SlideShare a Scribd company logo
1 of 81
Mathematical models of
      evolution
               Jose Cuesta

Grupo Interdisciplinar de Sistemas Complejos
         Departamento de Matemáticas
         Universidad Carlos III de Madrid
"Every body of discovery is mathematical in
form, because there is no other guidance we
can have."
                            - Charles Darwin


"Mathematics seems to endow one with
something like a new sense."
                          - Charles Darwin
"A mathematician is a blind man in a dark
room looking for a black cat which isn't
there."
                            - Charles Darwin
12 February 1809 – 12 February 2009
Summary

(1) Fundamentals of evolution
(2) Genetic drift
(3) Sequences
(4) Fitness landscapes
(5) Neutral evolution
FUNDAMENTALS
 OF EVOLUTION
Evolution: building blocks

        Replication

        Selection

        Mutation
Evolution: building blocks

        Replication

        Selection

        Mutation
Replication

Bacterial reproduction:

                                   t
        x t 1=2 x t         x t =2 x 0

3 divisions / hour = 144 divisions / 2 days

  144         43        28
 2 ≈2×10 ≈2×10 kg ≈3000 earths!
Exponential growth

d N t 
         =r N t
  dt

  Malthus law
Saturation

dN
dt       
   =r N 1−
           N
           K      
  carrying capacity


                         rt
                K N 0e
   N t=             rt
                                lim N t =K
             K  N 0  e −1    t ∞



   saturation maintains a constant population
Evolution: building blocks

        Replication

        Selection

        Mutation
Fitness

fitness: mean number of adult offspring in the next
generation (separated generations)

fitness: mean growth rate (mixed generations)



                  dN
                     =r N
                  dt
                    fitness
Competition
  d NA                  dNB
       =r A N A             =r B N B
   dt                    dt
      NA                NB
x=                y=          =1−x
   N A N B          N A N B

dx                     dy
   =x  r A −           = y r B−
dt                     dt

   average fitness:   =x r A y r B
Survival of the fittest
           dx
              =x 1−x  r A−r B 
           dt

                   r Ar B

 0                    x                1
                                     all-A
                    r Ar B


 0                    x                1
all-B
Survival of the fittest
                                 n
 d xk
      = x k  f k −        = ∑ x k f k
  dt                            k =1


       n

      ∑ x k =1      x k ≥0      ∀t
      k =1




n=2              n=3                   n=4
Survival of the fittest
                    n
        d xk
             = xk ∑ x j  f k − f j 
         dt       j =1



       assume    f k f   j   ∀ j≠k




lim x k t =1        lim x j t =0     j≠ k 
t ∞                  t ∞
Fundamental theorem of natural
         selection
        n
  d           d xk n                    n
     =∑     fk     =∑ f k x k  f k −=∑ x k  f k −2≡ 2f
  d t k=1       d t k=1                 k=1




                          d   2
                             = f
                          dt

                                       2
Mean fitness never decreases   f 0 
The speed of increase is determined by the variation within
the population
Composition-dependent fitness
            f k =f k  x 1 ,, x n ≡f k  x

Example: two species

                   r A  x , y =r  A y
                   r B  x , y =r  B x

         symbiosis                      competition
           A 0                             A 0
           B 0                             B 0
Symbiotic coexistence
      dx
         =x 1−x [ A− A  B  x ]
      dt

       A 0                A
                    x *=
       B 0              A  B



0              x*                        1
                    x
Competitive exclusion
      dx
         =x 1−x [ A− A  B  x ]
      dt

       A 0                A
                    x *=
       B 0              A  B



0              x*                        1
                    x
Evolution: building blocks

        Replication

        Selection

        Mutation
Replication with error

       uA




       uB
Replication with error
      dx
         = x r A 1−u A  y r B u B − x
      dt
      dy
         = x r A u A y r B 1−u B − y
      dt

               =x r A y r B

dx
   =x 1−x  r A−r B 1−x  r B u B− x r A u A
dt

       x =0    x=1     are not equilibria
Replication with error
         rAuA
 x *≈1−                    r Ar B
        r A−r B
        r B uB
  x *≈                     r A r B
       r B −r A
          uA
  x *=                     r A =r B
       u A u B

 mutation is the source of variability
Evolution with mutation
mutation matrix       Q=q ij          u=1, , 1
         n

