Special angles

3,081 views

Published on

How to find the values of "special" angles in Trigonometry

Published in: Education
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,081
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
36
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Special angles

    1. 1. Exact Values of the Trig Ratios Thursday 26th May 2011
    2. 2. Construct an right angled isosceles triangle
    3. 3. 45° 45°Construct an right angled isosceles triangle
    4. 4. 1 1Make the sides the simplest they can be....
    5. 5. 45° 1 45° 1Make the sides the simplest they can be....
    6. 6. 45° 1 45° 1Find the hypotenuse....
    7. 7. 45° 2 1 45° 1Find the hypotenuse....
    8. 8. o 1 tan 45 = = 1 1 45° o 1 2 sin 45 = = 2 2 1 o 1 2 cos 45 = = 2 2 45° 1define the Trig ratios....
    9. 9. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 o 1 2 cos 45 = = 2 2 45° 1define the Trig ratios....
    10. 10. o 1 tan 45 = = 1 1 45° 1 45° 1remember the process not the values :)
    11. 11. o 1 tan 45 = = 1 1 45° 2 1 45° 1remember the process not the values :)
    12. 12. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 45° 1remember the process not the values :)
    13. 13. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 o 1 2 cos 45 = = 2 2 45° 1remember the process not the values :)
    14. 14. Construct an equilateral triangle...
    15. 15. Construct an equilateral triangle...
    16. 16. 60° 60° 60°Construct an equilateral triangle...
    17. 17. 60°60° 60° with simple side lengths
    18. 18. 60°2 260° 60° 2 with simple side lengths
    19. 19. 60° 2 260° 60° 2 bisect the top angle
    20. 20. 30° 2 260° 60° 1 1 bisect the top angle
    21. 21. 30° 2 260° 60° 1 1 find the perpendicular height
    22. 22. 30° 2 2 360° 60° 1 1 find the perpendicular height
    23. 23. 30° 2 2 60° 60° 1 1Read off the trig ratios in the constructed right angled triangle
    24. 24. 30° 2 2 360° 60° 1 1
    25. 25. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2
    26. 26. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2 o 1cos 60 = 2
    27. 27. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2 o 1cos 60 = 2 o 3tan 60 = = 3 1
    28. 28. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1cos 60 = 2 o 3tan 60 = = 3 1
    29. 29. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1 o 3cos 60 = cos 30 = 2 2 o 3tan 60 = = 3 1
    30. 30. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1 o 3cos 60 = cos 30 = 2 2 o 3 1 3tan 60 = = 3 o tan 30 = = 1 3 3
    31. 31. Remember the process not the results! :) o 1tan 45 = = 1 3 o 1 1 o sin 60 = sin 30 = 2 2 o 1 2 o 1 o 3sin 45 = = cos 60 = cos 30 = 2 2 2 2 o 1 2 o 3 o 1 3cos 45 = = tan 60 = = 3 tan 30 = = 2 2 1 3 3

    ×