• Save
Day two planning
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
1,494
On Slideshare
1,494
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
0
Comments
1
Likes
4

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • Spesifikasi jaringan LTE yang akan di bangun.Spesifikasi perangkat eNodeB yang akan di bangun.
  • Spesifikasi jaringan LTE yang akan di bangun.Spesifikasi perangkat eNodeB yang akan di bangun.

Transcript

  • 1. Jakarta 16 December 2012 Arief Hamdani GunawanOFDMA & MIMO Planning
  • 2. References (2012)• LTE Advanced: 3GPP Solution for IMT-Advanced by Harri Holma and Antti Toskala (Oct 4, 2012)• EPC and 4G Packet Networks, Second Edition: Driving the Mobile Broadband Revolution by Magnus Olsson and Catherine Mulligan (Dec 12, 2012)• Long Term Evolution IN BULLETS, 2nd Edition (Black & White) by Chris Johnson (Jul 6, 2012)• LTE-Advanced and Next Generation Wireless Networks: Channel Modelling and Propagation by Guillaume de la Roche, Andrés Alayón-Glazunov and Ben Allen (Nov 28, 2012)
  • 3. References (2011)• 4G: LTE/LTE-Advanced for Mobile Broadband by Erik Dahlman, Stefan Parkvall and Johan Skold (May 10, 2011)• LTE Signaling: Troubleshooting and Optimization by Ralf Kreher and Karsten Gaenger (Jan 25, 2011)• LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis by Leonhard Korowajczuk (Aug 22, 2011)
  • 4. PlanningCellular Planning Deployment Planning•Introduction to Cellular Planning •Design Criteria•Link Budget •Technology Considerations•Dimensioning •Frequency Bands•Coverage Planning •Core Design•Traffic Forecasting •RF Design - RAN•Calculation Steps •Backhaul Considerations•Nominal Planning •Bandwidth Efficiency •Investment/Pricing Models •Business Consideration •Ecosystem Deployment
  • 5. PlanningCellular Planning Deployment Planning•Introduction to Cellular Planning •Design Criteria•Link Budget •Technology Considerations•Dimensioning •Frequency Bands•Coverage Planning •Core Design•Traffic Forecasting •RF Design - RAN•Calculation Steps •Backhaul Considerations•Nominal Planning •Bandwidth Efficiency •Investment/Pricing Models •Businesses Consideration •Ecosystem Deployment
  • 6. PendahuluanImplementasi suatu jaringan telekomunikasi di suatu wilayah disampingberhadapan dengan regulasi telekomunikasi, juga akan berhadapan dengan situasipasar yang harus dipelajari dengan seksama untuk mengantisipasi berbagaikemungkinan. Di bawah ini adalah 3 tugas besar yang harus dikerjakan seorang analispasar ... •Prediksi gross income (pendapatan kasar). Berbagai upaya dapat dilakukan untuk meneliti gross income, diantaranya adalah penelitian populasi penduduk, rata-rata income, tipe-tipe bisnis yang berkembang, dll •Pengenalan kompetitor Penting untuk diketahui situasi kompetitor yang ada, untuk memastikan adanya peluang. Dalam hal ini bisa dilihat cakupan dari kompetitor, performansi sistemnya, maupun juga jumlah pelanggan untuk dibandingkan jumlah pelanggan potensial yang belum terlayani. •Keputusan cakupan geografis Pertanyaannya adalah : mana daerah geografi yang dicakup sistem yang diinginkan serta jenis layanan apa yang cocok untuk daerah tersebut ? Pertanyaan tersebut harus dijawab untuk kemudian diteruskan pada Bagian Teknik.
  • 7. Apa sesungguhnya peranan seorang engineer ? Setelah menerima 1. Memulai sketsa perencanaan pada daerah pelayanan, laporan dari analis tujuannya adalah menghasilkan cakupan service pada daerah pelayanan dengan sesedikit mungkin jumlah sel, kapasitas ekonomi yang meneliti sebesar mungkin untuk alokasi BW yang diberikan, serta kelayakan ekonomi, kualitas sebaik mungkin. tugas seorang engineer 2. Menentukan jumlah kanal RF yang diperlukan untuk melayani untuk mewujudkan prediksi trafik pada jam sibuk sampai beberapa tahun ke jaringan yang andal dari depan. sisi kapasitas, kualitas 3. Studi problem interferensi. Cochannel interference, adjacent dengan biaya seefisien channel interference, maupun juga kemungkinan terjadinya mungkin intermodulasi dari tiap sel. Selanjutnya mencari cara-cara untuk mengatasi hal itu. 4. Studi mengenai probabilitas blocking pada tiap sel, serta mencari langkah-langkah untuk meminimisasi hal tersebut 5. Perencanaan teknologi untuk menyerap pelanggan baru. . Jumlah kenaikan pelanggan baru akan tergantung kepada biaya komunikasi, performansi sistem, serta juga kecenderungan bisnis. Secara teknik harus dipikirkan upgrading sistem, teknik- teknik pengembangan kapasitas untuk BW yang terbatas pada layanan sistem komunikasi bergerak.
  • 8. Cellular System Planning Cycle
  • 9. Sasaran Perencanaan Jaringan• Sasaran Coverage / Cakupan – Wilayah cakupan – Penetrasi cakupan• Sasaran Capacity / Kapasitas / Traffic – Jumlah pelanggan – Traffic per pelanggan• Sasaran Quality – Pertimbangan pada Coverage dan Capacity – QoS yang diinginkan• Sasaran Cost / Bisnis dan Logistik (Business Consideration) – Anggaran modal – Penjadwalan instalasi dan penggelaran – Biaya / laba pengoperasian jaringan
  • 10. Adalah cukup sulit untuk mencapai performansi yang diharapkan padalingkungan komunikasi mobile yang sangat kompleks. Karena itudiharapkan seorang engineer memiliki berbagai pengetahuan untukmelakukan optimalisasi sistem yang nantinya akan melibatkanberbagai solusi kompromi dari berbagai kondisi trade off yang nantinyaakan dihadapi. Berbagai metoda optimalisasi jaringan komunikasibergerak seluler ini diberikan pada bagian selanjutnya. Tujuan Perencanaan Jaringan Selular... • Capacity • Coverage Goal •Quality • Cost (Business Consideration)
  • 11. Tujuan dari Perencanaan Perencanaan jaringan dimulai dari alokasi lebar pita frekuensi yang diberikan pemerintah kepada suatu operator seluler. Alokasi lebar pita frekuensi inilah yang digunakan oleh operator untuk memberikan layanan komunikasi dengan kualitas komunikasi yang sebaik- baiknya dan untuk sebanyak-banyaknya user.