        ∑ qij=1                 ⇔      Q u =u T       T

        j=1
                                       W ≡RQ

                               
                 r1         0
       R=             ⋱
                 0         rn           mutation-selection matrix

                                                          n
   dx
      =x W − x                     =x W u =∑ x j r j
                                                  T
   dt                                                     j=1


                      quasispecies equation
Evolution with mutation
                                            may be negative!
fundamental theorem

d d x     T    2 T  2            2 T
   =    W u =x W u − =x W − I  u
dt   dt

equilibria:   x * W = * x *

if     is irreducible,  * is the largest eigenvalue of
   Q                                                      W

as   x * normally corresponds to a mixed population,
* need not be the absolute maximum
GENETIC DRIFT
Genetic drift
neutral evolution (no selection, no mutation)
Small populations: bottlenecks
Fisher-Wright model
 A       A    A     A     A   a      a       a     generation t



              k                    N −k
                                             j              N− j
sample with replacement
                                      
                              P kj = N
                                     j
                                         k
                                         N
                                                 N −k
                                                  N     
A        A    a     a     a   a      a       a      generation t+1


     j                    N−j
Fisher-Wright model
Fisher-Wright model
two absorbing states:



          k =N                         k =0

                 {
          i=P lim X t =N X 0=i
                     t ∞      ∣        }
          N
     i= ∑ P ij  j          0 =0       N =1
          j=0
                                             i
     E { X t 1∣ X t=k }=k         ⇒     i=
                                             N
Moran model
A   A   A      A   A   a    a     a


        k                  N −k

    A




A   A   A      A   A   A    a     a


            k 1           N −k −1
Moran model

             k  N −k 
P k , k ±1=        2
                 N
                    2   2
           N −k  k
Pk ,k =            2
                 N
P k , j =0         if ∣k − j∣1


    birth-death process with
      two absorbing states
Birth-death processes
                                j                       i −1
                                        P k , k−1
       q 0=1                q j =∏                  Q i =∑ q j
                               k =1     P k , k1       j =0


if absorption


                 {
    i=P lim X t =N X 0=i
             ∞
                     t ∞           ∣          }
    t ij =∑  P ij
                        n
                                T = P T I          t 0j=t Nj =0
         n=0

if ergodic

    w =w P
Birth-death processes
two absorbing states (0 & N)
                                    Q N 1−i  j
                             t ij =                                     if ji
             Qi                        q j P j , j1
         i=
             QN                     Q N i 1− j 
                             t ij =                                     if ji
                                       q j P j , j1
one absorbing state (N)

           Q N −Q i                                    Q N −Q j
    t ij =                 if ji               t ij =                     if j i
           q j P j , j1                               q j P j , j 1

no absorbing state
                                       q i P i , i1 −1
                           wi=    N

                                 ∑  q j P j , j 1−1
                                 j=0
Moran model

                                                    i
                   q i =1          Qi =i        i=
                                                    N


    t ij = N      N −i
                   N−j          if j i         t ij =N   
                                                           i
                                                           j
                                                                if ji


mean absorption time
                                  N −1
                              t i= ∑ t ij =O  N 
                                  j =1
Fixation of a mutant allele



                  1
              1=
                  N
Genetic drift under selection

   A       A      A        A   A   a    a     a


                  k                    N −k
probability proportional
      to fitness



           A
Genetic drift under selection
               N −k        kfA
   P k , k 1=
                 N k f A  N −k  f a
               k     N −k  f a
   P k , k−1=
               N k f A N −k  f a

            P k , k−1 f a −1
                     = ≡r
            P k , k1 f A

                  1−r −i
              i=     −N
                  1−r
Fixation of a mutant allele
          under selection

                  −1
             1−r                1−r
         A=     −N
                          a =     N
             1−r               1−r


• If r 1 selection favors A over neutral case
• If r 1 selection favors a over neutral case
Diffusion approximation
                      w t 1=w t  P
master equation


         w i t 1−w i t =∑ w j t  P ji −w i t  ∑ P ij
                                  j                         j




birth-death process

            wi t=∑ [ wi ±1 t  P i ±1,i −wi t  P i ,i ±1 ]
                        ±
Diffusion approximation
        i                                                     1 2
     x≡             w i t ≡N f  x , t         t≡  x  = 2
        N                                                     N
      a  x ≡ P i ,i 1−P i , i−1     b  x ≡ P i , i1 P i ,i −1


forward Kolmogorov (Fokker-Planck) equation



  ∂ f  x ,t       ∂                        1 ∂2
               =−N    [a  x  f  x , t ]      2
                                                    [ b x f  x , t]
      ∂t           ∂x                        2 ∂x
Diffusion approximation
absorption probability


