0
Basic Arrhythmias Interpretation Cardiac Electrophysiology Natalie Bermudez, RN, BSN, MS Clinical Educator for Telemetry
Myocardial Cardiac Cell Types <ul><li>P Cells  </li></ul><ul><li>Pacemaker cells </li></ul><ul><ul><li>Responsible for gen...
Cardiac Cell Activity <ul><li>Electrical activity  ALWAYS  precedes mechanical activity </li></ul><ul><li>Electrical activ...
Primary Characteristics of Cardiac Cells <ul><li>Automaticity </li></ul><ul><li>Excitability </li></ul><ul><li>Conductivit...
Is it  GOOD  or  BAD ??? <ul><li>ALL  ELECTRICAL CARDIAC CELLS ARE CAPABLE OF AUTOMATICITY!!! </li></ul><ul><li>IRRITABILI...
Electrolytes and Cardiac Cells <ul><li>Electrolyte solution surrounds cardiac cells </li></ul><ul><li>K +  primary intrace...
Polarization Depolarization   Repolarization Electrical Activity at the Cellular Level
Cardiac Action Potential <ul><li>As cardiac cells reverse polarity, the electrical  impulse generated during that event cr...
Slow-Response Cells <ul><li>SA node & AV node  </li></ul><ul><li>Spontaneously depolarize slowly </li></ul><ul><li>Shorter...
Fast-Response Cells <ul><li>Purkinje cells and working myocardial cells </li></ul><ul><li>Rapid depolarization </li></ul><...
Phases of Action Potential <ul><li>Phase 0  </li></ul><ul><li>Cellular depolarization is initiated as + ions enter the cel...
Phases of Action Potential <ul><li>Phase 1  </li></ul><ul><li>Small, early, rapid repolarization as K +  exits the intrace...
Phases of Action Potential <ul><li>Phase 3  </li></ul><ul><li>Completion of repolarization and return of cell to resting s...
 
POLARIZATION <ul><li>Electrical charges are balanced and ready for discharge. </li></ul>
<ul><li>The discharge of energy that accompanies the transfer of electrical charges across the membrane. </li></ul><ul><li...
<ul><li>The return of electrical charges across the cell membrane. </li></ul>REPOLARIZATION
Refractory Period <ul><li>Absolute:  The brief period during repolarization when the cell  CAN’T  respond to any stimulus,...
What is an EKG? <ul><li>Think of it as a map that shows the road traveled by an electrical impulse </li></ul><ul><li>Each ...
Isoelectric Line & Waveforms <ul><li>Isoelectric Line:  electrically neutral baseline of an EKG complex. </li></ul><ul><li...
Deflections <ul><li>Deflection:   a waveform on an EKG strip that denotes electrical activity; may be positive (upright) a...
Positive & Negative Poles <ul><li>Electrical activity that travels towards a positive pole appears upright on an EKG appea...
Positive & Negative Poles See Overhead Slide 1-1
Cardiac Monitors Electrodes, Poles, Wires, Leads, and Electrode Placement
Five-Leadwire System
Electrode Pad Placement <ul><li>Electrode </li></ul>An electrode pad is the medium through electrical activity is register...
Poles & Lead II <ul><li>Lead II consists of the following electrode placement: </li></ul><ul><li>Right Limb Lead (negative...
LEAD II <ul><li>Lead II is used alone quite frequently. Normal rhythms present with a prominent P wave and a tall QRS.  </...
Irritability versus Escape <ul><li>Irritability  – a site that speeds up and takes over as the pacemaker. </li></ul><ul><l...
More EKG Terminology Focus, Ectopy, Aberrancy, Artifact
Important Terminology <ul><li>Focus  -  The starting point of an electrical impulse </li></ul><ul><li>Ectopic  – An impuls...
Aberrancy <ul><li>Aberrancy   – abnormal conduction of an electrical impulse </li></ul><ul><li>Aberrant Ventricular Conduc...
Artifact <ul><li>Electrical activity displayed on graph paper that is superimposed on cardiac tracings, interfering with i...