  • 12. Cell Planning Flowchart START Capacity Prediction ofAnalysis of required traffic needed capacity until the next Atot = (Erlang) few years ENDSystem capacity of (statistical Quality the allocated BW analysis of demand) Asel = (Erl / cell) Yes OPTIMATION No Number of cell • Threshold handover QUALITY Atot /Asel = (cell) • Power Transmitt OK ? • Noise Figure, dll Servis Area Cell Area Number of Ceel Cell Area Pathloss Analysis Link Cell Radius Budget Analysis Power 2,6 Calculation Frequency Planning Coverage
  • 13. Tahapan Perencanaan Jaringan• Tahap Pra-perencanaan – Dimensioning – Perencanaan konfigurasi – Perencanaan kapasitas• Tahap Perencanaan – Perencanaan detail – Perencanaan konfigurasi – Perencanaan cakupan – Perencanaan kapasitas – Perencanaan frekuensi – Verifikasi parameter perencanaan• Tahap Post-perencanaan – Optimasi – Monitoring (Key Performance Indicator)
  • 14. Parameter Global dalam Perencanaan Jaringan• Traffic Forecasting• Coverage threshold• Site Configuration
  • 15. 15 Objectives of the Planning • Traffic Forecasting: to measure the demand on targeted marked so as to allow an appropriate growth of the Network. • Coverage: to obtain the ability of the network ensure the availability of the service in the entire service area. • Capacity: to support the subscriber traffic with sufficiently low blocking and delay. • Quality: linking the capacity and the coverage and still provide the required QoS. • Costs: to enable an economical network implementation when the service is established and a controlled network expansion during the life cycle of the network.
  • 16. Traffic Forecasting Clues for a New System
  • 17. Methodical Estimation of Required Trunks
  • 18. A Game of Avoiding Extremes
  • 19. Pendimensian Jaringan dalam Analisis Techno-Economics Cakupan sel Dimensi suatu jaringan Kapasitas sel
  • 20. Memaksimalkan Coverage dan CapacityMemaksimalkan coverage Memaksimalkan kapasitas• Pilih teknologi akses • Pilih teknologi akses• Gunakan band frekuensi yang • Perbesar band frekuensi rendah • Gunakan re-use frequency• Tingkatkan tinggi antena • Kurangi persyaratan C/I• Naikan daya pancar • Rendahkan tinggi antena• Kurangi persyaratan kualitas • Gunakan fitur software • Gunakan antena adaptif
  • 21. Radio Planning Process Overview • Spectrum Usage, eNodeB Basic Configuration, RFDimensioning Features. • Propagation model tuning, Nominal Coverage Planning, Nominal Capacity Analysis, Site Survey, Site Pre-Validation. Planning • Detailed Coverage and Capacity based on planning on Detailed planning tools, Site Validation. Planning • Drive Test measurements and analysis, eNodeB database Pre-launch parameter checking, Antenna tilt & azimuth tuning basedOptimization in drive test analysis.
  • 22. LTE Dimensioning Definition LTE Spectrum Usage Parameters ValueLTE Duplex FDDFrequency 2100 MHz (BAND 1)Frequency DL 2110-2170 MHzFrequency UL 1920-1980 MHzBandwidth 10 MHz (50 Resource Block)Modulation &Coding AMC (QPSK,16QAM,64QAM) & ½ , ¾SchemesScheduling Proportional Fair
  • 23. LTE Dimensioning DefinitionLTE eNodeB Configuration Parameters Value PTx (dbm) 46 dbm Gain Antena Tx 18 dbi Jumper Cable 0.2 db/m Feeder Cable 0,4db/km Rx Sensitivity (dbm) -100 dbm Gain Antena Rx 18 dbi TMA / MHA 13 db Sector 3
  • 24. Sistem Antena Base Station (BTS) Gain antenna, Beam antenna Feeder LossTx PowerReceiver SensitivityNoise Figure, dll
  • 25. LTE Nominal Planning
  • 26. Nominal Planning By Coverage
  • 27. Nominal Planning By Coverage • UL Calculate • UL Radius Cell • DL Calculate • DL Radius Cell • Radius Cell Balance • Number of Cell
  • 28. Nominal Planning By Coverage
  • 29. Nominal Planning By Coverage
  • 30. Nominal Planning By Coverage• PROPAGATION MODEL : COST231-HataL 46,3 33,9 logf c 13,82 logh T a(h R ) (44,9 6,55logh T )logd CM• Element: Frekuency A B 150 - 1500 MHz 69.55 26.16 1500 - 2000 MHz 46.3 33.9 0 dB For Rural and suburban CM = 3 dB For Dense Urban and Urban
