SlideShare a Scribd company logo
1 of 29
Download to read offline
Robert Collins
CSE486, Penn State




                     Lecture 19:
          Essential and Fundamental Matrices
Robert Collins
CSE486, Penn State
                              Epipolar Geometry
                     image1                    image 2




       Epipole : location of cam2      Epipole : location of cam1
       as seen by cam1.                as seen by cam2.
Robert Collins
CSE486, Penn State
                              Epipolar Geometry
                     image1                         image 2




                            Corresponding points
                         lie on conjugate epipolar lines
Robert Collins
CSE486, Penn State
                              This Lecture…
                     image1                   image 2




        Given a point in one image, how do we determine
        the corresponding epipolar line to search along in
        the second image?
Robert Collins
CSE486, Penn State
                       Essential Matrix

      The essential and fundamental matrices are 3x3 matrices
      that “encode” the epipolar geometry of two views.

      Motivation: Given a point in one image, multiplying
      by the essential/fundamental matrix will tell us which
      epipolar line to search along in the second view.
Robert Collins
CSE486, Penn State
                      Essential Matrix
                                P
                           Pl        Pr

                     pl                        pr
        Ol                el               er          Or
                                T
                                          R,T = rotation,
                                           and translation

                                          S=

                                    E=RS is “essential matrix”
Robert Collins
CSE486, Penn State
                     Essential Matrix Properties



 • has rank 2
    has both a left and right nullspace (important!!!!)

 • depends only on the EXTRINSIC Parameters (R & T)
Robert Collins
CSE486, Penn State
                     Longuet-Higgins equation
Robert Collins
CSE486, Penn State
                     Longuet-Higgins equation



                                          This relates
                                          viewing rays
                     Importance of Longuet-Higgens ...
                                           This relates
                                           2D film points
Robert Collins
CSE486, Penn State
                     Longuet-Higgins Makes Sense

         • Note, there is nothing magic about Longuet-
           Higgins equation.
         • A film point can also be thought of as a
           viewing ray. They are equivalent.
                     • (u,v) 2D film point
                     • (u,v,f) 3D point on film plane
                     • k(u,v,f) viewing ray into the scene
                     • k(X, Y, Z) ray through point P in the scene
                        [hint: k=f/Z, and we have u=fX/Z, v=fY/Z].
Robert Collins
CSE486, Penn State
                        Epipolar Lines

         • Let l be a line in the image:



  • Using homogeneous coordinates:
Robert Collins
CSE486, Penn State
                          Epipolar Lines

         • Remember:




         pr belongs to epipolar line in the right image defined by
Robert Collins
CSE486, Penn State
                          Epipolar Lines

         • Remember:




         pl belongs to epipolar line in the left image defined by
Robert Collins
CSE486, Penn State
                                 Epipoles
         • Remember: epipoles belong to the epipolar lines




   • And they belong to all the epipolar lines




    We can use this to compute the location of the epipoles.
    There will be an example, shortly...
Robert Collins
CSE486, Penn State
                     Essential Matrix Summary

    Longuet-Higgins equation




     Epipolar lines:




      Epipoles:
Robert Collins
CSE486, Penn State
                             Fundamental Matrix

    The essential matrix uses CAMERA coordinates
             To use image coordinates we must consider the
             INTRINSIC camera parameters:
                     Affine transform matrix
      Pixel coord
                                               Camera (film) coord
      (row,col)
Robert Collins
CSE486, Penn State
                        Fundamental Matrix




                 short version: The same equation works in
                 pixel coordinates too!
Robert Collins
CSE486, Penn State
                     Fundamental Matrix Properties



 • has rank 2
 • depends on the INTRINSIC and EXTRINSIC Parameters (f, etc ;
   R & T)
            Analogous to essential matrix. The fundamental
            matrix also tells how pixels (points) in each image
            are related to epipolar lines in the other image.
Robert Collins
CSE486, Penn State
                     Example
Robert Collins
CSE486, Penn State
                     Example
Robert Collins
CSE486, Penn State
                              Example
                 -0.00310695 -0.0025646       2.96584
      F=         -0.028094    -0.00771621    56.3813
                 13.1905     -29.2007     -9999.79
Robert Collins
CSE486, Penn State
                                       Example
                 -0.00310695 -0.0025646       2.96584 343.53
      F=         -0.028094    -0.00771621    56.3813 221.70
                 13.1905     -29.2007     -9999.79     1.0


    left
                                           0.0001    0.0295
                                           0.0045  0.9996
                                          -1.1942  -265.1531
                                            normalize so sum of squares
                                            of first two terms is 1 (optional)
           x = 343.5300 y = 221.7005
Robert Collins
CSE486, Penn State
                                       Example
                 -0.00310695 -0.0025646       2.96584 343.53
      F=         -0.028094    -0.00771621    56.3813 221.70
                 13.1905     -29.2007     -9999.79     1.0


    left                                              right
                                            0.0295
                                            0.9996
                                          -265.1531



           x = 343.5300 y = 221.7005
Robert Collins
CSE486, Penn State
                           Example
 ( 205.5526 80.5 1.0) -0.00310695 -0.0025646        2.96584
                       -0.028094    -0.00771621    56.3813
                      13.1905      -29.2007     -9999.79



