SlideShare a Scribd company logo
1 of 34
Simultaneously Optimizing COE and Land Footprint
of Wind Farms under Different Land Plot Availability
Weiyang Tong*, Souma Chowdhury#, and Achille Messac#
* Syracuse University, Department of Mechanical and Aerospace Engineering
# Mississippi State University, Department of Aerospace Engineering
11th Multi-Disciplinary Design Optimization Conference
AIAA Science and Technology Forum and Exposition
January 5 – 9, 2015 Kissimmee, Florida
Major Parties Involved
2
 Undesirable concept-to-installation delays are caused by conflicting
decisions from the major parties involved
Wind farm developers
need to address the
concerns of the major
parties involved
Seek the optimal design that
balances the social, economic,
and environmental objectives
Project
Investors
Landowners
Local
Communities
Power
utilities
Local public
authorities
Wind farm developer
Landowner Participation
• In commercial wind farms, turbines generally appear in clusters due to
considerations of land plot availability.
• However, closer the turbines in an array, greater are the energy losses due
to wake effects.
• On the other hand, greater land usage increases the net impact on
surroundings (e.g., impact on wildlife), and demands participation of
more landowners.
3
Husum, Germanyhttp://www.sciencebuzz.org/
Thenetimpacton
surroundings
Cost of Energy
Research Motivation
4
 Decision making of different factors is impractical and restrictive in
conventional wind farm planning due to typically prescribed conditions:
 Wind farm layouts are generally designed for prescribed land area or farm
boundaries, and prescribed turbine configurations.
 There exist very few instances (in the literature) of exploring how land plot
availability impact wind farm layout planning (e.g., Chen and MacDonald,
2012, 2013).
 Limited literature exists on exploring the trade-offs between COE/energy
production and land footprint (e.g., Tong et al., 2012, 2013).
 Exploration of such multiobjective wind farm layout optimization
scenarios under different land plot availability also demands nonlinear
MO optimizers that are fast, and can deal with constraints, multimodal
functions, and mixed-discrete variables.
Research Objective
5
 Investigate the capabilities of a new multi-objective mixed-discrete
PSO to perform bi-objective optimization:
 To simultaneously minimize the cost of energy (COE) and the land
footprint per MW installed of the wind farm.
 Investigate how different land plot availability scenarios impact the
best trade-offs between COE and land footprint, and regulate the
optimal wind farm layout designs.
Cost of Energy ($/kWh)
LandareaperMWinstalled(ha/MW)
0.035 0.04 0.045 0.05
10
20
30
40
50
60
70
80
90
100
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
Outline
6
• Multi-Objective Wind Farm Layout Optimization
• Wind Farm Cost and Energy Production Models
• Conventional and Layout-based Land Usage Model
• Multi-Objective Optimization Problem Definition
• Multi-Objective Mixed-Discrete PSO (MO-MDPSO)
 Highly nonlinear
 High dimensional
 Highly constrained
 Non-convex Pareto frontier, and
 Mixture of continuous and discrete design variables
• Wind Farm Optimization under Land Plot Availability
• Concluding Remarks
Outline
7
• Multi-Objective Wind Farm Layout Optimization
• Wind Farm Cost and Energy Production Models
• Conventional and Layout-based Land Usage Model
• Multi-Objective Optimization Problem Definition
• Multi-Objective Mixed-Discrete PSO (MO-MDPSO)
 Highly nonlinear
 High dimensional
 Highly constrained
 Non-convex Pareto frontier, and
 Mixture of continuous and discrete design variables
• Wind Farm Optimization under Land Plot Availability
• Concluding Remarks
𝐶𝑂𝐸 =
𝐼𝐶𝐶 × 𝐹𝐶𝑅 + 𝐿𝑅𝐶
𝐴𝐸𝑃
+ 𝐿𝐿𝐶 + 𝑂&𝑀
where
ICC – Initial Capital Cost
LRC – Levelized Replacement Cost
LLC – Land Lease Cost
O&M – Operation & Maintenance Cost
FCR – Fixed Charge Rate
AEP – Annual Energy Production
Wind Farm Cost of Energy
8
𝐸𝑓𝑎𝑟𝑚 = 365 × 24
𝑗=1
𝑁 𝑝
𝑃𝑓𝑎𝑟𝑚 𝑈𝑗, 𝜃𝑗 𝑓(𝑈𝑗, 𝜃𝑗)∆𝑈∆𝜃
1: Fingersh et al., 2006 NREL Tech. Report
2: Chowdhury et al., 2012 Renewable Energy
Estimated using the Wind Turbine Design
Cost and Scaling Model1
 Rotor:
Blades
Hub
Pitch mechanisms, etc;
 Drive train nacelle
Gearbox
generator, etc;
 Control, safety system, and monitoring
 Tower
 Balance of station
Foundation
Transportation
Assembly and installation, etc
Energy production model offered by UWFLO2:
9
Energy Production Model in UWFLO
 This model quantifies the power generation of an array of turbines as a
function of the incoming wind conditions, turbine features, and the
locations of turbines
 It allows a variable induction factor:
U: incoming wind speed; P: power generated, given by the power curve
kg, kb: mechanical and electrical efficiencies, Dj: Rotor Diameter, 𝜌: Air density
 The Katic’s model is used to account for wake merging and partial wake
overlap
𝑢𝑗: Effective velocity deficit
𝐴 𝑘𝑗: Overlapping area bt.Turbine-j and Turbine-k
Conventional Wind Farm Layout Optimization
10
wind farm layout optimization flowchart
Stop criterion
Reach the best performance?
Evaluate design
objective functions
Trade-off between
design objectives
Adjust the
location of
turbines
Prescribed
conditions
Yes
No
Farm boundaries
Land area
Land orientation
Number of turbines
𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑 = 𝑓(𝑋 𝑚𝑖𝑛, 𝑌 𝑚𝑖𝑛, 𝑋 𝑚𝑎𝑥, 𝑌 𝑚𝑎𝑥)
𝑋 𝑁
∈ [𝑋 𝑚𝑖𝑛, 𝑋 𝑚𝑎𝑥]
𝑌 𝑁
∈ [𝑌 𝑚𝑖𝑛, 𝑌 𝑚𝑎𝑥]
𝑋 𝑚𝑖𝑛 𝑋 𝑚𝑎𝑥
𝑌 𝑚𝑖𝑛
𝑌 𝑚𝑎𝑥
Turbine location vector
Wind turbine 2D Convex hull
SBR Buffer area
Wind turbine 2D Convex hull
SBR Buffer area
Wind turbine 2D Convex hull
SBR Buffer area
Wind turbine 2D Convex hull
SBR Buffer area
Layout-based Wind Farm Land Usage
11
• A given layout (siting of an array of
turbines) is obtained.
• The “2D Convex Hull” is applied to
determine the land usage for a given set
of turbines
• The Smallest Bounding Rectangle
(SBR) is fit based on the convex hull
• A buffer zone is added to each side of