  • 31. Nominal Planning By Coverage• UL Calculate Uplink Link Budget LTE Data Rate Unit Kbps Value 1024 Info • MAPL = 147.67 Transmitter - UE a. Tx Power dBm 23 a b. Tx Antenna Gain dB 0 b c. Body Loss dB 0 c • Radius = 0.99 Km d. EIRP dBm 23 a+b+c Receiver - eNodeB e. Noise Figure dB 2.2 e f. Thermal Noise dBm -107.13 k*T*B g. SINR dB -1.95 g h. Receiver Sensitivity dBm -106.88 e+f+g i. Interference Margin dB 1.81 i j. TMA Gain dB 2 j k. Rx antenna gain dBi 18 k l. Loss System dB 0.4 l MAPL dB 147.67 d-h-i+j+k-l
  • 32. MAPL Calculation (Downlink Link) Downlink Link Budget LTE Unit Value Info Data Rate kbps 1000 Transmitter - eNodeB a. Tx Power dBm 46 a b. Tx Antenna Gain dB 18 b c. Loss System dB 3 c d. EIRP dBm 61 a+b+c Receiver - UE e. Ue Noise Figure dB 7 e f. Thermal Noise dBm -102.7 k*T*B g. SINR dB -5 g h. Receiver Sensitivity dBm -100.7 e+f+g i. Interference Margin dB 3 ij. Control Channel Overhead dB 1 j k. Rx antenna gain dBi 0 k l. Body Loss dB 0 l MAPL dB 157.7 d-h-i-j+k-l
  • 33. Propagation Model• LTE – 700 MHz – Okumura-Hatta Lp 69,55 26,16 log f – 13,82 log hB - CH [44,9 – 6,55 log hB] log d• LTE – 2100 MHz – Cost 231-Hatta Lp 46,3 33,9 (logf c ) 13,82 logh T a(h R ) (44,9 6,55logh T )logd CM• LTE – 2600 MHz – SUI Lp 109.78 47.9 log (d/100)
  • 34. Pathloss SUI Lp = 109.78 + 47.9 log (d/100)47.9 log(d / 100) Lp 109.78 log(d / 100) ( Lp 109.78) / 47.9 (d / 100 ) 10 ( Lp 109.78) / 47.9 d 100x10( Lp 109.78) / 47.9 (157.7 109.78) / 47.9 d 100x10 1.00042 d 100x10 d 1000.966 meters
  • 35. Radius CalculationL = 2,6 d2 L = 1,3 . 2,6 . d2 For 2-sectoral L = 1,95 . 2,6 . d2 For 3-sectoral
  • 36. Radius CalculationFor Omni directional For trisectoral L = 2,6 d2 L = 1,95 . 2,6 . d2 L 2.6 x (1) 2 L 1.95 x 2.6 x (1) 2 L 2.6 km2 L 5.07 km2
  • 37. Number of eNodeB• Urban Area (3 sector) – total area 242.928 km2 – N eNodeB 242 .928 / 5.07 – N eNodeB 48
  • 38. Nominal Planning By Coverage• Balance Site Radius R = 0.98 km Coverage Site = 4.98 KM² • 25 Site Coverage Area = 125 KM² L = 2,6 d2 L = 1,3. 2.6 . d2 For 2-sectoral L = 1,95 . 2.6 . d2 For 3-sectoral
  • 39. Perencanaan Coverage: Propagasi, Link Budget dan Coverage• Propagasi sinyal perlu dipelajari untuk menentukan kebutuhan power dan menentukan coverage.• Terdapat tiga jenis penentuan redaman propagasi pada sistem selular: – Fress space loss, merupakan redaman akibat penyebaran ke ruang bebas. – Prediksi propagasi sinyal secara teoritis, terdiri dari perambatan sinyal pada bumi datar, perkiraan titik demi titik, dan redaman akibat penghalang. – Model empirik, suatu konsep propagasi hasil pengukuran di lapangan dalam bentuk kurva atau formula.
  • 40. Model Propagasi• Suatu model propagasi menggambarkan hubungan redaman jarak rata-rata yang terjadi yang sekaligus dapat digunakan untuk perhitungan radius/jangkauan sel.• Model propagasi bergantung pada: – Enironment: urban, rural, dense urban, suburban, open, forest, sea… – Jarak – Frequency – Kondisi atmosfer – Indoor/outdoor
  • 41. Contoh Model Propagasi• Free space• Wakfish-Ikegami• Okumurra-Hatta• Longley-Rice• Lee
  • 42. Perencanaan Coverage: Propagasi, Link Budget dan Coverage• Perhitungan link budget digunakan untuk memperkirakan maksimum redaman yang diperbolehkan antara perangkat mobile terhadap base station.• Path loss maksimum memungkinkan kita melakukan perhitungan radius sel suatu BTS untuk suatu lingkungan radio tertentu dengan model propagasi tertentu.• Ukuran sel diperlukan untuk melakukan perhitungan jumlah sel yang dibutuhkan untuk meng-cover suatu area layanan.
  • 43. Perencanaan Coverage: Propagasi, Link Budget dan Coverage• Coverage / Cakupan sel berperan penting dalam menentukan wilayah-wilayah yang mendapatkan layanan telekomunikasi.• Link Budget digunakan untuk mengetahui cakupan sel.
  • 44. Link Budget path lossTXer RXer Txer Rxer component component link budget component
  • 45. Komponen-komponen dalam perancangan link budget• Gain sistem merupakan budget energi dari sistem berdasarkan profil sistem• Margin Sistem merupakan nilai loss yang diperkirakan akan dialami oleh sistem ketika dioperasikan.• Radius sel merupakan keluaran dari proses perhitungan link budget. • Radius sel diprediksi dengan menggunakan model propagasi. • Perhitungan radius secara teoritis dilakukan pada perancangan link budget.