Cardiac Electrophysiology The Electrical Conduction Pathway
Nervous System Stimulation <ul><li>Sympathetic Nervous System:  causes an increase in heart rate, increase in AV conductio...
Nervous System Stimulation <ul><li>Parasympathetic Nervous System:  (from the vagus nerve) causes a slowing of the heart r...
Pacemaker <ul><li>Pacemaker  – the SA node is the natural/normal pacemaker of the heart. </li></ul><ul><li>Latent Pacemake...
The Electrical Conduction Pathway
SA Node <ul><li>ie. Sinoatrial Node or Sinus Node </li></ul><ul><li>Posesses the highest level of automaticity </li></ul><...
AV Node   (The Gatekeeper) <ul><li>Three main functions: </li></ul><ul><li>Slows conduction to allow time for the atria to...
AV Node   (The Gatekeeper) <ul><li>Three Regions: </li></ul><ul><li>Atrial-Nodal (upper region) </li></ul><ul><li>Pacemake...
Ventricular Conduction <ul><li>Impulses moves rapidly through the ventricles: </li></ul><ul><li>Bundle of His </li></ul><u...
EKG COMPLEX
PQRST = One EKG complex = One Cardiac Cycle Total Duration of a Cardiac Cycle = ___________ seconds
P Wave <ul><li>Depicts the firing of the SA node and atrial depolarization (contraction). </li></ul><ul><li>P waves are up...
P Wave Abnormalities <ul><li>p mitrale  =  Wide & Notched P wave  ________________________________________________________...
PR Segment <ul><li>The PR segment represents delay in the AV node </li></ul><ul><li>Flat = Baseline </li></ul>
QRS Complex Depicts the electrical impulse traveling through the ventricles and ventricular depolarization (contraction). ...
QRS Complex Q wave  is the FIRST negative deflection  R wave  is the FIRST positive deflection S wave  is the negative def...
QRS Complex Variations Overhead Slide 1-2
ST-Segment <ul><li>The ST-segment represents ventricular contraction and period before ventricular repolarization. No elec...
ST-Segment Elevation & Depression <ul><li>To be considered a significant elevation or depression the ST must deviate at le...
ST-Segment Depression <ul><li>Most often seen with acute myocardial ischemia </li></ul><ul><li>Other Causes: </li></ul><ul...
ST-Segment Elevation <ul><li>Most often seen with acute myocardial injury or infarction </li></ul><ul><li>Other Causes: </...
T Wave Depicts ventricular repolarization Refractory Period
T Waves Positive Deflection  (above baseline < 5 mm) Should appear rounded and symmetrical Peak is closer to the end of th...
Elevated T Waves Positive Deflection  (above baseline  >  5 mm) Tall, peaked (tented) HYPERKALEMIA  or MYOCARDIAL INJURY
Inverted T Waves Negative Deflection  (below baseline) Causes: Myocardial Ischemia Myocardial Infarction Pericarditis Vent...
U Wave Depicts last phase of ventricular repolarization or endocardial repolarization???
U Wave U Wave < 2 mm Seen most commonly with BRADYCARDIC rate Can cause inaccuracies when measuring QT intervals
U Wave U Wave < 2 mm Large = hypokalemia, cardiomyopathy, LV enlargement Some drugs may cause a large U wave May cause Tor...
Atrial Repolarization ??? Hidden beneath the QRS complex.
 
EKG Graph Paper
Waveform Measurements
PR Interval Measurement: 0.12 – 0.20 seconds Represents the time from SA node firing to the end of AV node delay
PRI Abnormalities Prolonged or Inconsistent PRI’s may indicate a type of heart block: 1 st  degree AVB Mobitz 1 or Mobitz ...
PRI Abnormalities Shortened or Nonexistent PRI’s may indicate: Tachycardic Rhythms  WPW Syndrome Junctional Rhythms Ectopi...
PRI Abnormalities See Overhead Slide 1-4
PR Interval PRI= PRI=
QRS Duration Measurement: 0.04 – 0.10 seconds Represents the travel time of electrical activity through the ventricles
QRS Complex Variations Wide and/or notched QRS complexes:  - BBB’s  - Aberrant ventricular  conductivity - Rhythms with Ve...