the SBR to yield the final land usage
1D
𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑 = 𝑓(𝑋 𝑁
, 𝑌 𝑁
)
𝑆ℎ𝑎𝑝𝑒𝑙𝑎𝑛𝑑 = 𝑔(𝑋 𝑁
, 𝑌 𝑁
)
Optimal Layout-based Wind Farm Land Usage
12
• An Optimal Layout-based (OL-based) land use
has the following features:
• Farm boundaries are not assumed
• Automatically determined by the layout optimization
• Yield OL-based land area, 𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑
∗
• Yield OL-based land shape, 𝑆ℎ𝑎𝑝𝑒𝑙𝑎𝑛𝑑
∗
Step 1: min
𝑋 𝑁,𝑌 𝑁
𝑓 𝑋 𝑁, 𝑌 𝑁 , 𝑔 𝑋 𝑁, 𝑌 𝑁
Step 2: 𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑
∗
= 𝑓 𝑋 𝑁
∗
, 𝑌 𝑁
∗
𝑆ℎ𝑎𝑝𝑒𝑙𝑎𝑛𝑑
∗
= 𝑔 𝑋 𝑁
∗
, 𝑌 𝑁
∗
Optimal layout
Evaluate
Performance
Objectives
Cost of
Energy
Land
Footprint
MO-MDPSO
Multi-Objective Wind Farm Optimization Framework
13
1. Turbine Locations
2. Turbine Config.
Trade-off bt. objectives
Optimal designs:
o Location of turbines
o Selection of turbine types
o Site orientation
𝑚𝑖𝑛 {𝐶𝑂𝐸 𝑉 , 𝐴 𝑀𝑊 𝑉 }
𝑉 = 𝑥1, 𝑥2, ⋯ , 𝑥 𝑁, 𝑦1, 𝑦2, ⋯ , 𝑦 𝑁, 𝑇
𝑇 = {1,2, ⋯ , 16}
subject to
𝑔1 𝑉
𝑔2 𝑉 ≤ 2𝐷
Inter-Turbine Spacing
Binary-decision
landowner participation
Highly nonlinear
and multimodal
Mixed-Integer Variables
Nonlinear constraints
Outline
14
• Multi-Objective Wind Farm Layout Optimization
• Wind Farm Cost and Energy Production Models
• Conventional and Layout-based Land Usage Model
• Multi-Objective Optimization Problem Definition
• Multi-Objective Mixed-Discrete PSO (MO-MDPSO)
 Highly nonlinear
 High dimensional
 Highly constrained
 Non-convex Pareto frontier, and
 Mixture of continuous and discrete design variables
• Wind Farm Optimization under Land Plot Availability
• Concluding Remarks
1
2
3
4
5
1
2
3
4 5
f1
f2
0 0.5 1 1.5 2 2.5 3
0
0.5
1
1.5
2
2.5
3
Infeasible
R
egion
Actual Boundary
Local
Pareto set
Multi-Objective Mixed-Discrete PSO
Position update:
𝒙𝑖 𝑡 + 1 = 𝒙𝑖 𝑡 + 𝒗𝑖 𝑡 + 1
Velocity update:
𝒗𝑖 𝑡 + 1 = 𝑤𝒗𝑖 𝑡 + 𝑟1 𝐶1 𝑷𝑖
𝑙
(𝑡) − 𝒙𝑖 + 𝑟2 𝐶2 𝑷𝑖
𝑔
(𝑡) − 𝒙𝑖 + 𝑟3 𝛾 𝑐,𝑖 𝒗𝑖(𝑡)
15
𝑷𝑖
𝑙
– local leader of particle-i, which is
selected from the local Pareto set
𝑷𝑖
𝑔
– global leader of particle-i that is
determined by a stochastic process
Crowding Distance – to manage the
size of local/global Pareto set
Multiple global leaders
Inertia Local search Global search
Applied w.r.t.
each particle’s
global leader
Current particle Stored particle
Highly
constrained
High
dimensional
Non-convex
Pareto frontier
Highly
nonlinear
Mixed types of
variables
Hypercube enclosing
72 candidate solutions
X1
X2
0 1 2 3
0
1
2
3
Particles
Global leaders
Multiple λ-Fractional Domains
16
• 7 global leaders are observed
• Ideally, each fractional
domain should enclose 10
particles
• Particles located in the
overlapping regions are
uniformly re-allocated
between domains
• This method uniquely exploits
diversity preservation to both
prevent particle stagnation
and accomplish a desirable
distribution of Pareto
solutions.
13
10
14
𝜆 = 0.25
Design Variable Space
Outline
17
• Multi-Objective Wind Farm Layout Optimization
• Wind Farm Cost and Energy Production Models
• Conventional and Layout-based Land Usage Model
• Multi-Objective Optimization Problem Definition
• Multi-Objective Mixed-Discrete PSO (MO-MDPSO)
 Highly nonlinear
 High dimensional
 Highly constrained
 Non-convex Pareto frontier, and
 Mixture of continuous and discrete design variables
• Wind Farm Optimization under Land Plot Availability
• Concluding Remarks
Case Study Setup: Assumptions and Prescriptions
Assumptions:
• A wind distribution (based on 10yr measured data) is used
• 16 square land plots are considered
• Identical turbines are used with 16 candidate turbine types
• Landowner participation is assumed to be Binary (deterministic)
18
User-defined parameters in MO-MDPSO
Parameter
Mixed-discrete
constrained problems
𝑤 0.5
𝐶1 1.5
𝐶𝑐0 1.5
𝛾 𝑐0 2.0
𝛾 𝑚𝑖𝑛 1e-5
𝛾 𝑑0 1.0
𝜆 0.1
Local set size 10
Global set size Up to 100
Population size 1000
Particle Velocity
parameters
Diversity
parameters
Multi-objective
Search
parameters
Three Case Studies: Based on Land Plot Availability
19
Parameter Case Study I Case Study II Case Study III
Number of turbines 50 50 50
Plots allowed to be used All 16 plots 8 specified plots
No more than any
6 plots
No. of design variables 101 101 101
Max. Function Evaluations 250,000 250,000 250,000
Case I Case II Case III
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
88
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12 12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Case Study I: All 16 Land Plots
20
𝑔1 𝑉 = min
max(𝑥 − 𝑋 𝑚𝑖𝑛, 0)+max(𝑋 𝑚𝑎𝑥 − 𝑥, 0),
max 𝑦 − 𝑌 𝑚𝑖𝑛, 0 +max(𝑌 𝑚𝑎𝑥 − 𝑦, 0)
Cost of Energy ($/kWh)
LandareaperMWinstalled(ha/MW)
0.035 0.04 0.045 0.05
10
20
30
40
50
60
70
80
90
100
COE – LAMI Tradeoff
Major turbine features
Land plot availability constraint
Optimal wind farm layout:
Max. Land, Min. COE
Min. Land, Max. COE
Cost of Energy ($/kWh)
LandareaperMWinstalled(ha/MW)
0.035 0.04 0.045 0.05
10
20
30
40
50
60
70
80
90
100
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Case Study II: 8 Specified Land Plots
21
𝑔1 𝑉 =
𝑖=1
𝑁
𝑝
∀𝑝∈𝑃
min
max(𝑥 − 𝑋 𝑚𝑖𝑛
𝑝
, 𝑋 𝑚𝑎𝑥
𝑝
− 𝑥, 0)
+max(𝑦 − 𝑌 𝑚𝑖𝑛
𝑝
, 𝑌 𝑚𝑎𝑥
𝑝
− 𝑦, 0)
where 𝑃={3, 4, 6, 7, 9, 10, 11, 13}
COE – LAMI Tradeoff
Major turbine features
Land plot availability constraint
Optimal wind farm layout:
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
Max. Land, Min. COE
Min. Land, Max. COE
Cost of Energy ($/kWh)
LandareaperMWinstalled(ha/MW)
0.035 0.04 0.045 0.05
10
20
30
40
50
60
70
80
90
100
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Case Study III: No More than 6 Land Plots
22
COE – LAMI Tradeoff
Major turbine features
Land plot availability constraint
Optimal wind farm layout:
𝑔1 𝑉 = 𝑖=1
𝑁
1
16
𝑢(𝑥, 𝑦) ≤ 6, and
𝑢 𝑥, 𝑦 =
1, 𝑖𝑓 𝑋 𝑚𝑖𝑛
𝑝
≤ 𝑥 ≤ 𝑋 𝑚𝑎𝑥
𝑝
𝑎𝑛𝑑 𝑌 𝑚𝑖𝑛
𝑝
≤ 𝑦 ≤ 𝑌 𝑚𝑎𝑥
𝑝
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
Max. Land, Min. COE
Min. Land,
Max. COE
WFLO Cases with Non-Identical Turbines
23
1
9
8
16
4
7
1
12
3
6
6
6
8
12
2
1
8
16 16
16
7
8
7
8
2
8
9
16
8
8
10
1
8
1
9
16
2
4
13
6
8
3
8
13
5
10
16
16