  • 46. LINK BUDGET Gain Margin RadiusSistem Sistem SelDaya Pancar Fading Margin Model Propagasi InterferenceGain Antena Frekuensi Operasi Margin Tinggi Antena Sensitivitas Loss penetrasi pemancar/ Penerima bangunan penerimaSNR threshold Gain/loss Jarak Referensitiap modulasi sistem lainnya
  • 47. Radius Sel Model Path loss Frekuensi Operasi TipeSystem Gain Modulasi dan Radius Coding Sel
  • 48. Dasar Pemahaman Link Budget
  • 49. Link Budget: Up Link • Base station parameters• Frequency range, MHz - Rx ant. gain Rx jumper loss• Mobile parameters - Rx tower top amp gain (net) - Tx PA output (max) - Rx cable loss - Cable loss - Antenna gain - Rx ligthning arrester loss -------- (Subsc. ERP max, dB) - Rx duplexer loss• Environmental margins - Rx diversity gain - Fading margin - Rx coding gain - Environmental attenuation - Cell overlap - Rx sensitivity -------------------- (dB) ------- Up-link budget, dB
  • 50. Link Budget: Down Link • Environmental margins• Frequency range, MHz - Tx diversity gain• Base station parameters - Fading margin - Tx PA output power - Environmental attenuation - Cell overlap - Tx combiner loss (dB) - Tx duplexer loss • Mobile parameters - Tx ligthning arrester loss - Antenna gain - Tx cable loss - Rx diversity gain - Tx jumper loss - Antenna cable loss - Tx tower top amp gain - Coding gain - Rx sensitivity - Tx antenna gain ---------- Down-link budget, dB (Cell ERP, dB)
  • 51. ENGINEERING MODEL Example of WCDMA RLB for VoiceLink budget of AMR 12.2 kbps voice service (120 km/h, in-car users, Vehicular A type channel,with soft handover)
  • 52. Example of WCDMA RLB for DataLink budget of 144 kbps real-time data service (3 km/h, indoor user covered by outdoor BS,Vehicular A type channel, with soft handover)
  • 53. Link Budget Tipikal
  • 54. Link Budget Tipikal
  • 55. Contoh Perhitungan Link Budget
  • 56. Link Budget arah Uplink
  • 57. Link Budget arah Downlink
  • 58. Perencanaan Kapasitas: Calculation steps0. Dasar/Pengertian1. Number of user2. User density3. Services and Type4. Penetration : building, vehicular, pedestrian5. BHCA and call duration6. OBQ7. Site calculation
  • 59. Kapasitas Sel (Capacity Plan)• Kapasitas sistem adalah kemampuan sistem dalam menyampaikan banyaknya informasi per satuan waktu (bit per detik).• Menghitung kapasitas sistem• Menghitung kapasitas sistem Permutasi Subcarriers
  • 60. Pengertian KapasitasSelama fase perencanaan penggelaran, setelah operatormenetapkan ukuran kanal spektrum radio, pertanyaanberikutnya adalah : Berapa banyak koneksi data yang dapat disuport oleh kanal tersebut ? Berapa banyak Base Station yang diperlukan untuk suatu area layanan ?Pemahaman terhadap kapasitas sistem adalah kunciuntuk menggelar Access Network yang sukses.
  • 61. Perencanaan Kapasitas: Kategori PelangganUntuk perencanaan kapasitas, pelanggan dibagi menjadi 3 kategori Professional User: Pelanggan yang membutuhkan Mobile Broadband Access untuk tujuan bisnis dan juga personal. • E-mail, video conferencing, file downloads, etc. • Akses mobile dan nomadic broadband dibutuhkan untuk mempertahan komunikasi ketika commuting, meeting with clients, inspecting remote job sites, dll. High-End Consumer: Pelanggan dengan high usage, dengan penggunaan aplikasi untuk keperluan personal lebih tinggi dibanding bisnis. • Web browsing, gaming, music downloads, dll. Casual User: Pelanggan yang menginginkan akses secara periodik, hanya beberapa jam per hari. • Web browsing
  • 62. Perencanaan Kapasitas: Pengertian KapasitasKapasitas suatu jaringan wireless (fixed/mobile)didefinisikan sebagai jumlah dari user-user yang dapatdisuport oleh suatu cell site dengan mempertahankankriteria QoS/GOS tertentu.Dapat juga direpresentasikan oleh jumlah user yangdiasosiasikan dengan throughput data dan kriteria QoStertentu.Spektrum RF yang tersedia, mempunyai kaitanlangsung dengan kapasitas yang bisa diberikan.Air Interface yang mampu menggunakan alokasispektrum secara efisien, akan menawarkan kapasitasyang lebih besar.
  • 63. Perenanaan Kapasitas: Perhitungan Throughput Faktor yang menentukan throughput yang tersedia pada suatu sektor: 1. Jumlah data subcarrier yang digunakan per frame OFDM/OFDMA 2. Tipe Modulasi Terdapat 2 coding rate per modulation rate yang menghasilkan 8 level modulasi yang berbeda : (1) BPSK ½ (2) BPSK ¾ (3) QPSK ½ (4) QPSK ¾ (5) 16QAM ½ (6) 16QAM ¾ (7) 64QAM 2/3 (8) 64QAM ¾ 3. DL/UL duration ratio
  • 64. Estimasi Jumlah Pelanggan– Pada implementasi real, jumlah pelanggan harus berdasarkan survey demand baik mikro (lingkup kota, data primer, survey demand) maupun makro (national, data sekunder mis. Dari BPS)– Jumlah pelanggan ditentukan oleh ukuran pasar (market size), target market share dan penetrasi service yang diinginkan,– Market Size menunjukkan seberapa besar pasar broadband yang ada di kota tersebut : • Jumlah dan trend pengguna komputer • Jumlah dan trend pengguna broadband wireline maupun broadband wireless existing– Penetrasi layanan yang diinginkan • Jenis layanannya (product) • Segmentasi pelanggan yang disasar (umur, belanja telekomunikasi, dlsb)– Target market share ditentukan oleh • Kompetitor dan level kompetisi • Rata-rata pelanggan yang pindah (churn rate) • Operator lama atau operator baru