        L = (0.0010 -0.0030 -0.4851)           right


         (0.3211 -0.9470 -151.39)




                                           x = 205.5526 y = 80.5000
Robert Collins
CSE486, Penn State
                          Example
 ( 205.5526 80.5 1.0) -0.00310695 -0.0025646       2.96584
                      -0.028094    -0.00771621    56.3813
                     13.1905      -29.2007     -9999.79

 L= (0.3211 -0.9470 -151.39)
                                               right
       left




                                          x = 205.5526 y = 80.5000
Robert Collins
CSE486, Penn State
                             Example
         where is the epipole?
                                       F * eL = 0

                                  vector in the right
                                  nullspace of matrix F

                                  However, due to noise,
                                  F may not be singular.
                                  So instead, next best
                                  thing is eigenvector
                                  associated with smallest
                                  eigenvalue of F
Robert Collins
CSE486, Penn State
                                       Example
   >> [u,d] = eigs(F’ * F)
   u=                         d = 1.0e8*
    -0.0013 0.2586 -0.9660      -1.0000     0     0
     0.0029 -0.9660 -0.2586         0 -0.0000     0
     1.0000 0.0032 -0.0005          0     0 -0.0000

    eigenvector associated with smallest eigenvalue
    >> uu = u(:,3)
    uu = ( -0.9660 -0.2586 -0.0005)

    >> uu / uu(3) : to get pixel coords
    (1861.02 498.21 1.0)
Robert Collins
CSE486, Penn State
                             Example
         where is the epipole?        e’r * F = 0
                                       F’ * er = 0
                                 vector in the right
                                 nullspace of matrix F’

                                 However, due to noise,
                                 F’ may not be singular.
                                 So instead, next best
                                 thing is eigenvector
                                 associated with smallest
                                 eigenvalue of F’
Robert Collins
CSE486, Penn State
                                       Example
   >> [u,d] = eigs(F * F’)
   u=                         d = 1.0e8*
    -0.0003 -0.0618 -0.9981     -1.0000     0     0
    -0.0056 -0.9981 0.0618          0 -0.0000     0
     1.0000 -0.0056 0.0001          0     0 -0.0000

    eigenvector associated with smallest eigenvalue
    >> uu = u(:,3)
    uu = (-0.9981 0.0618 0.0001)

    >> uu / uu(3) : to get pixel coords
    (-19021.8 1177.97 1.0)

More Related Content

What's hot

Fuzzy Logic Based Edge Detection
Fuzzy Logic Based Edge DetectionFuzzy Logic Based Edge Detection
Fuzzy Logic Based Edge DetectionDawn Raider Gupta
 
Computer Vision harris
Computer Vision harrisComputer Vision harris
Computer Vision harrisWael Badawy
 
Edge Detection and Segmentation
Edge Detection and SegmentationEdge Detection and Segmentation
Edge Detection and SegmentationA B Shinde
 
Chapter10 image segmentation
Chapter10 image segmentationChapter10 image segmentation
Chapter10 image segmentationasodariyabhavesh
 
Frequency domain methods
Frequency domain methods Frequency domain methods
Frequency domain methods thanhhoang2012
 
Color fundamentals and color models - Digital Image Processing
Color fundamentals and color models - Digital Image ProcessingColor fundamentals and color models - Digital Image Processing
Color fundamentals and color models - Digital Image ProcessingAmna
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom ConceptsImage Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom Conceptsmmjalbiaty
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detectionAmar Jindal
 
Image Segmentation (Digital Image Processing)
Image Segmentation (Digital Image Processing)Image Segmentation (Digital Image Processing)
Image Segmentation (Digital Image Processing)VARUN KUMAR
 
Ppt compressed sensing a tutorial
Ppt compressed sensing a tutorialPpt compressed sensing a tutorial
Ppt compressed sensing a tutorialTerence Gao
 
Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)asodariyabhavesh
 
Image processing
Image processingImage processing
Image processingVarun Raj
 
Chapter 9 morphological image processing
Chapter 9   morphological image processingChapter 9   morphological image processing
Chapter 9 morphological image processingAhmed Daoud
 
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGESIMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGEScseij
 

What's hot (20)

Fuzzy Logic Based Edge Detection
Fuzzy Logic Based Edge DetectionFuzzy Logic Based Edge Detection
Fuzzy Logic Based Edge Detection
 
Computer Vision harris
Computer Vision harrisComputer Vision harris
Computer Vision harris
 
Edge Detection and Segmentation
Edge Detection and SegmentationEdge Detection and Segmentation
Edge Detection and Segmentation
 
Chapter10 image segmentation
Chapter10 image segmentationChapter10 image segmentation
Chapter10 image segmentation
 