                                   1
              0=−N a  x  '  x b x ' '  x
                                   2

mean absorption time


                                     1
             −1=−N a  x   '  x  b  x  ' '  x 
                                     2
SEQUENCES
Sequences: DNA
Chromosomes
Mitosis & meiosis
Genes
Transcription: genetic code
Proteins
Locus & alleles
Types of mutation
FITNESS LANDSCAPES
Fitness landscapes

• Metaphor introduced by Wright (1932)
• Representation of fitness of individuals or
  population
• Key points:
  – Fitness is affected by environment (external
    factors)
  – Fitness depends on phenotype, which is
    determined by genotype (permanent factor)
Fitness landscapes
Working example:
1 locus, 2 alleles, random mating
Working example:
    1 locus, 2 alleles, random mating

              x =[ A ]       y =[a ]
Hardy-Weinberg law:

              2                                     2
   [AA ]= x           [ Aa]=2 x y         [aa]= y

f A  x = f AA x f Aa y      f a  x = f Aa x f aa y

         x = f AA x 2 f Aa 2 x y f aa y 2
Working example:
1 locus, 2 alleles, random mating




dx                              1    d  x 
   =x y [ f A  x − f a  x ]= x y
dt                              2      dx
Remarks
• First representation is a fundamental one:
  – Individuals sit at their genotypic positions
  – Population at every position changes in time
• Second representation is not because:
  – Depends on evolution law
  – Assumes maximization of mean fitness (not
    always true; e.g. mutations)
  – Can't be generalized to multilocus models
Genotype space
L=2


                                             L=4

L=3




                                             L=5




      vertices of L-dimensional hypercubes
Genotype space

                            # different genotypes for L
                            loci and A alleles:

                                    G= AL
                            dimensionality (number of
                            nearest neighbors):

                                 D=L  A−1
                            e.g. L=100, A=2:

                               D=100        G≈10 30
L=2 (loci), A=3 (alleles)
Hamming distance
a   a         a                  L
s =s s 2 ⋯s
                  d  s , s =∑  s , s 
    1         L       a    b            a    b
b   b   b     b                         i    i
s =s s ⋯s
    1   2     L                 i=1




                          d  abc , aBC=2
                          d  Abc ,aBC =3
The metaphor




rugged (Wright)                   Fujijama (Fisher)




                  flat (Kimura)
Speciation in rough landscapes
NEUTRAL EVOLUTION
Russian roulette model
                                   Ai
     A 1,  , A N                  B j1
     B1,  , B N
                                   



                       Ai −1      Ai         Ai 1
                       Bj          Bj          Bj


                                   

     p       viable
Ai
     1− p                          Ai
Bj
            inviable               B j−1
Russian roulette model
                2D site percolation
p=0.2                   p=0.51             p=0.594




        size=65x65           p =0.592746
                                 c
                                            neutral network
Russian roulette for sequences
        D=L  A−1             L ≫1
            viable  p                     inviable
                                                1− p 




   branching process p k =
                            k   
                           D−1 p k 1− p D −1−k


                                        1   1
      E {k }= D−1 p      ⇔     pc=      ≈
                                       D−1 D
More general rugged lanscapes




       w2                1
    ∫w       f  w d w     ⇒   quasi-neutral network
         1               D

  fitness distribution
New metaphor of fitness
     landscapes




most evolutionary steps are neutral (Kimura)
Neutral networks
WORD → WORE → GORE → GONE→ GENE




  RNA                proteins
RNA neutral networks


         mean number of sequences
         of length n folding into the
         same secondary structure:

            ~0.6735 n3 / 2 2.1635n



RNA
Aiming at a secondary structure
Steps to speciation
Steps to speciation
Speciation
speciation proceeds mostly trough random drift




      allopatric              peripatric




      parapatric             sympatric
Allopatric speciation
Paratric speciation
Some bibliography