2
2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
1
9
12
5
14
7
3
10
11
4
8
15
6
13
9
2
13
5
1
9
3
11
15
7
8
16
12
4
10
2
6
14 7
15
11
4
9
2
5
13
14
6
3
10
5
12
16
8
11
3
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
Cost of Energy ($/kWh)
LandareaperMWinstalled(ha/MW)
0.035 0.04 0.045 0.05
10
20
30
40
50
60
70
80
90
100
Case I
Case II
Case III
1
12
9
16
16
13
2
12
9
11
6
16
5
11
11
5
16
5
1
16
3
7
16
8
15
16
16
5
16
1
16
16
9
13
16
7
5
7
12
5
16
16
8
13
15
16
16
10
16
6
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
1
8
9
8
14
6
2
8
9
1
7
16
6
9
8
1
16
9
1
3
3
9
16
9
8
16
8
4
8
1
13
16
8
16
11
6
8
3
8
16
14
8
3
8
3
7
16
9
7
8
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
1
16
11
8
16
8
1
8
12
2
8
16
8
16
8
3
16
3
1
8
1
8
16
5
8
16
5
8
9
1
9
16
8
16
7
2
9
3
8
16
11
5
2
16
1
15
16
9
8
4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
1
16
9
9
15
8
1
8
16
2
7
16
8
16
8
2
16
1
1
7
1
9
16
16
9
16
12
1
9
1
3
16
16
16
6
2
5
4
3
16
16
16
2
16
1
16
16
9
9
13
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
X (m)
Y(m)
-4000 -2000 0 2000 4000
-4000
-2000
0
2000
4000
Rated Power (W)
2.4E+06
2.2E+06
2E+06
1.8E+06
1.6E+06
1.4E+06
1.2E+06
1E+06
800000
• Each turbine can take any of the
16 configurations.
• No. of variables = 150
• Max function calls = 250 × 1500
• As before Case I results are
not fully converged.
• Beyond a certain land
footprint per MW, additional
land area provides marginal
benefit
Outline
24
• Multi-Objective Wind Farm Layout Optimization
• Wind Farm Cost and Energy Production Models
• Conventional and Layout-based Land Usage Model
• Multi-Objective Optimization Problem Definition
• Multi-Objective Mixed-Discrete PSO (MO-MDPSO)
 Highly nonlinear
 High dimensional
 Highly constrained
 Non-convex Pareto frontier, and
 Mixture of continuous and discrete design variables
• Wind Farm Optimization under Land Plot Availability
• Concluding Remarks
Concluding Remarks
 A Multi-Objective Wind Farm Layout Optimization framework was developed:
1. UWFLO Energy Production Model and Layout-based Land Usage Model
2. WTDCS/NREL Cost Model
3. A new Multi-Objective Mixed-Discrete PSO algorithm
 This framework provides optimal turbine locations, turbine types, and the
land plots to be used for turbine installation.
 Three different land plot availability scenarios were explored, while minimizing
COE and land-footprint per MW installed. Findings include:
1. Under frugal land usage, the most productive land plots are automatically selected.
2. Layout pattern for “max COE/min land” solutions remained similar across specified, limited,
and unlimited land plot availabilities scenarios.
3. Most desirable results were obtained under limited land plot availability, where – for a 66%
increase in land footprint (15 to 25 Ha/MW), a 15% reduction in COE is obtained.
25
Future Work
• Further fine-tune the optimizer to accomplish greater convergence.
• Consider a probabilistic model of landowner participation and a benefit
model for landowners.
• Develop a strategy to assign a utility value to each land plot, based on
their potential productivity for given wind conditions.
26
Acknowledgement
 I would like to thank the co-authors Prof. Achille
Messac and Weiyang Tong.
 Support from the NSF Awards (CMMI-1437746) is
also acknowledged.
27
Questions
and
Comments
28
Thank you
Comparison of Performance Indicators
24
Performance of Accuracy
Performance of Diversity
ZDT 4
0
1
2
3
ZDT 3
0
0.01
0.02
0.03
0.04
0.05
ZDT 1
0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
ZDT 2
0
0.0002
0.0004
0.0006
0.0008
0.001
ZDT 6
0
0.1
0.2
0.3
0.4MO-
MDPSO
NSGA2
MO-
MDPSO NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
ZDT 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
ZDT 2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
ZDT 3
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
ZDT 4
0
5
10
ZDT 6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
The lower the better
30
• The MINLP problem
adopted from Dimkou
and Papalexandri*
No. of design variables 6
No. of discrete variables 3 (binary)
Function evaluations 10,000
Population size 100
Elite size of NSGA-II 78
Elite size of MO-MDPSO 100
*: Dimkou and Papalexandri (1998)
Mixed-Discrete Constrained Test Problem 1
f1
f2
-60 -50 -40 -30 -20 -10 0
-20
0
20
40
60
80
100
Pareto solution by NSGA-II
Pareto solution by MO-MDPSO
31
• The design of disc brake
problem adopted from
Osyczka and Kundu*
No. of design variables 4
No. of discrete variables 1 (integer)
Function evaluations 10,000
Population size 100
Elite size of NSGA-II 87
Elite size of MO-MDPSO 100
*: Osyczka and Kundu (1998)
Mixed-Discrete Constrained Test Problem 2
Optimal layout-based land usage
32
-4000
-3000
-2000
-1000
0
1000
2000
3000
4000
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
optimal layout with land area of 180 ha
optimal layout with land area of 900 ha
optimal layout with land area of 3000 ha
Optimal layouts of 20 turbines with different land area constraints
33
Layout-based Power Generation Model
 Turbine-j is in the influence of the wake of Turbine-i, if and only if
Considers turbines with differing rotor-diameters and hub-heights
 The Katic model* is used to account for wake merging and partial wake
overlap
𝑢𝑗: Effective velocity deficit
𝐴 𝑘𝑗: Overlapping area between Turbine-j
and Turbine-k
Partial wake-rotor overlap *: Katic et al , 1987
Wind Farm Cost of Energy
34
Stop criterion
Evaluate design
objective functions
Trade-off between
design objectives
Adjust the
location of
turbines
NCi
AMWi
Yes
No
max 𝐶𝐹(𝑉) =
𝐸𝑓𝑎𝑟𝑚
365 × 24 𝑁𝐶
𝑉 = {𝑋1, 𝑋2, ⋯ , 𝑋 𝑁, 𝑌1, 𝑌2, ⋯ , 𝑌𝑁}
subject to
𝑔1 𝑉 ≤ 𝐴 𝑀𝑊𝑖
𝑔2 𝑉 ≤ 2𝐷
Estimated using the power generation model
in UWFLO framework2
𝐸𝑓𝑎𝑟𝑚 = 365 × 24
𝑗=1
𝑁 𝑝
𝑃𝑓𝑎𝑟𝑚 𝑈𝑗, 𝜃𝑗 𝑓(𝑈𝑗, 𝜃𝑗)∆𝑈∆𝜃
Inter-Turbine Spacing
layout-based land
area constraint
Solved by Mixed-Discrete Particle Swarm Optimization1
1: Chowdhury et al., 2013 Struct Multidisc Optim
2: Chowdhury et al., 2012 Renewable Energy