Aberrant QRS Complex See Overhead Slide 1-5
QRS Duration QRS= QRS=
QT Interval Measurement: < ½ the distance of the preceding R-R interval Represents travel time through ventricles to the e...
QT Rate Corrected HR  ↑  = QT interval  ↓   HR  ↓  = QT interval  ↑   QTc =  QT + 1.75 (ventricular rate – 60)
QT Interval QT= QTc= QT= QTc=
Prolonged QT Intervals Represents a prolonged time to repolarization May lead to  R-on-T Phenomenon and ventricular dysrhy...
Basics to Interpreting Strips <ul><li>Rhythm </li></ul><ul><li>Rate </li></ul><ul><li>P Wave </li></ul><ul><li>PR Interval...
RHYTHM <ul><li>Determine regularity or irregularity </li></ul><ul><li>Use calipers for accuracy </li></ul><ul><li>Measure ...
HEART RATE <ul><li>Use 1500-rule and the 6-second rule for all  regular  rhythms </li></ul><ul><li>6-second rule only for ...
Calculating Heart Rates The 6-Second Rule The Rule of 300’s The 1500 Rule
6-Second Strip <ul><li>Count number of R waves in a 6-second strip and multiply by 10 </li></ul><ul><li>A.K.A. Rapid Rate ...
Rule of 300’s <ul><li>Count number of large squares between 2 consecutive R waves and divide into 300. </li></ul><ul><li>H...
Rule of 300’s Scale of 300 1 large square = 300 bpm 2 large squares = 150 bpm 3 large squares = 100 bpm 4 large squares = ...
1500 Rule <ul><li>Count number of small squares between 2 </li></ul><ul><li>consecutive R waves and divide into 1500 </li>...
P Waves <ul><li>Upright </li></ul><ul><li>Uniform </li></ul><ul><li>Precedes each QRS complex </li></ul><ul><li>Any extra ...
PRI <ul><li>Measure from beginning of P wave to the end of the PR segment </li></ul><ul><li>0.12 – 0.20 seconds </li></ul>...
QRS Complex <ul><li>Measure from beginning to the end of QRS complex (1 st  deflection from baseline after the PR segment ...
QT Interval or QTc <ul><li>QT Interval = Count the # of small boxes from beginning QRS complex to the end of the T wave. S...
Extras??? <ul><li>P waves without QRS complexes </li></ul><ul><li>ST-segment depression or elevation </li></ul>
 
References <ul><li>Chernecky, C., et al. (2002).  Real world nursing survival guide: ECG’s & the heart.  United States of ...
Upcoming SlideShare
Loading in...5
×

Cardiac Electrophysiology

9,399

Published on

Published in: Education, Business, Technology
0 Comments
20 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
9,399
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
557
Comments
0
Likes
20
Embeds 0
No embeds

No notes for slide

Transcript of "Cardiac Electrophysiology"

  1. 1. Basic Arrhythmias Interpretation Cardiac Electrophysiology Natalie Bermudez, RN, BSN, MS Clinical Educator for Telemetry
  2. 2. Myocardial Cardiac Cell Types <ul><li>P Cells </li></ul><ul><li>Pacemaker cells </li></ul><ul><ul><li>Responsible for generation of action potentials </li></ul></ul><ul><ul><li>electrical activity </li></ul></ul><ul><li>Cardiomyocytes </li></ul><ul><li>Myocardial Cells </li></ul><ul><ul><li>Contractile cells that generate force </li></ul></ul><ul><ul><li>Mechanical activity </li></ul></ul>
  3. 3. Cardiac Cell Activity <ul><li>Electrical activity ALWAYS precedes mechanical activity </li></ul><ul><li>Electrical activity can occur without a mechanical response (i.e. pulse). </li></ul><ul><li>This is known as pulseless electrical activity (PEA). </li></ul>
  4. 4. Primary Characteristics of Cardiac Cells <ul><li>Automaticity </li></ul><ul><li>Excitability </li></ul><ul><li>Conductivity </li></ul><ul><li>Contractility </li></ul><ul><li>ECG Workout Textbook: p. 10 </li></ul>
  5. 5. Is it GOOD or BAD ??? <ul><li>ALL ELECTRICAL CARDIAC CELLS ARE CAPABLE OF AUTOMATICITY!!! </li></ul><ul><li>IRRITABILITY!!! </li></ul>Automaticity It is definitely REALLY GOOD THING!! But it can also be a REALLY BAD THING!!