• Nowak, Evolutionary Dynamics: Exploring the Equations
  of Life (Belknap Press, 2006)
• Ewens, Mathematical Population Genetics (Springer,
  2004)
• Durret, Probability Models of DNA Sequence Evolution
  (Springer, 2008)
• Gavrilets, Fitness Landscapes and the Origin of Species
  (Princeton, 2004)

More Related Content

Similar to Mathematical models of evolution

Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IIguestf32826
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Evgeniya Balmashnova
Evgeniya BalmashnovaEvgeniya Balmashnova
Evgeniya BalmashnovaNFBI
 
12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of XNigel Simmons
 
General Math Lesson 3
General Math Lesson 3General Math Lesson 3
General Math Lesson 3alicelagajino
 
Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsMatthew Leingang
 
General Math Lesson 2
General Math Lesson 2General Math Lesson 2
General Math Lesson 2alicelagajino
 
Mba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributionsMba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributionsRai University
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
population genetics of gene function (talk)
population genetics of gene function (talk)population genetics of gene function (talk)
population genetics of gene function (talk)Ignacio Gallo
 
Lesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsLesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsMatthew Leingang
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
Toukei ~20210605
Toukei ~20210605Toukei ~20210605
Toukei ~20210605RyuichiSeto
 
Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis Vijay Hemmadi
 
Lesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleLesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleMatthew Leingang
 

Similar to Mathematical models of evolution (20)

Notes 6-2
Notes 6-2Notes 6-2
Notes 6-2
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Evgeniya Balmashnova
Evgeniya BalmashnovaEvgeniya Balmashnova
Evgeniya Balmashnova
 
12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X
 
General Math Lesson 3
General Math Lesson 3General Math Lesson 3
General Math Lesson 3
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear Equations
 
General Math Lesson 2
General Math Lesson 2General Math Lesson 2
General Math Lesson 2
 
Mba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributionsMba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributions
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
 
Derivatives
DerivativesDerivatives
Derivatives
 
population genetics of gene function (talk)
population genetics of gene function (talk)population genetics of gene function (talk)
population genetics of gene function (talk)
 
Lesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsLesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite Limits
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Toukei ~20210605
Toukei ~20210605Toukei ~20210605
Toukei ~20210605
 
Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis
 
lecture4.ppt
lecture4.pptlecture4.ppt
lecture4.ppt
 
Lesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleLesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient Rule
 

More from Fernando Reche

Matemáticas en un entorno bilingüe
Matemáticas en un entorno bilingüeMatemáticas en un entorno bilingüe
Matemáticas en un entorno bilingüeFernando Reche
 
Tratamiento de variables aleatorias Binomial y Normal con Geogebra,
Tratamiento de variables aleatorias Binomial y Normal con Geogebra, Tratamiento de variables aleatorias Binomial y Normal con Geogebra,
Tratamiento de variables aleatorias Binomial y Normal con Geogebra, Fernando Reche
 
Geometría y topología para coser y cantar
Geometría y topología para coser y cantarGeometría y topología para coser y cantar
Geometría y topología para coser y cantarFernando Reche
 
Una Introducción a LaTeX
Una Introducción a LaTeXUna Introducción a LaTeX
Una Introducción a LaTeXFernando Reche
 
La vida social de las galaxias
La vida social de las galaxiasLa vida social de las galaxias
La vida social de las galaxiasFernando Reche
 
Las matemáticas que necesitamos
Las matemáticas que necesitamosLas matemáticas que necesitamos
Las matemáticas que necesitamosFernando Reche
 
Paradojas y contradicciones matemáticas. Un enfoque histórico
Paradojas y contradicciones matemáticas. Un enfoque históricoParadojas y contradicciones matemáticas. Un enfoque histórico
Paradojas y contradicciones matemáticas. Un enfoque históricoFernando Reche
 
Algunas consideraciones sobre el vencimiento del año de la Química
Algunas consideraciones sobre el vencimiento del año de la QuímicaAlgunas consideraciones sobre el vencimiento del año de la Química
Algunas consideraciones sobre el vencimiento del año de la QuímicaFernando Reche
 
Metabolitos de excreción de dinoflagelados: nuevos retos
Metabolitos de excreción de dinoflagelados: nuevos retosMetabolitos de excreción de dinoflagelados: nuevos retos
Metabolitos de excreción de dinoflagelados: nuevos retosFernando Reche
 