More Related Content

What's hot

WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaMDO_Lab
 
Caes gen presentation
Caes gen presentationCaes gen presentation
Caes gen presentationLukeBatten
 
Tracking systems improve the economics of certain solar projects
Tracking systems improve the economics of certain solar projectsTracking systems improve the economics of certain solar projects
Tracking systems improve the economics of certain solar projectsSgurrEnergy
 
Impact of Different Wake Models on the Estimation of Wind Farm Power Generation
Impact of Different Wake Models on the Estimation of Wind Farm Power GenerationImpact of Different Wake Models on the Estimation of Wind Farm Power Generation
Impact of Different Wake Models on the Estimation of Wind Farm Power GenerationWeiyang Tong
 
Lecture 10 plant economics
Lecture 10 plant economicsLecture 10 plant economics
Lecture 10 plant economicsSwapnil Gadgune
 
Caes operation and advantages
Caes operation and advantagesCaes operation and advantages
Caes operation and advantagesLukeBatten
 
Caes projects worldwide
Caes projects worldwideCaes projects worldwide
Caes projects worldwideLukeBatten
 
JESTEC - Malek Fuad
JESTEC - Malek FuadJESTEC - Malek Fuad
JESTEC - Malek FuadMalek Amin
 
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A Review
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A ReviewIRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A Review
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A ReviewIRJET Journal
 
Meghalaya Wind Energy
Meghalaya Wind Energy Meghalaya Wind Energy
Meghalaya Wind Energy Siraj Ahmed
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_JieMDO_Lab
 
Parabolic trough collectors comparison
Parabolic trough collectors comparisonParabolic trough collectors comparison
Parabolic trough collectors comparisonSolar Reference
 
Advanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike WerstAdvanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike Werstcahouser
 
An Optimal Design for Maximum Power Production from a Solar Field installed w...
An Optimal Design for Maximum Power Production from a Solar Field installed w...An Optimal Design for Maximum Power Production from a Solar Field installed w...
An Optimal Design for Maximum Power Production from a Solar Field installed w...Ambrose Njepu
 
OM_MAO_2012_Jun
OM_MAO_2012_JunOM_MAO_2012_Jun
OM_MAO_2012_JunMDO_Lab
 

What's hot (20)

WFO_ES2011_Souma
WFO_ES2011_SoumaWFO_ES2011_Souma
WFO_ES2011_Souma
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
Poster
PosterPoster
Poster
 
Caes gen presentation
Caes gen presentationCaes gen presentation
Caes gen presentation
 
Tracking systems improve the economics of certain solar projects
Tracking systems improve the economics of certain solar projectsTracking systems improve the economics of certain solar projects
Tracking systems improve the economics of certain solar projects
 
Impact of Different Wake Models on the Estimation of Wind Farm Power Generation
Impact of Different Wake Models on the Estimation of Wind Farm Power GenerationImpact of Different Wake Models on the Estimation of Wind Farm Power Generation
Impact of Different Wake Models on the Estimation of Wind Farm Power Generation
 
Lecture 10 plant economics
Lecture 10 plant economicsLecture 10 plant economics
Lecture 10 plant economics
 
Caes operation and advantages
Caes operation and advantagesCaes operation and advantages
Caes operation and advantages
 
Caes projects worldwide
Caes projects worldwideCaes projects worldwide
Caes projects worldwide
 
20320130406013
2032013040601320320130406013
20320130406013
 
JESTEC - Malek Fuad
JESTEC - Malek FuadJESTEC - Malek Fuad
JESTEC - Malek Fuad
 
WFO_DETC2011 Souma
WFO_DETC2011 SoumaWFO_DETC2011 Souma
WFO_DETC2011 Souma
 
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A Review
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A ReviewIRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A Review
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; A Review
 
Meghalaya Wind Energy
Meghalaya Wind Energy Meghalaya Wind Energy
Meghalaya Wind Energy
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_Jie
 
Parabolic trough collectors comparison
Parabolic trough collectors comparisonParabolic trough collectors comparison
Parabolic trough collectors comparison
 
Brochure rwe ag
Brochure rwe agBrochure rwe ag
Brochure rwe ag
 
Advanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike WerstAdvanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike Werst
 
An Optimal Design for Maximum Power Production from a Solar Field installed w...
An Optimal Design for Maximum Power Production from a Solar Field installed w...An Optimal Design for Maximum Power Production from a Solar Field installed w...
An Optimal Design for Maximum Power Production from a Solar Field installed w...
 
OM_MAO_2012_Jun
OM_MAO_2012_JunOM_MAO_2012_Jun
OM_MAO_2012_Jun
 

Viewers also liked

MOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMDO_Lab
 
ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliMDO_Lab
 
MCP_ES_2012_Jie
MCP_ES_2012_JieMCP_ES_2012_Jie
MCP_ES_2012_JieMDO_Lab
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMDO_Lab
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangMDO_Lab
 

Viewers also liked (6)

MOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_Weiyang
 
Increase AEP by 2% With Improved Wind Measurement
Increase AEP by 2% With Improved Wind MeasurementIncrease AEP by 2% With Improved Wind Measurement
Increase AEP by 2% With Improved Wind Measurement
 
ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_Ali
 
MCP_ES_2012_Jie
MCP_ES_2012_JieMCP_ES_2012_Jie
MCP_ES_2012_Jie
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_Weiyang
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_Weiyang
 

Similar to MOWF_SchiTech_2015_Weiyang

WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_SoumaMDO_Lab
 
WCSMO-Wind-2013-Tong
WCSMO-Wind-2013-TongWCSMO-Wind-2013-Tong
WCSMO-Wind-2013-TongOptiModel
 