  6. 6. Electrolytes and Cardiac Cells <ul><li>Electrolyte solution surrounds cardiac cells </li></ul><ul><li>K + primary intracellular ion </li></ul><ul><li>Na + primary extracellular ion </li></ul><ul><li>Ready State: Inside of the cell </li></ul><ul><li>more negative </li></ul><ul><li>Cell stimulated; membrane permeability changes </li></ul>
  7. 7. Polarization Depolarization Repolarization Electrical Activity at the Cellular Level
  8. 8. Cardiac Action Potential <ul><li>As cardiac cells reverse polarity, the electrical impulse generated during that event creates an energy stimulus that travels across the cell membrane </li></ul><ul><li>High-speed, self-producing current (heart only) </li></ul>
  9. 9. Slow-Response Cells <ul><li>SA node & AV node </li></ul><ul><li>Spontaneously depolarize slowly </li></ul><ul><li>Shorter, non-prominent plateau phase with slower repolarization period </li></ul>
  10. 10. Fast-Response Cells <ul><li>Purkinje cells and working myocardial cells </li></ul><ul><li>Rapid depolarization </li></ul><ul><li>Then, a period of sustained depolarization – plateau phase </li></ul>
  11. 11. Phases of Action Potential <ul><li>Phase 0 </li></ul><ul><li>Cellular depolarization is initiated as + ions enter the cell (Na + and Ca ++ ) </li></ul><ul><li>Working cells rapidly depolarize as Na + enters the cells through Na + fast channels (fast response) </li></ul><ul><li>SA/AV node depolarize as Ca ++ enters the cell through Ca ++ slow channels (slow-response) </li></ul>
  12. 12. Phases of Action Potential <ul><li>Phase 1 </li></ul><ul><li>Small, early, rapid repolarization as K + exits the intracellular space </li></ul><ul><li>Phase 2 </li></ul><ul><li>The plateau phase as Ca ++ ions enter the intracellular space </li></ul>
  13. 13. Phases of Action Potential <ul><li>Phase 3 </li></ul><ul><li>Completion of repolarization and return of cell to resting state </li></ul><ul><li>Phase 4 </li></ul><ul><li>Resting phase before the next depolarization (Na + out, K + in) </li></ul>
  14. 15. POLARIZATION <ul><li>Electrical charges are balanced and ready for discharge. </li></ul>
  15. 16. <ul><li>The discharge of energy that accompanies the transfer of electrical charges across the membrane. </li></ul><ul><li>The process of electrical discharge and flow </li></ul><ul><li>of electrical activity. </li></ul><ul><li>An electrical event that can be recorded on </li></ul><ul><li>an EKG or rhythm strip. </li></ul>DEPOLARIZATION
  16. 17. <ul><li>The return of electrical charges across the cell membrane. </li></ul>REPOLARIZATION
  17. 18. Refractory Period <ul><li>Absolute: The brief period during repolarization when the cell CAN’T respond to any stimulus, no matter how strong. </li></ul><ul><li>*Relative: The brief period during repolarization when excitability is depressed. If stimulated, the cell may respond, but a stronger than usual stimulus is required. </li></ul><ul><li>Supernormal: The cells will respond to a weaker than normal stimulus (this period occurs just before the cells have completely repolarized) </li></ul>
  18. 19. What is an EKG? <ul><li>Think of it as a map that shows the road traveled by an electrical impulse </li></ul><ul><li>Each waveform indicates the location of the electrical impulse and if has traveled through that location “normally” </li></ul>
