SlideShare a Scribd company logo
1 of 32
Download to read offline
Popula'on	
  gene'cs	
  of	
  gene	
  func'on	
  
Ignacio	
  Gallo	
  
Glasgow,	
  
December	
  2012	
  
Mo'va'on	
  
“Molecular	
  signatures	
  of	
  natural	
  selec0on”,	
  Nielsen	
  2005:	
  
“inferences	
  regarding	
  the	
  paAerns	
  and	
  distribu'on	
  of	
  selec'on	
  in	
  genes	
  and	
  
genomes	
  may	
  provide	
  important	
  func'onal	
  informa'on”	
  
Wikipedia	
  entry	
  on	
  “sta0s0cal	
  thermodynamics”:	
  
“The	
  goal	
  of	
  sta's'cal	
  thermodynamics	
  is	
  to	
  understand	
  and	
  to	
  interpret	
  the	
  
measurable	
  macroscopic	
  proper'es	
  of	
  materials	
  in	
  terms	
  of	
  the	
  proper'es	
  of	
  
their	
  cons'tuent	
  par'cles	
  and	
  the	
  interac'ons	
  between	
  them”	
  
Mo'va'on	
  
The	
  func'onal	
  importance	
  of	
  a	
  gene'c	
  sequence	
  can	
  be	
  inferred	
  by	
  its	
  
popula'on	
  distribu'on	
  (for	
  example	
  from	
  its	
  degree	
  of	
  conserva'on).	
  
Can	
  anything	
  more	
  be	
  said	
  about	
  the	
  gene’s	
  specific	
  func'on	
  (survival,	
  
reproduc'on,	
  etc)?	
  
distribu)on	
  of	
  genes	
  	
   gene	
  func)on	
  	
  
macroscopic	
  proper)es	
  
of	
  materials	
  	
  
proper)es	
  of	
  their	
  
cons)tuent	
  par)cles	
  
(size,	
  speed,	
  etc)	
  
Moran	
  model:	
  
Model	
  varia)on:	
  
birth	
  death	
  
change	
  in	
  frequency	
  for	
  a	
  given	
  phenotype	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
We	
  have	
  two	
  phenotypes,	
  P1	
  and	
  P2	
  
€
€
p−
, p+
: death and birth probabilities for P1
q−
, q+
: death and birth probabilities for P2
If	
  	
  	
  p - + q - < 1	
  	
  in	
  some	
  intervals	
  nothing	
  happens.	
  
If	
  a	
  death	
  happens,	
  a	
  birth	
  happens	
  instantaneously	
  (“musical	
  chairs”	
  process).	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
We	
  have	
  two	
  phenotypes,	
  P1	
  and	
  P2	
  
€
€
p−
, p+
: death and birth probabilities for P1
q−
, q+
: death and birth probabilities for P2
If	
  	
  	
  p - + q - < 1	
  	
  in	
  some	
  intervals	
  nothing	
  happens.	
  
If	
  a	
  death	
  happens,	
  a	
  birth	
  happens	
  instantaneously	
  (“musical	
  chairs”	
  process).	
  
loop	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
We	
  have	
  two	
  phenotypes,	
  P1	
  and	
  P2	
  
€
€
p−
, p+
: death and birth probabilities for P1
q−
, q+
: death and birth probabilities for P2
If	
  	
  	
  p - + q - < 1	
  	
  in	
  some	
  intervals	
  nothing	
  happens.	
  
If	
  a	
  death	
  happens,	
  a	
  birth	
  happens	
  instantaneously	
  (“musical	
  chairs”	
  process).	
  
loop	
  
no	
  loop	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
We	
  have	
  two	
  phenotypes,	
  P1	
  and	
  P2	
  
€
€
p−
, p+
: death and birth probabilities for P1
q−
, q+
: death and birth probabilities for P2
If	
  	
  	
  p - + q - < 1	
  	
  in	
  some	
  intervals	
  nothing	
  happens.	
  
If	
  a	
  death	
  happens,	
  a	
  birth	
  happens	
  instantaneously	
  (“musical	
  chairs”	
  process).	
  
loop	
  
no	
  loop	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
We	
  differen'ate	
  the	
  phenotypes’	
  reproduc've	
  fitness	
  and	
  life'mes	
  independently,	
  
and	
  consider	
  reproduc)on	
  and	
  survival	
  as	
  two	
  different	
  func'ons.	
  