  • 65. Kebutuhan Jumlah Base StationKebutuhan jumlah BS untuk suatu area tertentu ditentukan oleh – Capacity Demand, berapa total “bps” yang dibutuhkan oleh area tersebut yang dihitung mencakup kebutuhan 3 – 5 tahun ke depan. Kebutuhan kapasitas ditentukan oleh – Jumlah pelanggan mencakup pertumbuhannya 3-5 thn ke depan – Rata-rata trafik per pelanggan (desain layanan) – Over booking yang menyatakan resource tersebut disediakan secara sharing (untuk berapa pelanggan ?) atau ekslusif (tanpa sharing) – Luas wilayah, luas kota dimana BS akan dipasang dan kategorinya apakah urban, sub-urban atau rural – Radius per sector BS – Kapasitas per sector BS
  • 66. Estimasi Jumlah Pelanggan– Pada implementasi real, jumlah pelanggan harus berdasarkan survey demand baik mikro (lingkup kota, data primer, survey demand) maupun makro (national, data sekunder mis. Dari BPS)– Jumlah pelanggan ditentukan oleh ukuran pasar (market size), target market share dan penetrasi service yang diinginkan,– Market Size menunjukkan seberapa besar pasar broadband yang ada di kota tersebut : • Jumlah dan trend pengguna komputer • Jumlah dan trend pengguna broadband wireline maupun broadband wireless existing– Penetrasi layanan yang diinginkan • Jenis layanannya (product) • Segmentasi pelanggan yang disasar (umur, belanja telekomunikasi, dlsb)– Target market share ditentukan oleh • Kompetitor dan level kompetisi • Rata-rata pelanggan yang pindah (churn rate) • Operator lama atau operator baru
  • 67. Nominal Planning By Capacity
  • 68. Nominal Planning By Capacity: Number of userUn = Uo (1 + gf)n Uou = u x UoN Uosub = sub x UoN Uo is Uou or UosubWhere: UoN = a x b x d x N• Un : num of user on year ‘n’• Uo : initial num of user (based on urban/sub-urban)• a : percent of cellular user (%)• b : penetration of operator A (%)• d : Percent of LTE user• N : num of civilian in the object area• gf : num of user growth factor• n : planned year• u/sub : urban or sub-urban penetration (%)
  • 69. Nominal Planning By Capacity: Number of userEx :• Population = 1445892 people• Cellular penetration = assumption 80%• LTE penetration = assumption 10 %• LTE provider A penetration = assumption 50 % Population 1445892 people Customer cellular (80%) 1156713 user Customer LTE (10%) 115671 user Customer LTE provider A (50%) 57835 userUser prediction in 5th years• U5 = 57835 ( 1 + 0.05 )5 assumption fp=5% = 73814 user
  • 70. Nominal Planning By Capacity: User Density Lu = L x u Cu = Un/ Lu• Lu : urban area wide • Cu : Urban area density• L : object area wide • Csub : sub-urban area density Ex : • urban area penetration = assumption 40 % => Urban area wide (Lu) : 242,928 km2 => Cu = 44288 / 242,928 = 182,31232 user/km2
  • 71. Nominal Planning By Capacity: Traffic user prediction
  • 72. Nominal Planning By Capacity: Traffic user prediction - Avg. Traffic user / BH = 10 MB - Avg. Traffic user / Sub = 10 MB / 3600 s *8 bit = 22.75 Kbps - Total Offered Traffic = 73814 * 22.75 = 1679268.5 Kbps = (1680 Mbps)
  • 73. Nominal Planning By Capacity
  • 74. Nominal Planning By Capacity• Calculate Cell by Capacity Element Value Unit Cell Capacity 18 Mbps Sector 3 sector EnodeB Capacity 54 Mbps Congestion Control 80 % Total Offered Traffic 1680 Mbps No. Of Site 24.88889 Site• No. Of Site = 25 Site
  • 75. Nominal Planning By Capacity Number of UserUn = Uo (1 + gf)n Uou = u x UoN Uosub = sub x UoN Uo is Uou or UosubWhere: UoN = a x b x d x N• Un : num of user on year ‘n’• Uo : initial num of user (based on urban/sub-urban)• a : percent of cellular user (%)• b : penetration of operator A (%)• d : Percent of LTE user• N : num of civilian in the object area• gf : num of user growth factor• n : planned year• u/sub : urban or sub-urban penetration (%)
  • 76. Customer Prediction Parameter Nominal Planning By CapacityEx :• Population = 1445892 people• Cellular penetration = assumption 80%• LTE penetration = assumption 10 %• LTE provider A penetration = assumption 50 % Population 1445892 people Customer cellular (80%) 1156713 user Customer LTE (10%) 115671 user Customer LTE provider A (50%) 57835 userUser prediction in 5th years• U5 = 57835 ( 1 + 0.05 )5 assumption fp=5% = 73814 user
  • 77. Example User CalculationEx :• urban penetration = assumption 60 %• suburban penetration = assumption 40 %• Urban user = 73814 x 60 % = 44288 user• Suburban user = 73814 x 40 % = 29525 user
  • 78. User Density Lu = L x u Lsub = L x sub• Lu : urban area wide• Lsub : sub-urban area wide• L : object area wide Cu = Un/ Lu Csub = Un/Lsub• Cu : Urban area density• Csub : sub-urban area density
  • 79. Example User Density CalculationEx :• urban area penetration = assumption 40 %• suburban area penetration = assumption 40 %• Openarea = assumption 20 %=>Urban area wide (Lu) : 242,928 km2Sub-urban area wide (Lsub) : 242,928 km2=>Cu = 44288 / 242,928 = 182,31232 user/km2Csub = 29525 / 242,928 = 121,54155 user/km2