Lcoe offshore
Lcoe offshoreLcoe offshore
Lcoe offshoreinesgs
 
AIAA-SDM-WFLO-2012
AIAA-SDM-WFLO-2012AIAA-SDM-WFLO-2012
AIAA-SDM-WFLO-2012OptiModel
 
VIDMAP_Aviation_2014_Souma
VIDMAP_Aviation_2014_SoumaVIDMAP_Aviation_2014_Souma
VIDMAP_Aviation_2014_SoumaMDO_Lab
 
WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangMDO_Lab
 
ASME-IDETC-Sensitivity-2013
ASME-IDETC-Sensitivity-2013ASME-IDETC-Sensitivity-2013
ASME-IDETC-Sensitivity-2013OptiModel
 
WFO_MAO_2012_Souma
WFO_MAO_2012_SoumaWFO_MAO_2012_Souma
WFO_MAO_2012_SoumaMDO_Lab
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_JieMDO_Lab
 
Ece464 power electronics assignment solution
Ece464 power electronics assignment solutionEce464 power electronics assignment solution
Ece464 power electronics assignment solutionOZ Assignment help
 
Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...
Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...
Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...IRJET Journal
 
AIAA-Aviation-Vidmap-2014
AIAA-Aviation-Vidmap-2014AIAA-Aviation-Vidmap-2014
AIAA-Aviation-Vidmap-2014OptiModel
 
WCSMO-Vidmap-2015
WCSMO-Vidmap-2015WCSMO-Vidmap-2015
WCSMO-Vidmap-2015OptiModel
 
Sizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag citySizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag cityiosrjce
 
Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...
Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...
Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...Weiyang Tong
 
Wind farm re-powering, life extension and decommissioning
Wind farm re-powering, life extension and decommissioningWind farm re-powering, life extension and decommissioning
Wind farm re-powering, life extension and decommissioningAdvisian
 
AIAA-MAO-WFLO-2012
AIAA-MAO-WFLO-2012AIAA-MAO-WFLO-2012
AIAA-MAO-WFLO-2012OptiModel
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}Mohammed Ahmed Ramadan
 

Similar to MOWF_SchiTech_2015_Weiyang (20)

WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_Souma
 
WCSMO-Wind-2013-Tong
WCSMO-Wind-2013-TongWCSMO-Wind-2013-Tong
WCSMO-Wind-2013-Tong
 
Lcoe offshore
Lcoe offshoreLcoe offshore
Lcoe offshore
 
AIAA-SDM-WFLO-2012
AIAA-SDM-WFLO-2012AIAA-SDM-WFLO-2012
AIAA-SDM-WFLO-2012
 
VIDMAP_Aviation_2014_Souma
VIDMAP_Aviation_2014_SoumaVIDMAP_Aviation_2014_Souma
VIDMAP_Aviation_2014_Souma
 
WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_Weiyang
 
ASME-IDETC-Sensitivity-2013
ASME-IDETC-Sensitivity-2013ASME-IDETC-Sensitivity-2013
ASME-IDETC-Sensitivity-2013
 
WFO_MAO_2012_Souma
WFO_MAO_2012_SoumaWFO_MAO_2012_Souma
WFO_MAO_2012_Souma
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_Jie
 
Ece464 power electronics assignment solution
Ece464 power electronics assignment solutionEce464 power electronics assignment solution
Ece464 power electronics assignment solution
 
013_20160726_Wind energy
013_20160726_Wind energy013_20160726_Wind energy
013_20160726_Wind energy
 
Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...
Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...
Micro Hydro Electricity Generation in S.T.P, A Case Study of S.T.P, Salawas-J...
 
AIAA-Aviation-Vidmap-2014
AIAA-Aviation-Vidmap-2014AIAA-Aviation-Vidmap-2014
AIAA-Aviation-Vidmap-2014
 
WCSMO-Vidmap-2015
WCSMO-Vidmap-2015WCSMO-Vidmap-2015
WCSMO-Vidmap-2015
 
I010626370
I010626370I010626370
I010626370
 
Sizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag citySizing of Hybrid PV/Battery Power System in Sohag city
Sizing of Hybrid PV/Battery Power System in Sohag city
 
Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...
Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...
Sensitivity of Array-like and Optimized Wind Farm Output to Key Factors and C...
 
Wind farm re-powering, life extension and decommissioning
Wind farm re-powering, life extension and decommissioningWind farm re-powering, life extension and decommissioning
Wind farm re-powering, life extension and decommissioning
 
AIAA-MAO-WFLO-2012
AIAA-MAO-WFLO-2012AIAA-MAO-WFLO-2012
AIAA-MAO-WFLO-2012
 
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)} Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
Must-hybrid-power-generation-station {wind turbine (hawt)&solar (pv)}
 

More from MDO_Lab

WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangMDO_Lab
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_SoumaMDO_Lab
 
ATI_SDM_2010_Jun
ATI_SDM_2010_JunATI_SDM_2010_Jun
ATI_SDM_2010_JunMDO_Lab
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_SouamMDO_Lab
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieMDO_Lab
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacMDO_Lab
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_SoumaMDO_Lab
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_JieMDO_Lab
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_JieMDO_Lab
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_JieMDO_Lab
 
WFO_FDC_2011_Messac
WFO_FDC_2011_MessacWFO_FDC_2011_Messac
WFO_FDC_2011_MessacMDO_Lab
 
PF_IDETC_2012_Souma
PF_IDETC_2012_SoumaPF_IDETC_2012_Souma
PF_IDETC_2012_SoumaMDO_Lab
 
MDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDO_Lab
 
COSMOS_IDETC_2014_Souma
COSMOS_IDETC_2014_SoumaCOSMOS_IDETC_2014_Souma
COSMOS_IDETC_2014_SoumaMDO_Lab
 

More from MDO_Lab (15)

WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_Weiyang
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_Souma
 
ATI_SDM_2010_Jun
ATI_SDM_2010_JunATI_SDM_2010_Jun
ATI_SDM_2010_Jun
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_Jie
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_Messac
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_Souma
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_Jie
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_Jie
 
WFO_FDC_2011_Messac
WFO_FDC_2011_MessacWFO_FDC_2011_Messac
WFO_FDC_2011_Messac
 
PF_IDETC_2012_Souma
PF_IDETC_2012_SoumaPF_IDETC_2012_Souma
PF_IDETC_2012_Souma
 
MDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDPSO_SDM_2012_Souma
MDPSO_SDM_2012_Souma
 
COSMOS_IDETC_2014_Souma
COSMOS_IDETC_2014_SoumaCOSMOS_IDETC_2014_Souma
COSMOS_IDETC_2014_Souma
 