¿Qué nos dicen los glaciares sobre el calentamiento global?
¿Qué nos dicen los glaciares sobre el calentamiento global?¿Qué nos dicen los glaciares sobre el calentamiento global?
¿Qué nos dicen los glaciares sobre el calentamiento global?Fernando Reche
 
Ingeniería química gastronómica
Ingeniería química gastronómicaIngeniería química gastronómica
Ingeniería química gastronómicaFernando Reche
 
Química: ni física ni filatelia. Las matemáticas de la Química
Química: ni física ni filatelia. Las matemáticas de la QuímicaQuímica: ni física ni filatelia. Las matemáticas de la Química
Química: ni física ni filatelia. Las matemáticas de la QuímicaFernando Reche
 
Evolución y muerte de las estrellas: Supernovas y el Universo observado
Evolución y muerte de las estrellas: Supernovas y el Universo observadoEvolución y muerte de las estrellas: Supernovas y el Universo observado
Evolución y muerte de las estrellas: Supernovas y el Universo observadoFernando Reche
 
Biodiversidad y servicios ecosistémicos de los bosques
Biodiversidad y servicios ecosistémicos de los bosquesBiodiversidad y servicios ecosistémicos de los bosques
Biodiversidad y servicios ecosistémicos de los bosquesFernando Reche
 
Economía ecológica: una economía con fundamento biofísico
Economía ecológica: una economía con fundamento biofísicoEconomía ecológica: una economía con fundamento biofísico
Economía ecológica: una economía con fundamento biofísicoFernando Reche
 
Procesos químicos: nacimiento y evolución
Procesos químicos: nacimiento y evoluciónProcesos químicos: nacimiento y evolución
Procesos químicos: nacimiento y evoluciónFernando Reche
 
Un paseo por los medios
Un paseo por los mediosUn paseo por los medios
Un paseo por los mediosFernando Reche
 
Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...Fernando Reche
 
Uso de hidrolizados enzimáticos de proteínas en alimentación
Uso de hidrolizados enzimáticos de proteínas en alimentaciónUso de hidrolizados enzimáticos de proteínas en alimentación
Uso de hidrolizados enzimáticos de proteínas en alimentaciónFernando Reche
 

More from Fernando Reche (20)

Matemáticas en un entorno bilingüe
Matemáticas en un entorno bilingüeMatemáticas en un entorno bilingüe
Matemáticas en un entorno bilingüe
 
Mates imposibles
Mates imposiblesMates imposibles
Mates imposibles
 
Tratamiento de variables aleatorias Binomial y Normal con Geogebra,
Tratamiento de variables aleatorias Binomial y Normal con Geogebra, Tratamiento de variables aleatorias Binomial y Normal con Geogebra,
Tratamiento de variables aleatorias Binomial y Normal con Geogebra,
 
Geometría y topología para coser y cantar
Geometría y topología para coser y cantarGeometría y topología para coser y cantar
Geometría y topología para coser y cantar
 
Una Introducción a LaTeX
Una Introducción a LaTeXUna Introducción a LaTeX
Una Introducción a LaTeX
 
La vida social de las galaxias
La vida social de las galaxiasLa vida social de las galaxias
La vida social de las galaxias
 
Las matemáticas que necesitamos
Las matemáticas que necesitamosLas matemáticas que necesitamos
Las matemáticas que necesitamos
 
Paradojas y contradicciones matemáticas. Un enfoque histórico
Paradojas y contradicciones matemáticas. Un enfoque históricoParadojas y contradicciones matemáticas. Un enfoque histórico
Paradojas y contradicciones matemáticas. Un enfoque histórico
 
Algunas consideraciones sobre el vencimiento del año de la Química
Algunas consideraciones sobre el vencimiento del año de la QuímicaAlgunas consideraciones sobre el vencimiento del año de la Química
Algunas consideraciones sobre el vencimiento del año de la Química
 
Metabolitos de excreción de dinoflagelados: nuevos retos
Metabolitos de excreción de dinoflagelados: nuevos retosMetabolitos de excreción de dinoflagelados: nuevos retos
Metabolitos de excreción de dinoflagelados: nuevos retos
 
¿Qué nos dicen los glaciares sobre el calentamiento global?
¿Qué nos dicen los glaciares sobre el calentamiento global?¿Qué nos dicen los glaciares sobre el calentamiento global?
¿Qué nos dicen los glaciares sobre el calentamiento global?
 