  • 80. Services and Type• Services (Rb) – VoIP : 64 kbps – FTP : 1000 kbps – Video : 384 kbps• Type (c) – Building : 50 % – Vehicular : 30 % – Pedestrian : 20 %
  • 81. • Penetration (p) per type per servicee.g: BUILDING VoIP usage penetration = 0.5 BUILDING FTP usage penetration = 0.4 PEDESTRIAN Video usage penetration = 0.3• BHCA (B) per type per servicee.g: BUILDING VoIP usage penetration = 0.008 BUILDING FTP usage penetration = 0.009 PEDESTRIAN Video usage penetration = 0.008• Call duration (h) per type per service (ms)e.g: BUILDING VoIP usage penetration = 60 BUILDING FTP usage penetration = 50 PEDESTRIAN Video usage penetration = 50
  • 82. Penetrasi User (p) Building Pedestrian Vehicular Voip 0,5 0,5 0,2 Video 0,3 0,3 0,2 FTP 0,4 0,4 0,3 call duration (h) type service net user bit rate (Rb) voip video ftp VoIP 64000 building 60 40 50pedestrian 60 50 70 FTP 1000000vehicular 60 40 80 Video 384000 BHCA (B) Service Building Pedestrian Vehicular Voip 0,008 0,008 0,009 Video 0,007 0,008 0,009 FTP 0,009 0,008 0,008
  • 83. OBQ (Offered Bit Quantity)• VoIP OBQT = cT x Cu; T x pT x RbVoIP x BT x hT• FTP OBQT = cT x Cu; T x pT x RbFTP x BT x hT• Video OBQT = cT x Cu; T x pT x RbVid x BT x hT Note: if T= pedestrian, then “OBQT “ is pedestrian OBQ, “BT “ is pedestrian BHCA, etc. T : Type (Building; Vehicular; Pedestrian)
  • 84. OBQ cont’d OBQ total = OBQVoIP + OBQFTP + OBQVideoWhere:OBQVoIP = OBQvehicular + OBQbuilding + OBQ pedestrianOBQFTP = OBQvehicular + OBQbuilding + OBQ pedestrianOBQVideo = OBQvehicular + OBQbuilding + OBQ pedestrian
  • 85. OBQ cont’d OBQ Service Building Pedestrian Vehicular Voip 1,400158616 0,5600634 0,252029 Video 2,940333094 5,2505948 1,008114 FTP 16,40810878 8,1675919 7,000793 ∑ 20,74860049 13,97825 8,260936OBQtotal= 20,74860049 + 13,97825 + 8,260936 = 42,98779
  • 86. eNodeB Capacity bit N symbol per subframePeakBitRate[ Mbps] xN subcarriers x Hz 1ms Modulation Bandwidth (MHz) QPSK 16 QAM 64 QAM 1.4 2.016 Mbps 4.032 Mbps 6.048 Mbps 3 5.04 Mbps 10.08 Mbps 15.12 Mbps 5 8.4 Mbps 16.8 Mbps 25.2 Mbps 10 16.8 Mbps 33.6 Mbps 50.4 Mbps 15 25.2 Mbps 50.4 Mbps 75.6 Mbps 20 33.6 Mbps 67.2 Mbps 100.8 Mbps
  • 87. Site Calculation• Site (L) L = (50.4 x 3) / OBQtotal = (50.4 x 3) / 42,98779 = 3,5172778 km2 50.4 Mbps ---> (asumption: using 64 QAM 1/1, BW = 10 MHz)• Radius (d) d = (L / 2.6 / 1.95) ^ 0.5 = (3,5172778 / 2.6 / 1.95) ^ 0.5 = 0,832912489 km
  • 88. Site Calculation Con’t• Number of eNodeB (M) M = Lu / L = 242,928 km2 / 3,5172778 km2 = 69,06704366 We use “Lu” JUST IN CASE we count urban capacity only
  • 89. PlanningCellular Planning Deployment Planning•Introduction to Cellular Planning •Design Criteria•Link Budget •Technology Considerations•Dimensioning •Frequency Bands•Coverage Planning •Core Design•Traffic Forecasting •RF Design - RAN•Calculation Steps •Backhaul Considerations•Nominal Planning •Bandwidth Efficiency •Investment/Pricing Models •Business Consideration •Ecosystem Deployment
  • 90. Design Criteria• Which Spectrum Licenses are Available?• Is Coverage Area Urban or Rural?• Are Existing Towers Available or Will Tower Construction be Required?• Applications - Fixed Solution vs. Mobility?• CPE – Outdoor, USB Desktop, Dongle, or Handsets• What Backhaul Options are Available?• Product Availability and Number of Vendor Options?• Ensure Design Reflects Goals for Geographic Coverage and Broadband Speed?
  • 91. 700 MHz Band Plan700 MHz – Lower Band 48 MHz; Upper Band 60 MHz Most Blocks are 6 MHz, Allowing 5 MHz LTE Carrier35% Build-Out Required by June 13, 2013 for A,B, & E40% Build-Out Required by June 13, 2013 for Upper C
  • 92. 700 MHz Details• Block A – 12 MHz Lower Band Paired• Block B – 12 MHz Lower Band Paired• Block C – 12 MHz Lower Band Paired and 22 MHz Upper Band Paired• Block D – 6 MHz Lower Band Unpaired (Video) and 10 MHz Upper Band Paired (Public Safety)• Block E – 6 MHz Lower Band Unpaired (Video)
  • 93. 700 MHz Spectrum Ownership• Verizon – 22 MHz Upper C Block Nationwide (except Alaska and U.S. Territories) and Scattered Lower A and B Blocks• AT&T – Scattered Lower B and C Blocks (Mostly Metro Areas); Purchasing Unpaired Lower D Block Nationwide and Unpaired E Block in some Major Markets from QualComm (for LTE Use)• Sprint – No 700 MHz• T-Mobile – No 700 MHz• Regional Carriers – Lower B and C Blocks (Mostly Rural)• Public Safety – 10 MHz Upper D Block
  • 94. AWS Band Plan AWS – Advanced Wireless Service; 1.7 GHz; 2.1 GHzBlocks are 6 or 10 MHz, Allowing 5 or 10 MHz LTE Carrier Substantial Service Build-Out Deadline is 2021
  • 95. PCS Band PlanPCS – Broadband Radio Service; 1.9 GHz
  • 96. BRS/EBS Band Plan BRS – Broadband Radio Service; 2.6 GHz• EBS (Educational Broadband Service) was not licensed for commercial services, although its use has been postulated for LTE in some markets.• Due to current Band 7 ecosystem using FDD, BRS is of limited use until Band 41 TDD ecosystem becomes reality.