  19. 20. Isoelectric Line & Waveforms <ul><li>Isoelectric Line: electrically neutral baseline of an EKG complex. </li></ul><ul><li>Waveform : any part of the EKG tracing that moves away from & returns to the isoelectric line (baseline) </li></ul>
  20. 21. Deflections <ul><li>Deflection: a waveform on an EKG strip that denotes electrical activity; may be positive (upright) and/or negative (downward). </li></ul><ul><li>Monophasic or Biphasic </li></ul><ul><li>See Overhead slide 1-0 </li></ul>
  21. 22. Positive & Negative Poles <ul><li>Electrical activity that travels towards a positive pole appears upright on an EKG appears and is called a positive deflection . </li></ul><ul><li>Electrical activity that travels towards a negative pole appears inverted (downward) on an EKG and is called a negative deflection </li></ul>
  22. 23. Positive & Negative Poles See Overhead Slide 1-1
  23. 24. Cardiac Monitors Electrodes, Poles, Wires, Leads, and Electrode Placement
  24. 25. Five-Leadwire System
  25. 26. Electrode Pad Placement <ul><li>Electrode </li></ul>An electrode pad is the medium through electrical activity is registered/recorded Proper placement of the electrode pad is the most important step in obtaining a good quality and accurate EKG tracing An EKG lead provides a view of the heart’s electrical activity between two points or poles (one positive & one negative) The EKG waveforms are recorded via an electrode/wire system – i.e. five-leadwire system
  26. 27. Poles & Lead II <ul><li>Lead II consists of the following electrode placement: </li></ul><ul><li>Right Limb Lead (negative pole): the 2 nd intercostal space on the right </li></ul><ul><li>Left Limb Lead (positive pole): the 8 th intercostal space on the left </li></ul><ul><li>Grounding Lead: 8 th intercostal space to the right </li></ul>
  27. 28. LEAD II <ul><li>Lead II is used alone quite frequently. Normal rhythms present with a prominent P wave and a tall QRS. </li></ul>
  28. 29. Irritability versus Escape <ul><li>Irritability – a site that speeds up and takes over as the pacemaker. </li></ul><ul><li>Escape – when the normal pacemaker slows down or fails and a lower site assumes pace making responsibility. </li></ul><ul><li>Either of these may exist as a beat or rhythm! </li></ul>
  29. 30. More EKG Terminology Focus, Ectopy, Aberrancy, Artifact
  30. 31. Important Terminology <ul><li>Focus - The starting point of an electrical impulse </li></ul><ul><li>Ectopic – An impulse that originates from a focus other than the primary pacemaker. </li></ul>
  31. 32. Aberrancy <ul><li>Aberrancy – abnormal conduction of an electrical impulse </li></ul><ul><li>Aberrant Ventricular Conduction – An impulse that originates from the SA node, atria, or AV junction that is abnormally conducted through the ventricles producing a wider than normal QRS complex: a.k.a “aberrancy” </li></ul>
  32. 33. Artifact <ul><li>Electrical activity displayed on graph paper that is superimposed on cardiac tracings, interfering with interpretation of the rhythm. </li></ul><ul><li>Can be caused by outside electrical soures, muscle tremors, patient movement; also called interference. </li></ul><ul><li>     </li></ul>
  33. 34. Cardiac Electrophysiology The Electrical Conduction Pathway
  34. 35. Nervous System Stimulation <ul><li>Sympathetic Nervous System: causes an increase in heart rate, increase in AV conduction , and increase in ventricular contractility </li></ul><ul><li>The increase is caused a release of norepinephrine (catecholamine/neurotransmitter) </li></ul>