Recently uploaded

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 

Recently uploaded (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 

MOWF_SchiTech_2015_Weiyang

  • 1. Simultaneously Optimizing COE and Land Footprint of Wind Farms under Different Land Plot Availability Weiyang Tong*, Souma Chowdhury#, and Achille Messac# * Syracuse University, Department of Mechanical and Aerospace Engineering # Mississippi State University, Department of Aerospace Engineering 11th Multi-Disciplinary Design Optimization Conference AIAA Science and Technology Forum and Exposition January 5 – 9, 2015 Kissimmee, Florida
  • 2. Major Parties Involved 2  Undesirable concept-to-installation delays are caused by conflicting decisions from the major parties involved Wind farm developers need to address the concerns of the major parties involved Seek the optimal design that balances the social, economic, and environmental objectives Project Investors Landowners Local Communities Power utilities Local public authorities Wind farm developer
  • 3. Landowner Participation • In commercial wind farms, turbines generally appear in clusters due to considerations of land plot availability. • However, closer the turbines in an array, greater are the energy losses due to wake effects. • On the other hand, greater land usage increases the net impact on surroundings (e.g., impact on wildlife), and demands participation of more landowners. 3 Husum, Germanyhttp://www.sciencebuzz.org/ Thenetimpacton surroundings Cost of Energy
  • 4. Research Motivation 4  Decision making of different factors is impractical and restrictive in conventional wind farm planning due to typically prescribed conditions:  Wind farm layouts are generally designed for prescribed land area or farm boundaries, and prescribed turbine configurations.  There exist very few instances (in the literature) of exploring how land plot availability impact wind farm layout planning (e.g., Chen and MacDonald, 2012, 2013).  Limited literature exists on exploring the trade-offs between COE/energy production and land footprint (e.g., Tong et al., 2012, 2013).  Exploration of such multiobjective wind farm layout optimization scenarios under different land plot availability also demands nonlinear MO optimizers that are fast, and can deal with constraints, multimodal functions, and mixed-discrete variables.
  • 5. Research Objective 5  Investigate the capabilities of a new multi-objective mixed-discrete PSO to perform bi-objective optimization:  To simultaneously minimize the cost of energy (COE) and the land footprint per MW installed of the wind farm.  Investigate how different land plot availability scenarios impact the best trade-offs between COE and land footprint, and regulate the optimal wind farm layout designs. Cost of Energy ($/kWh) LandareaperMWinstalled(ha/MW) 0.035 0.04 0.045 0.05 10 20 30 40 50 60 70 80 90 100 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000
  • 6. Outline 6 • Multi-Objective Wind Farm Layout Optimization • Wind Farm Cost and Energy Production Models • Conventional and Layout-based Land Usage Model • Multi-Objective Optimization Problem Definition • Multi-Objective Mixed-Discrete PSO (MO-MDPSO)  Highly nonlinear  High dimensional  Highly constrained  Non-convex Pareto frontier, and  Mixture of continuous and discrete design variables • Wind Farm Optimization under Land Plot Availability • Concluding Remarks
  • 7. Outline 7 • Multi-Objective Wind Farm Layout Optimization • Wind Farm Cost and Energy Production Models • Conventional and Layout-based Land Usage Model • Multi-Objective Optimization Problem Definition • Multi-Objective Mixed-Discrete PSO (MO-MDPSO)  Highly nonlinear  High dimensional  Highly constrained  Non-convex Pareto frontier, and  Mixture of continuous and discrete design variables • Wind Farm Optimization under Land Plot Availability • Concluding Remarks
  • 8. 𝐶𝑂𝐸 = 𝐼𝐶𝐶 × 𝐹𝐶𝑅 + 𝐿𝑅𝐶 𝐴𝐸𝑃 + 𝐿𝐿𝐶 + 𝑂&𝑀 where ICC – Initial Capital Cost LRC – Levelized Replacement Cost LLC – Land Lease Cost O&M – Operation & Maintenance Cost FCR – Fixed Charge Rate AEP – Annual Energy Production Wind Farm Cost of Energy 8 𝐸𝑓𝑎𝑟𝑚 = 365 × 24 𝑗=1 𝑁 𝑝 𝑃𝑓𝑎𝑟𝑚 𝑈𝑗, 𝜃𝑗 𝑓(𝑈𝑗, 𝜃𝑗)∆𝑈∆𝜃 1: Fingersh et al., 2006 NREL Tech. Report 2: Chowdhury et al., 2012 Renewable Energy Estimated using the Wind Turbine Design Cost and Scaling Model1  Rotor: Blades Hub Pitch mechanisms, etc;  Drive train nacelle Gearbox generator, etc;  Control, safety system, and monitoring  Tower  Balance of station Foundation Transportation Assembly and installation, etc Energy production model offered by UWFLO2:
  • 9. 9 Energy Production Model in UWFLO  This model quantifies the power generation of an array of turbines as a function of the incoming wind conditions, turbine features, and the locations of turbines  It allows a variable induction factor: U: incoming wind speed; P: power generated, given by the power curve kg, kb: mechanical and electrical efficiencies, Dj: Rotor Diameter, 𝜌: Air density  The Katic’s model is used to account for wake merging and partial wake overlap 𝑢𝑗: Effective velocity deficit 𝐴 𝑘𝑗: Overlapping area bt.Turbine-j and Turbine-k
  • 10. Conventional Wind Farm Layout Optimization 10 wind farm layout optimization flowchart Stop criterion Reach the best performance? Evaluate design objective functions Trade-off between design objectives Adjust the location of turbines Prescribed conditions Yes No Farm boundaries Land area Land orientation Number of turbines 𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑 = 𝑓(𝑋 𝑚𝑖𝑛, 𝑌 𝑚𝑖𝑛, 𝑋 𝑚𝑎𝑥, 𝑌 𝑚𝑎𝑥) 𝑋 𝑁 ∈ [𝑋 𝑚𝑖𝑛, 𝑋 𝑚𝑎𝑥] 𝑌 𝑁 ∈ [𝑌 𝑚𝑖𝑛, 𝑌 𝑚𝑎𝑥] 𝑋 𝑚𝑖𝑛 𝑋 𝑚𝑎𝑥 𝑌 𝑚𝑖𝑛 𝑌 𝑚𝑎𝑥 Turbine location vector