  • 97. RF Design - RAN• Using RF Analysis Tool, Determine Predicted Coverage Levels and Aggregate Speeds Based Upon Technology and CPE Selection• Utilize Various GIS Data To Evaluate Possible Tower Sites• Select First Choice Tower Locations in Populated Areas• Select Additional Tower Locations to Fill in Rural Areas• Identify Areas Where New Towers May Be Required• Generate Site Search Rings When Necessary• Analyze Results and Add or Delete Sites as Required
  • 98. Service Area Of Interest• Network Planning / Design Tools-GIS Software • E911 Location Data • Highway/Street Traffic Count Vector Data • Minimum UL/DL Throughput Requirements • Network Resource Locations
  • 99. Propagation Tools• Propagation Software Tools • Integrated With GIS Software • Target to Customer Design • Backhaul (Microwave) Feasibility Tool • Operations Reports to Assist with Customer Service
  • 100. Shaded Relief Showing Topography of Area
  • 101. E911 Points for Potential LocationsEvaluate Network Objective •Percentage of Projected Coverage Area •Coverage of Major Thoroughfares •Ability For Sites To Be Contiguous •Fixed Locations and/or Mobile DevicesNetwork Parameters •Technology Type •Frequency Band(s) •Network Backbone/Backhaul
  • 102. Existing Cellular Coverage in Planned Service AreaCoverage Objective for Planned Service Area 102
  • 103. Establish Search Area Ring (SAR)
  • 104. Search Area Ring (SAR)Description:Identify feasible sites for providing necessary coverage as to existing network.The SAR includes the following activities and deliverables:• Importing target coverage zones• Develop alternate search area ringsBase map indicating:• RSA Boundaries• E911 addresses (When Necessary)• Existing Coverage• Contours• Topography• Roadways• Target and Propagation overlay demonstrating RF coverage as related to target zones for specified frequencies.
  • 105. Review Co-Location Possibilities 105
  • 106. Establish Site Location 106
  • 107. Projected Coveragein Planned Service Area •PERCENTAGE OF PROJECTED COVERAGE AREA •COVERAGE OF MAJOR THOROUGHFARES
  • 108. LTE Coverage Maps LTE Downlink (USB Dongle) 2Mbps to 8MbpsFour Towers with Five Mile Radius; Roughly 16 Miles x 16 Miles
  • 109. LTE Coverage Maps LTE Uplink (USB Dongle) 2Mbps to 6MbpsFour Towers with Five Mile Radius; Roughly 16 Miles x 16 Miles
  • 110. Backhaul• LTE demands high-capacity backhaul• Leased T1’s will prove inadequate• Viable choices are fiber or microwave
  • 111. LTE Deployment Options
  • 112. Core Design• Design Core Network Based Upon Projected Number of Subscribers and Bandwidth Requirements• Is VoIP Required or Data Only?• Ancillary/OEM Solutions Needed • Billing • Network Management, • Subscriber Provisioning • Regulatory (E911, CALEA)• Identify Existing Equipment Required to Interface• Evaluate Building Feasibility Related to Redundant Backhaul Facilities, Security, and Back-up Power
  • 113. LTE Evolved Packet Core
  • 114. Technology Considerations• 700 MHz is Fundamental Design Based Upon Coverage; However, Bandwidth is Limited• Reserve 700 MHz for Rural Areas that Require More Reach but Serves Fewer Subscribers• Use AWS, BRS, or PCS for Capacity in Populated Areas with Shorter Reach
  • 115. LTE vs. WiMax• Although LTE and WiMAX are Similar in Technology, Vendors have Moved Development Emphasis to LTE• WiMAX has Less Vendor Competition Today• LTE will have Longer Product Life and Future Prices are More Likely to Decrease
  • 116. Broadband Subscribers per 100 Inhabitants 0 5 10 15 20 25 30 35 40 Denmark Iceland Netherlands Finland Switzerland Korea Norway Hong Kong Sweden United Kingdom France Luxembourg Germany High GDP per Capita Markets BrazilSource: ITU Dom Republic Mexico Peru Venezuela China India Indonesia Malaysia Philippines LTE and WiMAX: BB Penetration Thailand Lower GDP per Capita Markets Vietnam Algeria Egypt Morocco Rwanda South Africa Tunisia Zimbabwe
  • 117. LTE and WiMAX: PositioningLTE WiMAX• To address capacity pressure in 3G networks To address underserved broadband connectivity demand• Full mobility is the value proposition Portability is the value proposition• Geared toward developed markets Geared toward emerging markets Relevant to emerging markets today• Relevance to emerging markets not until 2015 APEJ Subscribers India: WiMAX Subscriber Growth 3,500 300,000 Subscribers in 000s Subscribers in 250,000 3,000 200,000 2,500 000s 150,000 2,000 100,000 1,500 50,000 1,000 0 500 2007 2008 2009 2010 2011 2012 0 3G HSPA 2006 2007 2008 2009 2010 2011 2012 Source: IDC’s Asia/Pacific Mobile Wireless Tracker, 3Q08 Source: IDC Asia/Pacific, 2009
  • 118. Technology Comparison700 MHz WiMAX LTEDownlink OFDMA OFDMAUplink OFDMA SC-FDMAMIMO Supported Today 2x2 4x2 downlink, 1x4 uplinkCell edge Soft frequency re-use Inter-cellinterference control Interference controlMobility Hard handoff Full mobilityMicrocells available Yes YesVoIP Support w/ optional core node w/ optional IMS core
  • 119. Technology Comparison700 MHz WiMAX LTERouter CPE Yes YesUSB Dongle CPE Yes YesOutdoor CPE Yes YesSmart Phones No FutureBuilt-in Laptop Support Not at 700 MHz FutureVendors at 700 MHz One Five or MoreIndustry Group IEEE/ 3GPP WiMax Forum
  • 120. Bandwidth Efficiency700 MHz LTEAvailable Licensed Bandwidth (MHz) 6+6Usable Bandwidth (MHz) 5+5Spectral efficiency, downlink (bps/Hz) 1.67Spectral efficiency, uplink (bps/Hz) 0.89Average Throughput per 3-sector site, downlink (Mbps) 25.05Average Throughput per 3-sector site, uplink (Mbps) 13.35Loading Factor, downlink 70%Loading Factor, uplink 60% * Performance data is averaged from various vendors’ claims as of 2011.