  35. 36. Nervous System Stimulation <ul><li>Parasympathetic Nervous System: (from the vagus nerve) causes a slowing of the heart rate, a decrease in AV conduction, and a slight decrease in ventricular contractility </li></ul><ul><li>The decrease is caused a release of acetylcholine (catecholamine/neurotransmitter) </li></ul>
  36. 37. Pacemaker <ul><li>Pacemaker – the SA node is the natural/normal pacemaker of the heart. </li></ul><ul><li>Latent Pacemaker Cells – Cells in the electrical conduction system located below the SA node with the property of automaticity </li></ul><ul><li>These cells hold the property of automaticity in reserve in case the SA node fails to function properly or electrical impulses fail to be conducted. </li></ul><ul><li>a.k.a. – Subsidiary pacemaker cells </li></ul>
  37. 38. The Electrical Conduction Pathway
  38. 39. SA Node <ul><li>ie. Sinoatrial Node or Sinus Node </li></ul><ul><li>Posesses the highest level of automaticity </li></ul><ul><li>SA Node is the primary pacemaker of the heart </li></ul><ul><li>If it fails to fire or slows down less than its inherent firing rate (60 – 100), another pacemaker that is lower in the conduction system will take over </li></ul>
  39. 40. AV Node (The Gatekeeper) <ul><li>Three main functions: </li></ul><ul><li>Slows conduction to allow time for the atria to contract & empty its contents (atrial kick) before the ventricles contract </li></ul><ul><li>Secondary pacemaker (40 – 59 bpm) </li></ul><ul><li>Blocks some of the impulses from being conducted to the ventricles when atrial rate is rapid </li></ul>
  40. 41. AV Node (The Gatekeeper) <ul><li>Three Regions: </li></ul><ul><li>Atrial-Nodal (upper region) </li></ul><ul><li>Pacemaker cells </li></ul><ul><li>Nodal (middle region) </li></ul><ul><li>No pacemaker cells (area responsible </li></ul><ul><li>for delay) </li></ul><ul><li>Nodal-His (lower region) </li></ul><ul><li>Pacemaker cells </li></ul>
  41. 42. Ventricular Conduction <ul><li>Impulses moves rapidly through the ventricles: </li></ul><ul><li>Bundle of His </li></ul><ul><li>Left & Right Bundle branches (LBB divides into the anterior fascicle and posterior fascicle) </li></ul><ul><li>Purkinje fibers </li></ul><ul><li>Tertiary pacemaker (20 – 39) </li></ul>
  42. 43. EKG COMPLEX
  43. 44. PQRST = One EKG complex = One Cardiac Cycle Total Duration of a Cardiac Cycle = ___________ seconds
  44. 45. P Wave <ul><li>Depicts the firing of the SA node and atrial depolarization (contraction). </li></ul><ul><li>P waves are upright & rounded (in Lead II). </li></ul><ul><li>Precedes a QRS </li></ul><ul><li>Both atria depolarize simultaneously. </li></ul>
  45. 46. P Wave Abnormalities <ul><li>p mitrale = Wide & Notched P wave ______________________________________________________________________ </li></ul><ul><li>p pulmonale = Tall, peaked P wave </li></ul><ul><li>________________________________________________________________________ </li></ul>
  46. 47. PR Segment <ul><li>The PR segment represents delay in the AV node </li></ul><ul><li>Flat = Baseline </li></ul>
  47. 48. QRS Complex Depicts the electrical impulse traveling through the ventricles and ventricular depolarization (contraction). Not all QRS complexes have a Q, R, and S.