€
W1 : offspring for type 1,
W2 : offspring for type 2,
⎧
⎨
⎩
T1 : average lifespan for type 1,
T2 : average lifespan for type 2.
⎧
⎨
⎩
reproduc,on	
  
survival	
  
u : mutation probability
and	
  we	
  are	
  interested	
  in	
  the	
  equilibrium	
  distribu'on	
  of	
  a	
  process	
  with	
  symmetric	
  
reversible	
  muta)on	
  for	
  haploid	
  individuals	
  
q+
=
W1
T1
u x +
W2
T2
(1− u)(1− x)
W1
T1
x +
W2
T2
(1− x)
.
€
q−
=
1− x
T2
.
p+
=
W1
T1
(1− u)x +
W2
T2
u (1− x)
W1
T1
x +
W2
T2
(1− x)
,
€
p−
=
x
T1
,
Death	
  probabili)es:	
  
Birth	
  probabili)es:	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
Variable	
  x	
  is	
  the	
  frequency	
  of	
  phenotype	
  P1	
  (so	
  frequency	
  of	
  P2	
  is	
  1 - x )	
  
q+
=
W1
T1
u x +
W2
T2
(1− u)(1− x)
W1
T1
x +
W2
T2
(1− x)
.
€
q−
=
1− x
T2
.
p+
=
W1
T1
(1− u)x +
W2
T2
u (1− x)
W1
T1
x +
W2
T2
(1− x)
,
€
p−
=
x
T1
,
Death	
  probabili)es:	
  
Birth	
  probabili)es:	
  
€
p−
€
p+
€
q−
€
q+
€
1− p−
− q−
€
p+
€
q+
€
⇒ p−
+ q−
< 1
Variable	
  x	
  is	
  the	
  frequency	
  of	
  phenotype	
  P1	
  (so	
  frequency	
  of	
  P2	
  is	
  1 - x )	
  
€
Nu N → ∞⎯ →⎯⎯ θ,
The	
  model	
  therefore	
  depends	
  on:	
  
To	
  get	
  a	
  non	
  trivial	
  distribu'on	
  the	
  following	
  asympto'c	
  constraints	
  
are	
  imposed	
  on	
  the	
  parameters:	
  
€
θ (mutation), s (reproduction), λ (survival).€
For notational convenience we also define λ =
T1
T2
.
€
N
W1
W2
−1
⎛
⎝
⎜
⎞
⎠
⎟ u→ 0
⎯ →⎯⎯ s.
Asympto)c	
  parameters	
  
€
Nu N → ∞⎯ →⎯⎯ θ,
The	
  model	
  therefore	
  depends	
  on:	
  
To	
  get	
  a	
  non	
  trivial	
  distribu'on	
  the	
  following	
  asympto'c	
  constraints	
  
are	
  imposed	
  on	
  the	
  parameters:	
  
€
θ (mutation), s (reproduction), λ (survival).€
For notational convenience we also define λ =
T1
T2
.
€
N
W1
W2
−1
⎛
⎝
⎜
⎞
⎠
⎟ u→ 0
⎯ →⎯⎯ s.
Asympto)c	
  parameters	
  
€
M = E[Xt +1 − Xt ] =
1
NT1
⋅
θ λ2
(1− x)2
+ λ s x(1− x) −θ x2
x + λ (1− x)
,
V = E (Xt +1 − Xt )2
[ ] =
2 λ
NT1
⋅
x (1− x)
x + λ (1− x)
.
€
M = E[Xt +1 − Xt ] =
1
NT1
⋅
θ λ2
(1− x)2
+ λ s x(1− x) −θ x2
x + λ (1− x)
,
V = E (Xt +1 − Xt )2
[ ] =
2 λ
NT1
⋅
x (1− x)
x + λ (1− x)
.
€
€
φ(x)= C⋅
1
V
⋅ exp 2
M
V
dx∫
⎧
⎨
⎩
⎫
⎬
⎭
,
€
φ(x)= Ceα x
xλ θ −1
(1− x)
θ
λ
−1
x + λ(1− x){ },
€
α = s +θ
1
λ
− λ
⎛
⎝
⎜
⎞
⎠
⎟.
which	
  explicitly	
  gives	
  
where	
  
The	
  Wright	
  equilibrium	
  distribu'on	
  for	
  large	
  N	
  is	
  	
  
Equilibrium	
  distribu)on	
  
€
€
φ(x)= C⋅
1
V
⋅ exp 2
M
V
dx∫
⎧
⎨
⎩
⎫
⎬
⎭
,
€
φ(x)= Ceα x
xλ θ −1
(1− x)
θ
λ
−1
x + λ(1− x){ },
€
α = s +θ
1
λ
− λ
⎛
⎝
⎜
⎞
⎠
⎟.
which	
  explicitly	
  gives	
  
where	
  
The	
  Wright	
  equilibrium	
  distribu'on	
  for	
  large	
  N	
  is	
  	
  
Equilibrium	
  distribu)on	
  
Typical	
  shapes	
  for	
  equilibrium	
  distribu)ons
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
low mutation
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
high mutation
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
mutation probability close to
1
N
Typical	
  shapes	
  for	
  equilibrium	
  distribu)ons
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
low mutation
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
high mutation
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
mutation probability close to
1
N
“u”:	
  	
  probability	
  of	
  muta'on	
  per	
  site	
  
sta'onary	
  points	
  
€
λ =
T1
T2
=1 (life'mes	
  are	
  equal	
  for	
  the	
  two	
  	
  
phenotypes)	
  
random	
  driR	
   	
  muta'on/selec'on	
  balance	
  
€
1
N
Sta)onary	
  points
“u”:	
  	
  probability	
  of	
  muta'on	
  per	
  site	
  
sta'onary	
  points	
  
€
λ =
T1
T2
=1 (life'mes	
  are	
  equal	
  for	
  the	
  two	
  	
  
phenotypes)	
  