  • 121. Traffic Forecasting: Subscriber Traffic Model 700 MHz LTE Traffic per Subscriber per Month (GB) 30 Downlink Traffic (%) 70% Uplink Traffic (%) 30% Hours in the Busy Period per Day 4 Percent of Daily Traffic Carried in Busy Period 25% Downlink Busy Hour Traffic per Subscriber 97 kbps Uplink Busy Hour Traffic per Subscriber 42 kbps Subscribers Supported per Sector 60 Subscribers Supported per Base Station (3 sectors) 180* Performance data is averaged from various vendors’ claims as of 2011.
  • 122. Estimate of Investment700 MHz LTEAccess Network3-Sector Single-5MHz-Carrier Macro Cell $55,000Investment per Subscriber $306Core NetworkBroadband Data-Only Core Network $3,000,000Incremental for VoIP Core Network $1,400,000CPE TerminalsDesktop/Fixed CPE $395USB Dongle $200* Pricing data is averaged from various vendors’ proposals as of 2011.
  • 123. Pricing - Example Network #1700 MHz LTEBase Stations 50Subscribers Supported 9000Total Investment $9,827,500Investment per Subscriber $1,092 * Pricing data is averaged from various vendors’ proposals as of 2011.
  • 124. Pricing - Example Network #2700 MHz LTEBase Stations 100Subscribers Supported 18,000Total Investment $15,255,000Investment per Subscriber $848* Pricing data is averaged from various vendors’ proposals as of 2011.
  • 125. Pricing - Example Network #3700 MHz LTEBase Stations 200Subscribers Supported 36,000Total Investment $26,110,000Investment per Subscriber $725* Pricing data is averaged from various vendors’ proposals as of 2011.
  • 126. Start to Finish Process• Feasibility Study and Business Case• Preliminary RF/Backhaul Network Design• RFP Preparation, Proposal Analysis, and Contract Negotiation• Site Acquisition and Lease Negotiations• Permitting / Legal• Detailed RF/Backhaul Network Design• Project Management and Asset Management• Construction Management• As Built Drawings
  • 127. LTE Deployment Business Consideration: When & How?
  • 128. Relative Adoption of Technologies 3.9G 3G 2G Rysavy Research projection based on historical data.
  • 129. 2G and 3G Coexistence
  • 130. Different Deployment Scenarios for LTE
  • 131. The reuse of existing 2G and 3G sites for NGMN will keep site cost flat
  • 132. LTE Deployment Scenario
  • 133. LTE Spectrum Options
  • 134. FemtoCell technology is part of the solution.
  • 135. LTE FEMTO
  • 136. Evolution of key concepts in SAE: Closed Subscriber Group, access through Home-eNB• Support for accessing the network through Home-eNBs – H-eNBs can have closed cells and hybrid cells• Basic architecture: 136
  • 137. Femtocell Motivation 137
  • 138. Most Mobile Data Use Occurs IndoorsSource: Informa’s Mobile Access at Home Report 138
  • 139. Femtocell @ LTE 139
  • 140. Sample Interference Issues 140
  • 141. Ecosystem: Expected shorter time to market
  • 142. LSTI - Taking LTE/SAE from Specification to Rollout A viable Ecosystem is the key to success
  • 143. Global LTE Commitments 25+ Operators in over 16 countries Western Europe Hutchison 3 - Ireland North America Orange - France Telecom Italia - Italy Telia Sonera - Sweden Aircell - USA Telia Sonera - Norway AT&T Mobility – USA T-Mobile – Germany Bell Canada - Canada ... CenturyTel – USA Cox - USA MetroPCS - USA Rogers Wireless - Canada Telus - Canada Verizon - USA .... Asia-Pacific China Mobile - China China Telecom - Chna KDDI - Japan KTF - South Korea New Zealand Telecom - NZ NTT DoCoMo - Japan Piltel - Philippines SK Telecom - South Korea SmarTone- Vodafone - Hong Kong Telstra – AustraliaSource. GSA March 2009 ....
  • 144. Global LTE Commitments Trials• Verizon Wireless —2009 • TeliaSonera (Sweden, Norway) — 2010• Telstra - 2009 • Hutchison 3 (Ireland) — 2011• MetroPCS — 2010 • T-Mobile — 2011• CenturyTel — 2010 • Orange — 2011• Aircell — 2011 • China Mobile — 2011• Cox — 2011 • China Telecom — 2011–2012• AT&T Mobility — 2011 • Telecom New Zealand — 2011–2012• NTT DoCoMo — 2010 • SK Telecom (operates both CDMA EV-DO• KDDI — 2010 and WCDMA/HSPA networks) — TBD• Rogers Wireless — 2010 • KT Freetel (operates both CDMA• TELUS — 2010 EV-DO and WCDMA/HSPA networks) —• Bell Canada — 2010 TBD• Telecom New Zealand (operates both CDMA EV-DO and WCDMA/HSPA networks) • Piltel — TBD — 2010 • SmarTone-Vodafone — TBD
  • 145. NGMN is built with strong industry consensus A viable Ecosystem is the key to success
  • 146. The EndThank You