  48. 49. QRS Complex Q wave is the FIRST negative deflection R wave is the FIRST positive deflection S wave is the negative deflection that follows the R wave J Point is the point where the QRS complex ends See Overhead Slide 1-3
  49. 50. QRS Complex Variations Overhead Slide 1-2
  50. 51. ST-Segment <ul><li>The ST-segment represents ventricular contraction and period before ventricular repolarization. No electricity is flowing. The ST segment is therefore usually even with the baseline. </li></ul>
  51. 52. ST-Segment Elevation & Depression <ul><li>To be considered a significant elevation or depression the ST must deviate at least 1 mm above or below the baseline (in at least 2 or more correlating leads) </li></ul>
  52. 53. ST-Segment Depression <ul><li>Most often seen with acute myocardial ischemia </li></ul><ul><li>Other Causes: </li></ul><ul><li>Left and right ventricular hypertrophy </li></ul><ul><li>Left and Right BBB </li></ul><ul><li>Hypokalemia </li></ul><ul><li>Drug Effects (i.e. digitalis) </li></ul>
  53. 54. ST-Segment Elevation <ul><li>Most often seen with acute myocardial injury or infarction </li></ul><ul><li>Other Causes: </li></ul><ul><li>Coronary vasospasm (Prinzmetal’s Angina) </li></ul><ul><li>Pericarditis </li></ul><ul><li>Ventricular Aneurysm </li></ul><ul><li>Hyperkalemia </li></ul><ul><li>Early repolarization (a normal variant) </li></ul>
  54. 55. T Wave Depicts ventricular repolarization Refractory Period
  55. 56. T Waves Positive Deflection (above baseline < 5 mm) Should appear rounded and symmetrical Peak is closer to the end of the wave
  56. 57. Elevated T Waves Positive Deflection (above baseline > 5 mm) Tall, peaked (tented) HYPERKALEMIA or MYOCARDIAL INJURY
  57. 58. Inverted T Waves Negative Deflection (below baseline) Causes: Myocardial Ischemia Myocardial Infarction Pericarditis Ventricular Enlargement Bundle Branch Block Subarachnoid Hemorrhage Certain Drugs (quinidine or procainamide)
  58. 59. U Wave Depicts last phase of ventricular repolarization or endocardial repolarization???
  59. 60. U Wave U Wave < 2 mm Seen most commonly with BRADYCARDIC rate Can cause inaccuracies when measuring QT intervals
  60. 61. U Wave U Wave < 2 mm Large = hypokalemia, cardiomyopathy, LV enlargement Some drugs may cause a large U wave May cause Torsades de Pointes
  61. 62. Atrial Repolarization ??? Hidden beneath the QRS complex.
  62. 64. EKG Graph Paper
  63. 65. Waveform Measurements
  64. 66. PR Interval Measurement: 0.12 – 0.20 seconds Represents the time from SA node firing to the end of AV node delay
  65. 67. PRI Abnormalities Prolonged or Inconsistent PRI’s may indicate a type of heart block: 1 st degree AVB Mobitz 1 or Mobitz 2 Complete AVB
  66. 68. PRI Abnormalities Shortened or Nonexistent PRI’s may indicate: Tachycardic Rhythms WPW Syndrome Junctional Rhythms Ectopic Atrial Rhythms Ventricular Rhythms
  67. 69. PRI Abnormalities See Overhead Slide 1-4
  68. 70. PR Interval PRI= PRI=
  69. 71. QRS Duration Measurement: 0.04 – 0.10 seconds Represents the travel time of electrical activity through the ventricles
  70. 72. QRS Complex Variations Wide and/or notched QRS complexes: - BBB’s - Aberrant ventricular conductivity - Rhythms with Ventricular Focus
  71. 73. Aberrant QRS Complex See Overhead Slide 1-5
  72. 74. QRS Duration QRS= QRS=
  73. 75. QT Interval Measurement: < ½ the distance of the preceding R-R interval Represents travel time through ventricles to the end of ventricular repolarization Normally varies according to age, sex, and particularly heart rate
  74. 76. QT Rate Corrected HR ↑ = QT interval ↓ HR ↓ = QT interval ↑ QTc = QT + 1.75 (ventricular rate – 60)
  75. 77. QT Interval QT= QTc= QT= QTc=
  76. 78. Prolonged QT Intervals Represents a prolonged time to repolarization May lead to R-on-T Phenomenon and ventricular dysrhythmias!!!