random	
  driR	
   	
  muta'on/selec'on	
  balance	
  
€
1
N
Sta)onary	
  points
sta'onary	
  points	
  
€
λ =
T1
T2
=
3
2
“u”:	
  	
  probability	
  of	
  muta'on	
  per	
  site	
  
€
1
N
random	
  driR	
   	
  muta'on/selec'on	
  balance	
  
“u”:	
  	
  probability	
  of	
  muta'on	
  per	
  site	
  
sta'onary	
  points	
  
€
λ =
T1
T2
=1 (life'mes	
  are	
  equal	
  for	
  the	
  two	
  	
  
phenotypes)	
  
random	
  driR	
   	
  muta'on/selec'on	
  balance	
  
€
1
N
Sta)onary	
  points
random	
  driR	
   	
  muta'on/selec'on	
  balance	
  
sta'onary	
  points	
  
€
λ =
T1
T2
=
3
2
“u”:	
  	
  probability	
  of	
  muta'on	
  per	
  site	
  
€
1
N
€
λ =
T1
T2
=
3
2
€
1
N
Sta)onary	
  points
sta'onary	
  points	
  
€
λ =
T1
T2
=
3
2
“u”:	
  	
  probability	
  of	
  muta'on	
  per	
  site	
  
€
1
N
random	
  driR	
   	
  muta'on/selec'on	
  balance	
  
€
1
N
Typical	
  shapes	
  for	
  equilibrium	
  distribu)ons
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
low mutation
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
high mutation
rela've	
  frequency	
  of	
  “blue”	
  phenotypes	
  
probability	
  density	
  
€
mutation probability close to
1
N
The	
   model	
   includes	
   one	
   more	
   parameter	
   than	
   the	
   standard	
   seTng,	
   	
   so	
   it’s	
  
desirable	
  expand	
  the	
  number	
  of	
  independent	
  sta)s)cs.	
  
This	
  can	
  be	
  done	
  considering	
  the	
  amount	
  of	
  synonymous	
  varia'on	
  included	
  in	
  
each	
  of	
  our	
  two	
  phenotypes,	
  and	
  considering	
  it	
  neutral	
  (as	
  done	
  by	
  Nielsen	
  and	
  
colleagues	
  for	
  various	
  types	
  of	
  models).	
  
The	
  amount	
  of	
  synonymous	
  varia'on	
  can	
  be	
  quan'fied	
  by	
  using	
  the	
  inbreeding	
  
coefficient	
  concept.	
  
€
Inferring λ =
T1
T2
from population statistics
phenotypes	
  P1	
  and	
  P2	
  
genotypes	
  
genotypes	
  
Distribu)on	
  of	
  a	
  gene	
  throughout	
  a	
  popula)on	
  (Kreitman	
  1983)	
  
x = relative frequency of P1
F1 = inbreeding coefficient for P1
F2 = inbreeding coefficient for P2
Sta)s)cal	
  quan))es
P1	
  
P2	
  
€
F1 /x +θ λ F1 /x − F1( )+ (L −1) F1[ ]− 1/x ≈ 0
F2 /(1− x) +θ
1
λ
F2 /(1− x) − F2( )+ (L −1) F2
⎡
⎣⎢
⎤
⎦⎥ − 1/(1− x) ≈ 0
A	
  result	
  by	
  Kimura	
  and	
  Crow	
  gives	
  that	
  for	
  only	
  one	
  phenotype	
  
€
F ≈
1
1+ 2θ
This	
  can	
  be	
  extended	
  to	
  the	
  case	
  of	
  two	
  phenotypes	
  to	
  give	
  two	
  equa'ons:	
  
where	
  θ	
  is	
  the	
  rescaled	
  muta'on	
  rate.	
  
0.5 1 1.5 20.75 1.25 1.75
0.5
1
1.5
2
.75
1.25
1.75
Real
Estimated
T1
= 2 T2
T1
= 1/2 T2
This	
  (hideous)	
  formula	
  can	
  be	
  used	
  to	
  
derive	
  the	
  value	
  of	
  	
  
λ	
  	
  
from	
  combined	
  moments	
  of	
  quan''es	
  	
  
x ,	
  	
  	
  F1 ,	
  	
  	
  F2	
  	
  
es'mated	
   from	
   a	
   set	
   of	
   simulated	
  
realiza'ons	
  of	
  the	
  process.	
  