Ingeniería química gastronómica
Ingeniería química gastronómicaIngeniería química gastronómica
Ingeniería química gastronómica
 
Química: ni física ni filatelia. Las matemáticas de la Química
Química: ni física ni filatelia. Las matemáticas de la QuímicaQuímica: ni física ni filatelia. Las matemáticas de la Química
Química: ni física ni filatelia. Las matemáticas de la Química
 
Evolución y muerte de las estrellas: Supernovas y el Universo observado
Evolución y muerte de las estrellas: Supernovas y el Universo observadoEvolución y muerte de las estrellas: Supernovas y el Universo observado
Evolución y muerte de las estrellas: Supernovas y el Universo observado
 
Biodiversidad y servicios ecosistémicos de los bosques
Biodiversidad y servicios ecosistémicos de los bosquesBiodiversidad y servicios ecosistémicos de los bosques
Biodiversidad y servicios ecosistémicos de los bosques
 
Economía ecológica: una economía con fundamento biofísico
Economía ecológica: una economía con fundamento biofísicoEconomía ecológica: una economía con fundamento biofísico
Economía ecológica: una economía con fundamento biofísico
 
Procesos químicos: nacimiento y evolución
Procesos químicos: nacimiento y evoluciónProcesos químicos: nacimiento y evolución
Procesos químicos: nacimiento y evolución
 
Un paseo por los medios
Un paseo por los mediosUn paseo por los medios
Un paseo por los medios
 
Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...Paleoclimate: past-climate as the key to understand the future. Example from ...
Paleoclimate: past-climate as the key to understand the future. Example from ...
 
Uso de hidrolizados enzimáticos de proteínas en alimentación
Uso de hidrolizados enzimáticos de proteínas en alimentaciónUso de hidrolizados enzimáticos de proteínas en alimentación
Uso de hidrolizados enzimáticos de proteínas en alimentación
 

Recently uploaded

Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 

Recently uploaded (20)

YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 

Mathematical models of evolution

  • 1. Mathematical models of evolution Jose Cuesta Grupo Interdisciplinar de Sistemas Complejos Departamento de Matemáticas Universidad Carlos III de Madrid
  • 2. "Every body of discovery is mathematical in form, because there is no other guidance we can have." - Charles Darwin "Mathematics seems to endow one with something like a new sense." - Charles Darwin
  • 3. "A mathematician is a blind man in a dark room looking for a black cat which isn't there." - Charles Darwin
  • 4. 12 February 1809 – 12 February 2009
  • 5. Summary (1) Fundamentals of evolution (2) Genetic drift (3) Sequences (4) Fitness landscapes (5) Neutral evolution
  • 7. Evolution: building blocks Replication Selection Mutation
  • 8. Evolution: building blocks Replication Selection Mutation
  • 9. Replication Bacterial reproduction: t x t 1=2 x t x t =2 x 0 3 divisions / hour = 144 divisions / 2 days 144 43 28 2 ≈2×10 ≈2×10 kg ≈3000 earths!
  • 10. Exponential growth d N t  =r N t dt Malthus law
  • 11. Saturation dN dt  =r N 1− N K  carrying capacity rt K N 0e N t= rt lim N t =K K  N 0  e −1 t ∞ saturation maintains a constant population
  • 12. Evolution: building blocks Replication Selection Mutation
  • 13. Fitness fitness: mean number of adult offspring in the next generation (separated generations) fitness: mean growth rate (mixed generations) dN =r N dt fitness
  • 14. Competition d NA dNB =r A N A =r B N B dt dt NA NB x= y= =1−x N A N B N A N B dx dy =x  r A − = y r B− dt dt average fitness: =x r A y r B
  • 15. Survival of the fittest dx =x 1−x  r A−r B  dt r Ar B 0 x 1 all-A r Ar B 0 x 1 all-B
  • 16. Survival of the fittest n d xk = x k  f k − = ∑ x k f k dt k =1 n ∑ x k =1 x k ≥0 ∀t k =1 n=2 n=3 n=4
  • 17. Survival of the fittest n d xk = xk ∑ x j  f k − f j  dt j =1 assume f k f j ∀ j≠k lim x k t =1 lim x j t =0  j≠ k  t ∞ t ∞
  • 18. Fundamental theorem of natural selection n d d xk n n =∑ fk =∑ f k x k  f k −=∑ x k  f k −2≡ 2f d t k=1 d t k=1 k=1 d 2 = f dt 2 Mean fitness never decreases   f 0  The speed of increase is determined by the variation within the population
  • 19. Composition-dependent fitness f k =f k  x 1 ,, x n ≡f k  x Example: two species r A  x , y =r  A y r B  x , y =r  B x symbiosis competition  A 0  A 0  B 0  B 0
  • 20. Symbiotic coexistence dx =x 1−x [ A− A  B  x ] dt  A 0 A x *=  B 0  A  B 0 x* 1 x
  • 21. Competitive exclusion dx =x 1−x [ A− A  B  x ] dt  A 0 A x *=  B 0  A  B 0 x* 1 x
  • 22. Evolution: building blocks Replication Selection Mutation
  • 24. Replication with error dx = x r A 1−u A  y r B u B − x dt dy = x r A u A y r B 1−u B − y dt =x r A y r B dx =x 1−x  r A−r B 1−x  r B u B− x r A u A dt x =0 x=1 are not equilibria
  • 25. Replication with error rAuA x *≈1− r Ar B r A−r B r B uB x *≈ r A r B r B −r A uA x *= r A =r B u A u B mutation is the source of variability
  • 26. Evolution with mutation mutation matrix Q=q ij  u=1, , 1 n ∑ qij=1 ⇔ Q u =u T T j=1 W ≡RQ   r1 0 R= ⋱ 0 rn mutation-selection matrix n dx =x W − x =x W u =∑ x j r j T dt j=1 quasispecies equation
  • 27. Evolution with mutation may be negative! fundamental theorem d d x T 2 T 2 2 T = W u =x W u − =x W − I  u dt dt equilibria: x * W = * x * if     is irreducible,  * is the largest eigenvalue of Q W as x * normally corresponds to a mixed population, * need not be the absolute maximum
  • 29. Genetic drift neutral evolution (no selection, no mutation)
  • 31. Fisher-Wright model A A A A A a a a generation t k N −k j N− j sample with replacement     P kj = N j k N N −k N  A A a a a a a a generation t+1 j N−j
  • 33. Fisher-Wright model two absorbing states: k =N k =0 { i=P lim X t =N X 0=i t ∞ ∣ } N i= ∑ P ij  j 0 =0  N =1 j=0 i E { X t 1∣ X t=k }=k ⇒ i= N
  • 34. Moran model A A A A A a a a k N −k A A A A A A A a a k 1 N −k −1
  • 35. Moran model k  N −k  P k , k ±1= 2 N 2 2  N −k  k Pk ,k = 2 N P k , j =0 if ∣k − j∣1 birth-death process with two absorbing states
  • 36. Birth-death processes j i −1 P k , k−1 q 0=1 q j =∏ Q i =∑ q j k =1 P k , k1 j =0 if absorption { i=P lim X t =N X 0=i ∞ t ∞ ∣ } t ij =∑  P ij n T = P T I t 0j=t Nj =0 n=0 if ergodic w =w P