  • 11. Wind turbine 2D Convex hull SBR Buffer area Wind turbine 2D Convex hull SBR Buffer area Wind turbine 2D Convex hull SBR Buffer area Wind turbine 2D Convex hull SBR Buffer area Layout-based Wind Farm Land Usage 11 • A given layout (siting of an array of turbines) is obtained. • The “2D Convex Hull” is applied to determine the land usage for a given set of turbines • The Smallest Bounding Rectangle (SBR) is fit based on the convex hull • A buffer zone is added to each side of the SBR to yield the final land usage 1D 𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑 = 𝑓(𝑋 𝑁 , 𝑌 𝑁 ) 𝑆ℎ𝑎𝑝𝑒𝑙𝑎𝑛𝑑 = 𝑔(𝑋 𝑁 , 𝑌 𝑁 )
  • 12. Optimal Layout-based Wind Farm Land Usage 12 • An Optimal Layout-based (OL-based) land use has the following features: • Farm boundaries are not assumed • Automatically determined by the layout optimization • Yield OL-based land area, 𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑 ∗ • Yield OL-based land shape, 𝑆ℎ𝑎𝑝𝑒𝑙𝑎𝑛𝑑 ∗ Step 1: min 𝑋 𝑁,𝑌 𝑁 𝑓 𝑋 𝑁, 𝑌 𝑁 , 𝑔 𝑋 𝑁, 𝑌 𝑁 Step 2: 𝐴𝑟𝑒𝑎𝑙𝑎𝑛𝑑 ∗ = 𝑓 𝑋 𝑁 ∗ , 𝑌 𝑁 ∗ 𝑆ℎ𝑎𝑝𝑒𝑙𝑎𝑛𝑑 ∗ = 𝑔 𝑋 𝑁 ∗ , 𝑌 𝑁 ∗ Optimal layout
  • 13. Evaluate Performance Objectives Cost of Energy Land Footprint MO-MDPSO Multi-Objective Wind Farm Optimization Framework 13 1. Turbine Locations 2. Turbine Config. Trade-off bt. objectives Optimal designs: o Location of turbines o Selection of turbine types o Site orientation 𝑚𝑖𝑛 {𝐶𝑂𝐸 𝑉 , 𝐴 𝑀𝑊 𝑉 } 𝑉 = 𝑥1, 𝑥2, ⋯ , 𝑥 𝑁, 𝑦1, 𝑦2, ⋯ , 𝑦 𝑁, 𝑇 𝑇 = {1,2, ⋯ , 16} subject to 𝑔1 𝑉 𝑔2 𝑉 ≤ 2𝐷 Inter-Turbine Spacing Binary-decision landowner participation Highly nonlinear and multimodal Mixed-Integer Variables Nonlinear constraints
  • 14. Outline 14 • Multi-Objective Wind Farm Layout Optimization • Wind Farm Cost and Energy Production Models • Conventional and Layout-based Land Usage Model • Multi-Objective Optimization Problem Definition • Multi-Objective Mixed-Discrete PSO (MO-MDPSO)  Highly nonlinear  High dimensional  Highly constrained  Non-convex Pareto frontier, and  Mixture of continuous and discrete design variables • Wind Farm Optimization under Land Plot Availability • Concluding Remarks
  • 15. 1 2 3 4 5 1 2 3 4 5 f1 f2 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 Infeasible R egion Actual Boundary Local Pareto set Multi-Objective Mixed-Discrete PSO Position update: 𝒙𝑖 𝑡 + 1 = 𝒙𝑖 𝑡 + 𝒗𝑖 𝑡 + 1 Velocity update: 𝒗𝑖 𝑡 + 1 = 𝑤𝒗𝑖 𝑡 + 𝑟1 𝐶1 𝑷𝑖 𝑙 (𝑡) − 𝒙𝑖 + 𝑟2 𝐶2 𝑷𝑖 𝑔 (𝑡) − 𝒙𝑖 + 𝑟3 𝛾 𝑐,𝑖 𝒗𝑖(𝑡) 15 𝑷𝑖 𝑙 – local leader of particle-i, which is selected from the local Pareto set 𝑷𝑖 𝑔 – global leader of particle-i that is determined by a stochastic process Crowding Distance – to manage the size of local/global Pareto set Multiple global leaders Inertia Local search Global search Applied w.r.t. each particle’s global leader Current particle Stored particle Highly constrained High dimensional Non-convex Pareto frontier Highly nonlinear Mixed types of variables
  • 16. Hypercube enclosing 72 candidate solutions X1 X2 0 1 2 3 0 1 2 3 Particles Global leaders Multiple λ-Fractional Domains 16 • 7 global leaders are observed • Ideally, each fractional domain should enclose 10 particles • Particles located in the overlapping regions are uniformly re-allocated between domains • This method uniquely exploits diversity preservation to both prevent particle stagnation and accomplish a desirable distribution of Pareto solutions. 13 10 14 𝜆 = 0.25 Design Variable Space
  • 17. Outline 17 • Multi-Objective Wind Farm Layout Optimization • Wind Farm Cost and Energy Production Models • Conventional and Layout-based Land Usage Model • Multi-Objective Optimization Problem Definition • Multi-Objective Mixed-Discrete PSO (MO-MDPSO)  Highly nonlinear  High dimensional  Highly constrained  Non-convex Pareto frontier, and  Mixture of continuous and discrete design variables • Wind Farm Optimization under Land Plot Availability • Concluding Remarks
  • 18. Case Study Setup: Assumptions and Prescriptions Assumptions: • A wind distribution (based on 10yr measured data) is used • 16 square land plots are considered • Identical turbines are used with 16 candidate turbine types • Landowner participation is assumed to be Binary (deterministic) 18 User-defined parameters in MO-MDPSO Parameter Mixed-discrete constrained problems 𝑤 0.5 𝐶1 1.5 𝐶𝑐0 1.5 𝛾 𝑐0 2.0 𝛾 𝑚𝑖𝑛 1e-5 𝛾 𝑑0 1.0 𝜆 0.1 Local set size 10 Global set size Up to 100 Population size 1000 Particle Velocity parameters Diversity parameters Multi-objective Search parameters
  • 19. Three Case Studies: Based on Land Plot Availability 19 Parameter Case Study I Case Study II Case Study III Number of turbines 50 50 50 Plots allowed to be used All 16 plots 8 specified plots No more than any 6 plots No. of design variables 101 101 101 Max. Function Evaluations 250,000 250,000 250,000 Case I Case II Case III
  • 20. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Case Study I: All 16 Land Plots 20 𝑔1 𝑉 = min max(𝑥 − 𝑋 𝑚𝑖𝑛, 0)+max(𝑋 𝑚𝑎𝑥 − 𝑥, 0), max 𝑦 − 𝑌 𝑚𝑖𝑛, 0 +max(𝑌 𝑚𝑎𝑥 − 𝑦, 0) Cost of Energy ($/kWh) LandareaperMWinstalled(ha/MW) 0.035 0.04 0.045 0.05 10 20 30 40 50 60 70 80 90 100 COE – LAMI Tradeoff Major turbine features Land plot availability constraint Optimal wind farm layout: Max. Land, Min. COE Min. Land, Max. COE
  • 21. Cost of Energy ($/kWh) LandareaperMWinstalled(ha/MW) 0.035 0.04 0.045 0.05 10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Case Study II: 8 Specified Land Plots 21 𝑔1 𝑉 = 𝑖=1 𝑁 𝑝 ∀𝑝∈𝑃 min max(𝑥 − 𝑋 𝑚𝑖𝑛 𝑝 , 𝑋 𝑚𝑎𝑥 𝑝 − 𝑥, 0) +max(𝑦 − 𝑌 𝑚𝑖𝑛 𝑝 , 𝑌 𝑚𝑎𝑥 𝑝 − 𝑦, 0) where 𝑃={3, 4, 6, 7, 9, 10, 11, 13} COE – LAMI Tradeoff Major turbine features Land plot availability constraint Optimal wind farm layout: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 Max. Land, Min. COE Min. Land, Max. COE
  • 22. Cost of Energy ($/kWh) LandareaperMWinstalled(ha/MW) 0.035 0.04 0.045 0.05 10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Case Study III: No More than 6 Land Plots 22 COE – LAMI Tradeoff Major turbine features Land plot availability constraint Optimal wind farm layout: 𝑔1 𝑉 = 𝑖=1 𝑁 1 16 𝑢(𝑥, 𝑦) ≤ 6, and 𝑢 𝑥, 𝑦 = 1, 𝑖𝑓 𝑋 𝑚𝑖𝑛 𝑝 ≤ 𝑥 ≤ 𝑋 𝑚𝑎𝑥 𝑝 𝑎𝑛𝑑 𝑌 𝑚𝑖𝑛 𝑝 ≤ 𝑦 ≤ 𝑌 𝑚𝑎𝑥 𝑝 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 Max. Land, Min. COE Min. Land, Max. COE