€
number of realizations per point =10000
€
running time = 5000 "generations"€
simulation parameters:
s = −5, θ = 7, N =1000, L (genotype length) = 40
and this relation leads to a quadratic equation that only admits one non-negative solution:
λ =
1
2Q1

(R − 1)(L − 1) +

(R − 1)2(L − 1)2 + 4RQ1Q2

. (4.5)
Figure 5 shows the result of using formula (4.5) to estimate λ, for a series series of
simulations where the real value of λ ranges from .5 (i.e. T1 = 1/2 T2) to 2 (i.e. T1 = 2 T2):
we see that the average values of such estimations are well aligned with the actual values.
The magnitude of the standard deviation for our estimations, on the other hand, is
considerable, especially in view of the fact the 10000 realisations of the process were used
to estimate each value of λ: it is clear that a substantial increase of efficiency will be
needed to make the theory relevant to actual empirical phenomena.
This practical consideration ought not to be allowed, however, to obfuscate the fact
that equation (4.5) provides a direct mathematical relation between combined moments
of the population quantities x, F1 and F2, and parameter λ = T1/T2, which arguably
contains information about the function of a genetic sequence.
5 Outlook
We have shown that the effect of differentiating the lifetimes of two phenotypes inde-
pendently from their fertility includes a qualitative change in the equilibrium state of a
wing auxiliary quantities
R =
F2
F1
·
1/x − F1/x
1/(1 − x) − F2/(1 − x)
,
Q1 =
F1/x
F1
− 1, Q2 =
F2/x
F2
− 1.
n terms of these quantities, the equation for λ takes the following form
R = λ
λQ1 + L − 1
Q2 + λ(L − 1)
,
his relation leads to a quadratic equation that only admits one non-negative solution:
λ =
1
2Q1

(R − 1)(L − 1) +

(R − 1)2(L − 1)2 + 4RQ1Q2

. (4.5)
igure 5 shows the result of using formula (4.5) to estimate λ, for a series series of
ations where the real value of λ ranges from .5 (i.e. T1 = 1/2 T2) to 2 (i.e. T1 = 2 T2):
e that the average values of such estimations are well aligned with the actual values.
he magnitude of the standard deviation for our estimations, on the other hand, is
derable, especially in view of the fact the 10000 realisations of the process were used
timate each value of λ: it is clear that a substantial increase of efficiency will be
ed to make the theory relevant to actual empirical phenomena.
his practical consideration ought not to be allowed, however, to obfuscate the fact
following auxiliary quantities
R =
F2
F1
·
1/x − F1/x
1/(1 − x) − F2/(1 − x)
,
Q1 =
F1/x
F1
− 1, Q2 =
F2/x
F2
− 1.
In terms of these quantities, the equation for λ takes the following form
R = λ
λQ1 + L − 1
Q2 + λ(L − 1)
,
and this relation leads to a quadratic equation that only admits one non-negative solution
λ =
1
2Q1

(R − 1)(L − 1) +

(R − 1)2(L − 1)2 + 4RQ1Q2

. (4.5
Figure 5 shows the result of using formula (4.5) to estimate λ, for a series series o
simulations where the real value of λ ranges from .5 (i.e. T1 = 1/2 T2) to 2 (i.e. T1 = 2 T2)
we see that the average values of such estimations are well aligned with the actual values
The magnitude of the standard deviation for our estimations, on the other hand, i
considerable, especially in view of the fact the 10000 realisations of the process were used
to estimate each value of λ: it is clear that a substantial increase of efficiency will b
needed to make the theory relevant to actual empirical phenomena.
This practical consideration ought not to be allowed, however, to obfuscate the fac
that equation (4.5) provides a direct mathematical relation between combined moment
Summary	
  
•  Playing	
  with	
  details	
  of	
  process	
  is	
  fun	
  
•  In	
  principle	
  “func'onal”	
  parameter	
  	
  	
  	
  λ	
  =	
  T1 / T2 	
  can	
  be	
  es'mated	
  
from	
  “popula'on	
  observables”	
  	
  	
  x ,	
  	
  	
  F1 ,	
  	
  	
  F2	
  
Thank	
  you!	
  
“Disclaimer”	
  
…there	
  is	
  no	
  such	
  thing	
  as	
  the	
  “func'on	
  of	
  a	
  gene”,	
  like	
  there	
  is	
  no	
  such	
  thing	
  
as	
  the	
  “meaning	
  of	
  a	
  word”.	
  
For	
  example,	
  the	
  word	
  “Gene”	
  can	
  mean:	
  
…but	
  dic'onaries	
  exist	
  (and	
  they	
  are	
  obsolete	
  (but	
  they’re	
  a	
  start	
  (or	
  maybe	
  not))).	
  
or	
  

More Related Content

Similar to Population Genetics of Gene Function

Hitch hiking journalclub
Hitch hiking journalclubHitch hiking journalclub
Hitch hiking journalclubKevin Thornton
 
PG STAT 531 Lecture 5 Probability Distribution
PG STAT 531 Lecture 5 Probability DistributionPG STAT 531 Lecture 5 Probability Distribution
PG STAT 531 Lecture 5 Probability DistributionAashish Patel
 
2 Review of Statistics. 2 Review of Statistics.
2 Review of Statistics. 2 Review of Statistics.2 Review of Statistics. 2 Review of Statistics.
2 Review of Statistics. 2 Review of Statistics.WeihanKhor2
 
PAGE UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docx
PAGE  UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docxPAGE  UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docx
PAGE UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docxalfred4lewis58146
 
Thomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populationsThomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populationsSeminaire MEE
 
application of population genetics
 application of population genetics application of population genetics
application of population geneticsAthira athira
 
B.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population geneticsB.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population geneticsRai University
 
