2 ) √ 3 2. Arccos(− 2 ) 3. sin−1 (sin 2π ) 3 4. cos−1 (cos 11π ) 6 5. Arcsin(cos 5π ) 3 17 of 26
  • 50.
    Pick-up quiz: Quiz# 1 Evaluate the following values: √ 2 1. Arcsin(− 2 ) = −π 4 √ 3 5π 2. Arccos(− 2 ) = 6 3. sin−1 (sin 2π ) = 3 π 3 4. cos−1 (cos 11π ) = 6 π 6 5. Arcsin(cos 5π ) = 3 π 6 17 of 26
  • 51.
    Inverse Trigonometric Functionsof Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 18 of 26
  • 52.
    Inverse Trigonometric Functionsof Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 sin θ = 18 of 26
  • 53.
    Inverse Trigonometric Functionsof Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 18 of 26
  • 54.
    Inverse Trigonometric Functionsof Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 cos θ = 18 of 26
  • 55.
    Inverse Trigonometric Functionsof Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 3 cos θ = 5 18 of 26
  • 56.
    Inverse Trigonometric Functionsof Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 3 cos θ = 5 cos θ > 0 because θ = sin−1 4 5 can only be in Q1 or Q4. 18 of 26
  • 57.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 19 of 26
  • 58.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = 19 of 26
  • 59.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 19 of 26
  • 60.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 cos θ = 19 of 26
  • 61.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 2 cos θ = 1 − −2 3 19 of 26
  • 62.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 √ 2 5 cos θ = 1 − −2 3 = 3 19 of 26
  • 63.
    Inverse Trigonometric Functionsof Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 √ 2 5 cos θ = 1 − −2 3 = 3 cos θ > 0 because θ = sin−1 2 3 can only be in Q1 or Q4. 19 of 26
  • 64.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 20 of 26
  • 65.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 20 of 26
  • 66.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 20 of 26
  • 67.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 20 of 26
  • 68.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β 20 of 26
  • 69.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β √ √ 5 1 35 = 3 6 − −2 3 6 20 of 26
  • 70.
    Inverse Trigonometric Functionsof Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β √ √ 5 1 35 = 3 6 − −2 3 6 √ √ 5 + 2 35 = 18 20 of 26
  • 71.
    The Inverse TangentFunction Finding the graph of f (x) = tan−1 x f (x) = tan x 21 of 26
  • 72.
    The Inverse TangentFunction Finding the graph of f (x) = tan−1 x f (x) = Tan x, x ∈ (− π , π ) 2 2 21 of 26
  • 73.
    The Inverse TangentFunction Finding the graph of f (x) = tan−1 x f (x) = Tan x, x ∈ (− π , π ) 2 2 Restrict the domain so that it becomes one-to-one. 21 of 26
  • 74.
    The Inverse TangentFunction The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = Tan x, x ∈ (− π , π ) 2 2 22 of 26
  • 75.
    The Inverse TangentFunction The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 Find the graph of the inverse by flipping along the diagonal 22 of 26
  • 76.
    The Inverse TangentFunction The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x 22 of 26
  • 77.
    The Inverse TangentFunction The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x Domain: Range: 22 of 26
  • 78.
    The Inverse TangentFunction The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x Domain: x ∈ R Range: y ∈ (− π , π ) 2 2 22 of 26
  • 79.
    Other Inverse TrigonometricFunctions f (x) = cot x f (x) = sec x f (x) = csc x 23 of 26
  • 80.
    Other Inverse TrigonometricFunctions f (x) = Cot x, x ∈ (0, π) f (x) = Sec x, x ∈ [0, π] f (x) = Csc x, x ∈ (− π , π ) 2 2 23 of 26
  • 81.
    Other Inverse TrigonometricFunctions f (x) = Cot x, x ∈ (0, π) f (x) = Sec x, x ∈ [0, π] f (x) = Csc x, x ∈ (− π , π ) 2 2 23 of 26
  • 82.
    Other Inverse TrigonometricFunctions f (x) = Arccot x f (x) = Arcsec x f (x) = Arccsc x 23 of 26
  • 83.
    Other Inverse TrigonometricFunctions f (x) = Arccot x Domain: x ∈ R Range: {0 < y < π} f (x) = Arcsec x Domain: {x ≤ −1} ∪ {x ≥ 1} Range: {0 ≤ y ≤ π, y = π } 2 f (x) = Arccsc x Domain: {x ≤ −1} ∪ {x ≥ 1} Range: {− π ≤ y ≤ π , y = 0} 2 2 24 of 26
  • 84.
    Ranges of theInverse Trigonometric Functions 25 of 26
  • 85.
    Ranges of theInverse Trigonometric Functions f (x) = Arcsin(x) f (x) = Arccos(x) f (x) = Arctan(x) f (x) = Arccot(x) f (x) = Arccsc(x) f (x) = Arcsec(x) 25 of 26
  • 86.