  • 23. WFLO Cases with Non-Identical Turbines 23 1 9 8 16 4 7 1 12 3 6 6 6 8 12 2 1 8 16 16 16 7 8 7 8 2 8 9 16 8 8 10 1 8 1 9 16 2 4 13 6 8 3 8 13 5 10 16 16 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 1 9 12 5 14 7 3 10 11 4 8 15 6 13 9 2 13 5 1 9 3 11 15 7 8 16 12 4 10 2 6 14 7 15 11 4 9 2 5 13 14 6 3 10 5 12 16 8 11 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 Cost of Energy ($/kWh) LandareaperMWinstalled(ha/MW) 0.035 0.04 0.045 0.05 10 20 30 40 50 60 70 80 90 100 Case I Case II Case III 1 12 9 16 16 13 2 12 9 11 6 16 5 11 11 5 16 5 1 16 3 7 16 8 15 16 16 5 16 1 16 16 9 13 16 7 5 7 12 5 16 16 8 13 15 16 16 10 16 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 1 8 9 8 14 6 2 8 9 1 7 16 6 9 8 1 16 9 1 3 3 9 16 9 8 16 8 4 8 1 13 16 8 16 11 6 8 3 8 16 14 8 3 8 3 7 16 9 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 1 16 11 8 16 8 1 8 12 2 8 16 8 16 8 3 16 3 1 8 1 8 16 5 8 16 5 8 9 1 9 16 8 16 7 2 9 3 8 16 11 5 2 16 1 15 16 9 8 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 1 16 9 9 15 8 1 8 16 2 7 16 8 16 8 2 16 1 1 7 1 9 16 16 9 16 12 1 9 1 3 16 16 16 6 2 5 4 3 16 16 16 2 16 1 16 16 9 9 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X (m) Y(m) -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 Rated Power (W) 2.4E+06 2.2E+06 2E+06 1.8E+06 1.6E+06 1.4E+06 1.2E+06 1E+06 800000 • Each turbine can take any of the 16 configurations. • No. of variables = 150 • Max function calls = 250 × 1500 • As before Case I results are not fully converged. • Beyond a certain land footprint per MW, additional land area provides marginal benefit
  • 24. Outline 24 • Multi-Objective Wind Farm Layout Optimization • Wind Farm Cost and Energy Production Models • Conventional and Layout-based Land Usage Model • Multi-Objective Optimization Problem Definition • Multi-Objective Mixed-Discrete PSO (MO-MDPSO)  Highly nonlinear  High dimensional  Highly constrained  Non-convex Pareto frontier, and  Mixture of continuous and discrete design variables • Wind Farm Optimization under Land Plot Availability • Concluding Remarks
  • 25. Concluding Remarks  A Multi-Objective Wind Farm Layout Optimization framework was developed: 1. UWFLO Energy Production Model and Layout-based Land Usage Model 2. WTDCS/NREL Cost Model 3. A new Multi-Objective Mixed-Discrete PSO algorithm  This framework provides optimal turbine locations, turbine types, and the land plots to be used for turbine installation.  Three different land plot availability scenarios were explored, while minimizing COE and land-footprint per MW installed. Findings include: 1. Under frugal land usage, the most productive land plots are automatically selected. 2. Layout pattern for “max COE/min land” solutions remained similar across specified, limited, and unlimited land plot availabilities scenarios. 3. Most desirable results were obtained under limited land plot availability, where – for a 66% increase in land footprint (15 to 25 Ha/MW), a 15% reduction in COE is obtained. 25
  • 26. Future Work • Further fine-tune the optimizer to accomplish greater convergence. • Consider a probabilistic model of landowner participation and a benefit model for landowners. • Develop a strategy to assign a utility value to each land plot, based on their potential productivity for given wind conditions. 26
  • 27. Acknowledgement  I would like to thank the co-authors Prof. Achille Messac and Weiyang Tong.  Support from the NSF Awards (CMMI-1437746) is also acknowledged. 27
  • 29. Comparison of Performance Indicators 24 Performance of Accuracy Performance of Diversity ZDT 4 0 1 2 3 ZDT 3 0 0.01 0.02 0.03 0.04 0.05 ZDT 1 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 ZDT 2 0 0.0002 0.0004 0.0006 0.0008 0.001 ZDT 6 0 0.1 0.2 0.3 0.4MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 ZDT 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ZDT 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ZDT 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ZDT 4 0 5 10 ZDT 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 The lower the better
  • 30. 30 • The MINLP problem adopted from Dimkou and Papalexandri* No. of design variables 6 No. of discrete variables 3 (binary) Function evaluations 10,000 Population size 100 Elite size of NSGA-II 78 Elite size of MO-MDPSO 100 *: Dimkou and Papalexandri (1998) Mixed-Discrete Constrained Test Problem 1 f1 f2 -60 -50 -40 -30 -20 -10 0 -20 0 20 40 60 80 100 Pareto solution by NSGA-II Pareto solution by MO-MDPSO
  • 31. 31 • The design of disc brake problem adopted from Osyczka and Kundu* No. of design variables 4 No. of discrete variables 1 (integer) Function evaluations 10,000 Population size 100 Elite size of NSGA-II 87 Elite size of MO-MDPSO 100 *: Osyczka and Kundu (1998) Mixed-Discrete Constrained Test Problem 2
  • 32. Optimal layout-based land usage 32 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 optimal layout with land area of 180 ha optimal layout with land area of 900 ha optimal layout with land area of 3000 ha Optimal layouts of 20 turbines with different land area constraints
  • 33. 33 Layout-based Power Generation Model  Turbine-j is in the influence of the wake of Turbine-i, if and only if Considers turbines with differing rotor-diameters and hub-heights  The Katic model* is used to account for wake merging and partial wake overlap 𝑢𝑗: Effective velocity deficit 𝐴 𝑘𝑗: Overlapping area between Turbine-j and Turbine-k Partial wake-rotor overlap *: Katic et al , 1987
  • 34. Wind Farm Cost of Energy 34 Stop criterion Evaluate design objective functions Trade-off between design objectives Adjust the location of turbines NCi AMWi Yes No max 𝐶𝐹(𝑉) = 𝐸𝑓𝑎𝑟𝑚 365 × 24 𝑁𝐶 𝑉 = {𝑋1, 𝑋2, ⋯ , 𝑋 𝑁, 𝑌1, 𝑌2, ⋯ , 𝑌𝑁} subject to 𝑔1 𝑉 ≤ 𝐴 𝑀𝑊𝑖 𝑔2 𝑉 ≤ 2𝐷 Estimated using the power generation model in UWFLO framework2 𝐸𝑓𝑎𝑟𝑚 = 365 × 24 𝑗=1 𝑁 𝑝 𝑃𝑓𝑎𝑟𝑚 𝑈𝑗, 𝜃𝑗 𝑓(𝑈𝑗, 𝜃𝑗)∆𝑈∆𝜃 Inter-Turbine Spacing layout-based land area constraint Solved by Mixed-Discrete Particle Swarm Optimization1 1: Chowdhury et al., 2013 Struct Multidisc Optim 2: Chowdhury et al., 2012 Renewable Energy