Estimating the Evolution Direction of Populations to Improve Genetic Algorithms
Estimating the Evolution Direction of Populations to Improve Genetic AlgorithmsEstimating the Evolution Direction of Populations to Improve Genetic Algorithms
Estimating the Evolution Direction of Populations to Improve Genetic AlgorithmsAnnibale Panichella
 
U1.4-RVDistributions.ppt
U1.4-RVDistributions.pptU1.4-RVDistributions.ppt
U1.4-RVDistributions.pptSameeraasif2
 
Population geneticsfc
Population geneticsfcPopulation geneticsfc
Population geneticsfcKelley Nelson
 
Population geneticsfc
Population geneticsfcPopulation geneticsfc
Population geneticsfcKelley Nelson
 
Statistical Analysis with R- III
Statistical Analysis with R- IIIStatistical Analysis with R- III
Statistical Analysis with R- IIIAkhila Prabhakaran
 
Introduction to conservation genetics and genomics
Introduction to conservation genetics and genomicsIntroduction to conservation genetics and genomics
Introduction to conservation genetics and genomicsRanajitDas12
 
kinds of distribution
 kinds of distribution kinds of distribution
kinds of distributionUnsa Shakir
 

Similar to Population Genetics of Gene Function (20)

Hitch hiking journalclub
Hitch hiking journalclubHitch hiking journalclub
Hitch hiking journalclub
 
Poster_PingPong
Poster_PingPongPoster_PingPong
Poster_PingPong
 
PG STAT 531 Lecture 5 Probability Distribution
PG STAT 531 Lecture 5 Probability DistributionPG STAT 531 Lecture 5 Probability Distribution
PG STAT 531 Lecture 5 Probability Distribution
 
2 Review of Statistics. 2 Review of Statistics.
2 Review of Statistics. 2 Review of Statistics.2 Review of Statistics. 2 Review of Statistics.
2 Review of Statistics. 2 Review of Statistics.
 
PAGE UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docx
PAGE  UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docxPAGE  UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docx
PAGE UMUC Asia DE lab – Evolution© UMUC – all rights reserv.docx
 
Thomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populationsThomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populations
 
application of population genetics
 application of population genetics application of population genetics
application of population genetics
 
B.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population geneticsB.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population genetics
 
Estimating the Evolution Direction of Populations to Improve Genetic Algorithms
Estimating the Evolution Direction of Populations to Improve Genetic AlgorithmsEstimating the Evolution Direction of Populations to Improve Genetic Algorithms
Estimating the Evolution Direction of Populations to Improve Genetic Algorithms
 
lecture4.ppt
lecture4.pptlecture4.ppt
lecture4.ppt
 
U1.4-RVDistributions.ppt
U1.4-RVDistributions.pptU1.4-RVDistributions.ppt
U1.4-RVDistributions.ppt
 
Population geneticsfc
Population geneticsfcPopulation geneticsfc
Population geneticsfc
 
Population genetics
Population geneticsPopulation genetics
Population genetics
 
Population geneticsfc
Population geneticsfcPopulation geneticsfc
Population geneticsfc
 
Biostate
Biostate Biostate
Biostate
 
Population genetics
Population geneticsPopulation genetics
Population genetics
 
Statistical Analysis with R- III
Statistical Analysis with R- IIIStatistical Analysis with R- III
Statistical Analysis with R- III
 
Introduction to conservation genetics and genomics
Introduction to conservation genetics and genomicsIntroduction to conservation genetics and genomics
Introduction to conservation genetics and genomics
 
kinds of distribution
 kinds of distribution kinds of distribution
kinds of distribution
 
Probability
ProbabilityProbability
Probability
 

More from Ignacio Gallo

reproduction and ferromagnetism
reproduction and ferromagnetismreproduction and ferromagnetism
reproduction and ferromagnetismIgnacio Gallo
 
why no one wants to play dice with god
why no one wants to play dice with godwhy no one wants to play dice with god
why no one wants to play dice with godIgnacio Gallo
 
natural selection, or the survival of the fittest
natural selection, or the survival of the fittestnatural selection, or the survival of the fittest
natural selection, or the survival of the fittestIgnacio Gallo
 
preamble to a statistical physicist's guide to evolution
preamble to a statistical physicist's guide to evolutionpreamble to a statistical physicist's guide to evolution
preamble to a statistical physicist's guide to evolutionIgnacio Gallo
 
population genetics of gene function (article)
population genetics of gene function (article)population genetics of gene function (article)
population genetics of gene function (article)Ignacio Gallo
 

More from Ignacio Gallo (6)

reproduction and ferromagnetism
reproduction and ferromagnetismreproduction and ferromagnetism
reproduction and ferromagnetism
 
eternal recurrence
eternal recurrenceeternal recurrence
eternal recurrence
 
why no one wants to play dice with god
why no one wants to play dice with godwhy no one wants to play dice with god
why no one wants to play dice with god
 
natural selection, or the survival of the fittest
natural selection, or the survival of the fittestnatural selection, or the survival of the fittest
natural selection, or the survival of the fittest
 
preamble to a statistical physicist's guide to evolution
preamble to a statistical physicist's guide to evolutionpreamble to a statistical physicist's guide to evolution
preamble to a statistical physicist's guide to evolution
 
population genetics of gene function (article)
population genetics of gene function (article)population genetics of gene function (article)
population genetics of gene function (article)
 