  77. 79. Basics to Interpreting Strips <ul><li>Rhythm </li></ul><ul><li>Rate </li></ul><ul><li>P Wave </li></ul><ul><li>PR Interval (PRI) </li></ul><ul><li>QRS Duration </li></ul>
  78. 80. RHYTHM <ul><li>Determine regularity or irregularity </li></ul><ul><li>Use calipers for accuracy </li></ul><ul><li>Measure distance from R-R wave </li></ul><ul><li>Regular Rhythm = R-R distance does not vary (less than 3 small boxes of variation does not count) </li></ul><ul><li>Irregular Rhythm = R-R distance varies (3 small small boxes or greater) </li></ul>
  79. 81. HEART RATE <ul><li>Use 1500-rule and the 6-second rule for all regular rhythms </li></ul><ul><li>6-second rule only for irregular rhythms </li></ul>
  80. 82. Calculating Heart Rates The 6-Second Rule The Rule of 300’s The 1500 Rule
  81. 83. 6-Second Strip <ul><li>Count number of R waves in a 6-second strip and multiply by 10 </li></ul><ul><li>A.K.A. Rapid Rate Calculation </li></ul><ul><li>HR = # R waves x 10 </li></ul><ul><li>Not very accurate </li></ul><ul><li>Used only for very quick estimate </li></ul>
  82. 84. Rule of 300’s <ul><li>Count number of large squares between 2 consecutive R waves and divide into 300. </li></ul><ul><li>HR = 300 / # large squares </li></ul><ul><li>Very quick </li></ul><ul><li>Used only with regular rhythms </li></ul><ul><li>Not very accurate with fast rates </li></ul>
  83. 85. Rule of 300’s Scale of 300 1 large square = 300 bpm 2 large squares = 150 bpm 3 large squares = 100 bpm 4 large squares = 75 bpm 5 large squares = 60 bpm 6 large squares = 50 bpm
  84. 86. 1500 Rule <ul><li>Count number of small squares between 2 </li></ul><ul><li>consecutive R waves and divide into 1500 </li></ul><ul><li>A.K.A. – Precise Rate Calculation </li></ul><ul><li>Most accurate </li></ul><ul><li>Used only with regular rhythms </li></ul><ul><li>Time-consuming </li></ul>
  85. 87. P Waves <ul><li>Upright </li></ul><ul><li>Uniform </li></ul><ul><li>Precedes each QRS complex </li></ul><ul><li>Any extra P waves </li></ul>
  86. 88. PRI <ul><li>Measure from beginning of P wave to the end of the PR segment </li></ul><ul><li>0.12 – 0.20 seconds </li></ul><ul><li>Constant </li></ul>
  87. 89. QRS Complex <ul><li>Measure from beginning to the end of QRS complex (1 st deflection from baseline after the PR segment to the beginning of the ST segment) </li></ul><ul><li>0.04 – 0.10 seconds </li></ul><ul><li>Notched???, Wide, etc. </li></ul>
  88. 90. QT Interval or QTc <ul><li>QT Interval = Count the # of small boxes from beginning QRS complex to the end of the T wave. Should be less than ½ the distance of the preceding R-R interval </li></ul><ul><li>QTc = QT + 1.75 (ventricular rate – 60) </li></ul>
  89. 91. Extras??? <ul><li>P waves without QRS complexes </li></ul><ul><li>ST-segment depression or elevation </li></ul>
  90. 93. References <ul><li>Chernecky, C., et al. (2002). Real world nursing survival guide: ECG’s & the heart. United States of America: W. B. Saunders Company. </li></ul><ul><li>Garcia, T. B., & Holtz, N. E. (2001). 12-lead ecg: The art of interpretation. Sudbury, MA: Jones and Bartlett Publishers. </li></ul><ul><li>Huff, J. (2006). ECG workout: Exercises in arrhythmia interpretation (5 th ed.). United States of America: Lippincott, Williams & Wilkins. </li></ul><ul><li>Smeltzer, S. C., et al. (2008). Brunner and suddarth’s testbook of medical-surgical nursing, (11 th ed.). Philadelphia, PA: Lippincott, Williams & Wilkins. </li></ul><ul><li>Walraven, G. (1999). Basic arrhythmias (5 th ed.). United States of America: Prentice-Hall, Inc. </li></ul><ul><li>Woods, S. L., et al. (2005). Cardiac nursing, (5 th ed.). Philadelphia, PA: Lippincott, Williams & Wilkins. </li></ul><ul><li>www.madsci.com/manu/ekg_rhy.htm </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×