  • 37. Birth-death processes two absorbing states (0 & N) Q N 1−i  j t ij = if ji Qi q j P j , j1 i= QN Q N i 1− j  t ij = if ji q j P j , j1 one absorbing state (N) Q N −Q i Q N −Q j t ij = if ji t ij = if j i q j P j , j1 q j P j , j 1 no absorbing state  q i P i , i1 −1 wi= N ∑  q j P j , j 1−1 j=0
  • 38. Moran model i q i =1 Qi =i i= N t ij = N  N −i N−j  if j i t ij =N  i j if ji mean absorption time N −1 t i= ∑ t ij =O  N  j =1
  • 39. Fixation of a mutant allele 1  1= N
  • 40. Genetic drift under selection A A A A A a a a k N −k probability proportional to fitness A
  • 41. Genetic drift under selection N −k kfA P k , k 1= N k f A  N −k  f a k  N −k  f a P k , k−1= N k f A N −k  f a P k , k−1 f a −1 = ≡r P k , k1 f A 1−r −i i= −N 1−r
  • 42. Fixation of a mutant allele under selection −1 1−r 1−r A= −N a = N 1−r 1−r • If r 1 selection favors A over neutral case • If r 1 selection favors a over neutral case
  • 43. Diffusion approximation w t 1=w t  P master equation w i t 1−w i t =∑ w j t  P ji −w i t  ∑ P ij j j birth-death process  wi t=∑ [ wi ±1 t  P i ±1,i −wi t  P i ,i ±1 ] ±
  • 44. Diffusion approximation i 1 2 x≡ w i t ≡N f  x , t   t≡  x  = 2 N N a  x ≡ P i ,i 1−P i , i−1 b  x ≡ P i , i1 P i ,i −1 forward Kolmogorov (Fokker-Planck) equation ∂ f  x ,t  ∂ 1 ∂2 =−N [a  x  f  x , t ] 2 [ b x f  x , t] ∂t ∂x 2 ∂x
  • 45. Diffusion approximation absorption probability 1 0=−N a  x  '  x b x ' '  x 2 mean absorption time 1 −1=−N a  x   '  x  b  x  ' '  x  2
  • 50. Genes
  • 56. Fitness landscapes • Metaphor introduced by Wright (1932) • Representation of fitness of individuals or population • Key points: – Fitness is affected by environment (external factors) – Fitness depends on phenotype, which is determined by genotype (permanent factor)
  • 58. Working example: 1 locus, 2 alleles, random mating
  • 59. Working example: 1 locus, 2 alleles, random mating x =[ A ] y =[a ] Hardy-Weinberg law: 2 2 [AA ]= x [ Aa]=2 x y [aa]= y f A  x = f AA x f Aa y f a  x = f Aa x f aa y  x = f AA x 2 f Aa 2 x y f aa y 2
  • 60. Working example: 1 locus, 2 alleles, random mating dx 1 d  x  =x y [ f A  x − f a  x ]= x y dt 2 dx
  • 61. Remarks • First representation is a fundamental one: – Individuals sit at their genotypic positions – Population at every position changes in time • Second representation is not because: – Depends on evolution law – Assumes maximization of mean fitness (not always true; e.g. mutations) – Can't be generalized to multilocus models
  • 62. Genotype space L=2 L=4 L=3 L=5 vertices of L-dimensional hypercubes
  • 63. Genotype space # different genotypes for L loci and A alleles: G= AL dimensionality (number of nearest neighbors): D=L  A−1 e.g. L=100, A=2: D=100 G≈10 30 L=2 (loci), A=3 (alleles)
  • 64. Hamming distance a a a L s =s s 2 ⋯s d  s , s =∑  s , s  1 L a b a b b b b b i i s =s s ⋯s 1 2 L i=1 d  abc , aBC=2 d  Abc ,aBC =3
  • 65. The metaphor rugged (Wright) Fujijama (Fisher) flat (Kimura)
  • 66. Speciation in rough landscapes
  • 68. Russian roulette model Ai A 1,  , A N B j1 B1,  , B N  Ai −1  Ai  Ai 1 Bj Bj Bj  p viable Ai 1− p Ai Bj inviable B j−1
  • 69. Russian roulette model 2D site percolation p=0.2 p=0.51 p=0.594 size=65x65 p =0.592746 c neutral network
  • 70. Russian roulette for sequences D=L  A−1 L ≫1 viable  p  inviable 1− p  branching process p k = k   D−1 p k 1− p D −1−k 1 1 E {k }= D−1 p ⇔ pc= ≈ D−1 D
  • 71. More general rugged lanscapes w2 1 ∫w f  w d w ⇒ quasi-neutral network 1 D fitness distribution
  • 72. New metaphor of fitness landscapes most evolutionary steps are neutral (Kimura)
  • 73. Neutral networks WORD → WORE → GORE → GONE→ GENE RNA proteins
  • 74. RNA neutral networks mean number of sequences of length n folding into the same secondary structure: ~0.6735 n3 / 2 2.1635n RNA
  • 75. Aiming at a secondary structure
  • 78. Speciation speciation proceeds mostly trough random drift allopatric peripatric parapatric sympatric
  • 81. Some bibliography • Nowak, Evolutionary Dynamics: Exploring the Equations of Life (Belknap Press, 2006) • Ewens, Mathematical Population Genetics (Springer, 2004) • Durret, Probability Models of DNA Sequence Evolution (Springer, 2008) • Gavrilets, Fitness Landscapes and the Origin of Species (Princeton, 2004)