Recently uploaded

ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 

Recently uploaded (20)

ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 

Population Genetics of Gene Function

  • 1. Popula'on  gene'cs  of  gene  func'on   Ignacio  Gallo   Glasgow,   December  2012  
  • 2. Mo'va'on   “Molecular  signatures  of  natural  selec0on”,  Nielsen  2005:   “inferences  regarding  the  paAerns  and  distribu'on  of  selec'on  in  genes  and   genomes  may  provide  important  func'onal  informa'on”   Wikipedia  entry  on  “sta0s0cal  thermodynamics”:   “The  goal  of  sta's'cal  thermodynamics  is  to  understand  and  to  interpret  the   measurable  macroscopic  proper'es  of  materials  in  terms  of  the  proper'es  of   their  cons'tuent  par'cles  and  the  interac'ons  between  them”  
  • 3. Mo'va'on   The  func'onal  importance  of  a  gene'c  sequence  can  be  inferred  by  its   popula'on  distribu'on  (for  example  from  its  degree  of  conserva'on).   Can  anything  more  be  said  about  the  gene’s  specific  func'on  (survival,   reproduc'on,  etc)?   distribu)on  of  genes     gene  func)on     macroscopic  proper)es   of  materials     proper)es  of  their   cons)tuent  par)cles   (size,  speed,  etc)  
  • 4. Moran  model:   Model  varia)on:   birth  death   change  in  frequency  for  a  given  phenotype  
  • 5. € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ We  have  two  phenotypes,  P1  and  P2   € € p− , p+ : death and birth probabilities for P1 q− , q+ : death and birth probabilities for P2 If      p - + q - < 1    in  some  intervals  nothing  happens.   If  a  death  happens,  a  birth  happens  instantaneously  (“musical  chairs”  process).  
  • 6. € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ We  have  two  phenotypes,  P1  and  P2   € € p− , p+ : death and birth probabilities for P1 q− , q+ : death and birth probabilities for P2 If      p - + q - < 1    in  some  intervals  nothing  happens.   If  a  death  happens,  a  birth  happens  instantaneously  (“musical  chairs”  process).   loop  
  • 7. € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ We  have  two  phenotypes,  P1  and  P2   € € p− , p+ : death and birth probabilities for P1 q− , q+ : death and birth probabilities for P2 If      p - + q - < 1    in  some  intervals  nothing  happens.   If  a  death  happens,  a  birth  happens  instantaneously  (“musical  chairs”  process).   loop   no  loop  
  • 8. € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ We  have  two  phenotypes,  P1  and  P2   € € p− , p+ : death and birth probabilities for P1 q− , q+ : death and birth probabilities for P2 If      p - + q - < 1    in  some  intervals  nothing  happens.   If  a  death  happens,  a  birth  happens  instantaneously  (“musical  chairs”  process).   loop   no  loop  
  • 9. € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ We  differen'ate  the  phenotypes’  reproduc've  fitness  and  life'mes  independently,   and  consider  reproduc)on  and  survival  as  two  different  func'ons.   € W1 : offspring for type 1, W2 : offspring for type 2, ⎧ ⎨ ⎩ T1 : average lifespan for type 1, T2 : average lifespan for type 2. ⎧ ⎨ ⎩ reproduc,on   survival   u : mutation probability and  we  are  interested  in  the  equilibrium  distribu'on  of  a  process  with  symmetric   reversible  muta)on  for  haploid  individuals  
  • 10. q+ = W1 T1 u x + W2 T2 (1− u)(1− x) W1 T1 x + W2 T2 (1− x) . € q− = 1− x T2 . p+ = W1 T1 (1− u)x + W2 T2 u (1− x) W1 T1 x + W2 T2 (1− x) , € p− = x T1 , Death  probabili)es:   Birth  probabili)es:   € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ Variable  x  is  the  frequency  of  phenotype  P1  (so  frequency  of  P2  is  1 - x )  
  • 11. q+ = W1 T1 u x + W2 T2 (1− u)(1− x) W1 T1 x + W2 T2 (1− x) . € q− = 1− x T2 . p+ = W1 T1 (1− u)x + W2 T2 u (1− x) W1 T1 x + W2 T2 (1− x) , € p− = x T1 , Death  probabili)es:   Birth  probabili)es:   € p− € p+ € q− € q+ € 1− p− − q− € p+ € q+ € ⇒ p− + q− < 1 Variable  x  is  the  frequency  of  phenotype  P1  (so  frequency  of  P2  is  1 - x )  
  • 12. € Nu N → ∞⎯ →⎯⎯ θ, The  model  therefore  depends  on:   To  get  a  non  trivial  distribu'on  the  following  asympto'c  constraints   are  imposed  on  the  parameters:   € θ (mutation), s (reproduction), λ (survival).€ For notational convenience we also define λ = T1 T2 . € N W1 W2 −1 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ u→ 0 ⎯ →⎯⎯ s. Asympto)c  parameters  
  • 13. € Nu N → ∞⎯ →⎯⎯ θ, The  model  therefore  depends  on:   To  get  a  non  trivial  distribu'on  the  following  asympto'c  constraints   are  imposed  on  the  parameters:   € θ (mutation), s (reproduction), λ (survival).€ For notational convenience we also define λ = T1 T2 . € N W1 W2 −1 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ u→ 0 ⎯ →⎯⎯ s. Asympto)c  parameters  
  • 14. € M = E[Xt +1 − Xt ] = 1 NT1 ⋅ θ λ2 (1− x)2 + λ s x(1− x) −θ x2 x + λ (1− x) , V = E (Xt +1 − Xt )2 [ ] = 2 λ NT1 ⋅ x (1− x) x + λ (1− x) .
  • 15. € M = E[Xt +1 − Xt ] = 1 NT1 ⋅ θ λ2 (1− x)2 + λ s x(1− x) −θ x2 x + λ (1− x) , V = E (Xt +1 − Xt )2 [ ] = 2 λ NT1 ⋅ x (1− x) x + λ (1− x) .
  • 16. € € φ(x)= C⋅ 1 V ⋅ exp 2 M V dx∫ ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ , € φ(x)= Ceα x xλ θ −1 (1− x) θ λ −1 x + λ(1− x){ }, € α = s +θ 1 λ − λ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟. which  explicitly  gives   where   The  Wright  equilibrium  distribu'on  for  large  N  is     Equilibrium  distribu)on  
  • 17. € € φ(x)= C⋅ 1 V ⋅ exp 2 M V dx∫ ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ , € φ(x)= Ceα x xλ θ −1 (1− x) θ λ −1 x + λ(1− x){ }, € α = s +θ 1 λ − λ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟. which  explicitly  gives   where   The  Wright  equilibrium  distribu'on  for  large  N  is     Equilibrium  distribu)on  
  • 18. Typical  shapes  for  equilibrium  distribu)ons rela've  frequency  of  “blue”  phenotypes   probability  density   € low mutation rela've  frequency  of  “blue”  phenotypes   probability  density   € high mutation rela've  frequency  of  “blue”  phenotypes   probability  density   € mutation probability close to 1 N
  • 19. Typical  shapes  for  equilibrium  distribu)ons rela've  frequency  of  “blue”  phenotypes   probability  density   € low mutation rela've  frequency  of  “blue”  phenotypes   probability  density   € high mutation rela've  frequency  of  “blue”  phenotypes   probability  density   € mutation probability close to 1 N
  • 20. “u”:    probability  of  muta'on  per  site   sta'onary  points   € λ = T1 T2 =1 (life'mes  are  equal  for  the  two     phenotypes)   random  driR    muta'on/selec'on  balance   € 1 N Sta)onary  points
  • 21. “u”:    probability  of  muta'on  per  site   sta'onary  points   € λ = T1 T2 =1 (life'mes  are  equal  for  the  two     phenotypes)   random  driR    muta'on/selec'on  balance   € 1 N Sta)onary  points sta'onary  points   € λ = T1 T2 = 3 2 “u”:    probability  of  muta'on  per  site   € 1 N random  driR    muta'on/selec'on  balance  
  • 22. “u”:    probability  of  muta'on  per  site   sta'onary  points   € λ = T1 T2 =1 (life'mes  are  equal  for  the  two     phenotypes)   random  driR    muta'on/selec'on  balance   € 1 N Sta)onary  points random  driR    muta'on/selec'on  balance   sta'onary  points   € λ = T1 T2 = 3 2 “u”:    probability  of  muta'on  per  site   € 1 N € λ = T1 T2 = 3 2 € 1 N
  • 23. Sta)onary  points sta'onary  points   € λ = T1 T2 = 3 2 “u”:    probability  of  muta'on  per  site   € 1 N random  driR    muta'on/selec'on  balance   € 1 N
  • 24. Typical  shapes  for  equilibrium  distribu)ons rela've  frequency  of  “blue”  phenotypes   probability  density   € low mutation rela've  frequency  of  “blue”  phenotypes   probability  density   € high mutation rela've  frequency  of  “blue”  phenotypes   probability  density   € mutation probability close to 1 N
  • 25. The   model   includes   one   more   parameter   than   the   standard   seTng,     so   it’s   desirable  expand  the  number  of  independent  sta)s)cs.   This  can  be  done  considering  the  amount  of  synonymous  varia'on  included  in   each  of  our  two  phenotypes,  and  considering  it  neutral  (as  done  by  Nielsen  and   colleagues  for  various  types  of  models).   The  amount  of  synonymous  varia'on  can  be  quan'fied  by  using  the  inbreeding   coefficient  concept.   € Inferring λ = T1 T2 from population statistics
  • 26. phenotypes  P1  and  P2   genotypes   genotypes   Distribu)on  of  a  gene  throughout  a  popula)on  (Kreitman  1983)  
  • 27. x = relative frequency of P1 F1 = inbreeding coefficient for P1 F2 = inbreeding coefficient for P2 Sta)s)cal  quan))es P1   P2  
  • 28. € F1 /x +θ λ F1 /x − F1( )+ (L −1) F1[ ]− 1/x ≈ 0 F2 /(1− x) +θ 1 λ F2 /(1− x) − F2( )+ (L −1) F2 ⎡ ⎣⎢ ⎤ ⎦⎥ − 1/(1− x) ≈ 0 A  result  by  Kimura  and  Crow  gives  that  for  only  one  phenotype   € F ≈ 1 1+ 2θ This  can  be  extended  to  the  case  of  two  phenotypes  to  give  two  equa'ons:   where  θ  is  the  rescaled  muta'on  rate.  
  • 29. 0.5 1 1.5 20.75 1.25 1.75 0.5 1 1.5 2 .75 1.25 1.75 Real Estimated T1 = 2 T2 T1 = 1/2 T2 This  (hideous)  formula  can  be  used  to   derive  the  value  of     λ     from  combined  moments  of  quan''es     x ,      F1 ,      F2     es'mated   from   a   set   of   simulated   realiza'ons  of  the  process.   € number of realizations per point =10000 € running time = 5000 "generations"€ simulation parameters: s = −5, θ = 7, N =1000, L (genotype length) = 40 and this relation leads to a quadratic equation that only admits one non-negative solution: λ = 1 2Q1 (R − 1)(L − 1) + (R − 1)2(L − 1)2 + 4RQ1Q2 . (4.5) Figure 5 shows the result of using formula (4.5) to estimate λ, for a series series of simulations where the real value of λ ranges from .5 (i.e. T1 = 1/2 T2) to 2 (i.e. T1 = 2 T2): we see that the average values of such estimations are well aligned with the actual values. The magnitude of the standard deviation for our estimations, on the other hand, is considerable, especially in view of the fact the 10000 realisations of the process were used to estimate each value of λ: it is clear that a substantial increase of efficiency will be needed to make the theory relevant to actual empirical phenomena. This practical consideration ought not to be allowed, however, to obfuscate the fact that equation (4.5) provides a direct mathematical relation between combined moments of the population quantities x, F1 and F2, and parameter λ = T1/T2, which arguably contains information about the function of a genetic sequence. 5 Outlook We have shown that the effect of differentiating the lifetimes of two phenotypes inde- pendently from their fertility includes a qualitative change in the equilibrium state of a wing auxiliary quantities R = F2 F1 · 1/x − F1/x 1/(1 − x) − F2/(1 − x) , Q1 = F1/x F1 − 1, Q2 = F2/x F2 − 1. n terms of these quantities, the equation for λ takes the following form R = λ λQ1 + L − 1 Q2 + λ(L − 1) , his relation leads to a quadratic equation that only admits one non-negative solution: λ = 1 2Q1 (R − 1)(L − 1) + (R − 1)2(L − 1)2 + 4RQ1Q2 . (4.5) igure 5 shows the result of using formula (4.5) to estimate λ, for a series series of ations where the real value of λ ranges from .5 (i.e. T1 = 1/2 T2) to 2 (i.e. T1 = 2 T2): e that the average values of such estimations are well aligned with the actual values. he magnitude of the standard deviation for our estimations, on the other hand, is derable, especially in view of the fact the 10000 realisations of the process were used timate each value of λ: it is clear that a substantial increase of efficiency will be ed to make the theory relevant to actual empirical phenomena. his practical consideration ought not to be allowed, however, to obfuscate the fact following auxiliary quantities R = F2 F1 · 1/x − F1/x 1/(1 − x) − F2/(1 − x) , Q1 = F1/x F1 − 1, Q2 = F2/x F2 − 1. In terms of these quantities, the equation for λ takes the following form R = λ λQ1 + L − 1 Q2 + λ(L − 1) , and this relation leads to a quadratic equation that only admits one non-negative solution λ = 1 2Q1 (R − 1)(L − 1) + (R − 1)2(L − 1)2 + 4RQ1Q2 . (4.5 Figure 5 shows the result of using formula (4.5) to estimate λ, for a series series o simulations where the real value of λ ranges from .5 (i.e. T1 = 1/2 T2) to 2 (i.e. T1 = 2 T2) we see that the average values of such estimations are well aligned with the actual values The magnitude of the standard deviation for our estimations, on the other hand, i considerable, especially in view of the fact the 10000 realisations of the process were used to estimate each value of λ: it is clear that a substantial increase of efficiency will b needed to make the theory relevant to actual empirical phenomena. This practical consideration ought not to be allowed, however, to obfuscate the fac that equation (4.5) provides a direct mathematical relation between combined moment
  • 30. Summary   •  Playing  with  details  of  process  is  fun   •  In  principle  “func'onal”  parameter        λ  =  T1 / T2  can  be  es'mated   from  “popula'on  observables”      x ,      F1 ,      F2  
  • 32. “Disclaimer”   …there  is  no  such  thing  as  the  “func'on  of  a  gene”,  like  there  is  no  such  thing   as  the  “meaning  of  a  word”.   For  example,  the  word  “Gene”  can  mean:   …but  dic'onaries  exist  (and  they  are  obsolete  (but  they’re  a  start  (or  maybe  not))).   or