Frequency domain methods
Frequency domain methods Frequency domain methods
Frequency domain methods
 
Color fundamentals and color models - Digital Image Processing
Color fundamentals and color models - Digital Image ProcessingColor fundamentals and color models - Digital Image Processing
Color fundamentals and color models - Digital Image Processing
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom ConceptsImage Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom Concepts
 
Psuedo color
Psuedo colorPsuedo color
Psuedo color
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detection
 
SIFT
SIFTSIFT
SIFT
 
Image Segmentation (Digital Image Processing)
Image Segmentation (Digital Image Processing)Image Segmentation (Digital Image Processing)
Image Segmentation (Digital Image Processing)
 
Ppt compressed sensing a tutorial
Ppt compressed sensing a tutorialPpt compressed sensing a tutorial
Ppt compressed sensing a tutorial
 
Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)
 
Epipolar geometry
Epipolar geometryEpipolar geometry
Epipolar geometry
 
Segmentation
SegmentationSegmentation
Segmentation
 
Image processing
Image processingImage processing
Image processing
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 
Image Stitching for Panorama View
Image Stitching for Panorama ViewImage Stitching for Panorama View
Image Stitching for Panorama View
 
Chapter 9 morphological image processing
Chapter 9   morphological image processingChapter 9   morphological image processing
Chapter 9 morphological image processing
 
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGESIMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
 

Viewers also liked

M&OB - Introduction to Management
M&OB - Introduction to ManagementM&OB - Introduction to Management
M&OB - Introduction to Managementlearnito
 
A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.
A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.
A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.Hasibul Islam
 
Behavioral Segmentation Case Study
Behavioral Segmentation Case StudyBehavioral Segmentation Case Study
Behavioral Segmentation Case StudyJonathan Drews
 
Disaster management- case study on 26 July 2005 Mumbai flood
Disaster management- case study on 26 July 2005 Mumbai floodDisaster management- case study on 26 July 2005 Mumbai flood
Disaster management- case study on 26 July 2005 Mumbai floodmadhura92
 
Case Study: Organizational Behavior
Case Study: Organizational BehaviorCase Study: Organizational Behavior
Case Study: Organizational BehaviorSurbhi Dangi
 
A Case Study On Technology Management
A Case Study On Technology ManagementA Case Study On Technology Management
A Case Study On Technology ManagementDivya Lekha
 
Case Study - Business Transformation
Case Study - Business TransformationCase Study - Business Transformation
Case Study - Business TransformationPeopleWiz Consulting
 
Organizational behaviour case study
Organizational behaviour case studyOrganizational behaviour case study
Organizational behaviour case studyritiruchi
 
Case study on organizational behaviour
Case study on organizational behaviourCase study on organizational behaviour
Case study on organizational behaviourTanu Priya
 
Jet Blue : A Strategic Management Case Study
Jet Blue : A Strategic Management Case StudyJet Blue : A Strategic Management Case Study
Jet Blue : A Strategic Management Case Studyfawadsiddequi
 

Viewers also liked (12)

M&OB - Introduction to Management
M&OB - Introduction to ManagementM&OB - Introduction to Management
M&OB - Introduction to Management
 
A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.
A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.
A Case study on Organizational Behavioral Practices in Link3 Technologies Ltd.
 
Behavioral Segmentation Case Study
Behavioral Segmentation Case StudyBehavioral Segmentation Case Study
Behavioral Segmentation Case Study
 
Disaster management- case study on 26 July 2005 Mumbai flood
Disaster management- case study on 26 July 2005 Mumbai floodDisaster management- case study on 26 July 2005 Mumbai flood
Disaster management- case study on 26 July 2005 Mumbai flood
 
Case Study: Organizational Behavior
Case Study: Organizational BehaviorCase Study: Organizational Behavior
Case Study: Organizational Behavior
 
A Case Study On Technology Management
A Case Study On Technology ManagementA Case Study On Technology Management
A Case Study On Technology Management
 
Case Study - Business Transformation
Case Study - Business TransformationCase Study - Business Transformation
Case Study - Business Transformation
 
Organizational behaviour case study
Organizational behaviour case studyOrganizational behaviour case study
Organizational behaviour case study
 
Behavioral science
Behavioral scienceBehavioral science
Behavioral science
 
Organizational Behavior Case Study
Organizational Behavior Case Study Organizational Behavior Case Study
Organizational Behavior Case Study
 
Case study on organizational behaviour
Case study on organizational behaviourCase study on organizational behaviour
Case study on organizational behaviour
 
Jet Blue : A Strategic Management Case Study
Jet Blue : A Strategic Management Case StudyJet Blue : A Strategic Management Case Study
Jet Blue : A Strategic Management Case Study
 

Similar to Lecture19

Lecture20
Lecture20Lecture20
Lecture20zukun
 
Lecture23
Lecture23Lecture23
Lecture23zukun
 
Lecture21
Lecture21Lecture21
Lecture21zukun
 
Lecture21
Lecture21Lecture21
Lecture21zukun
 
Lecture17
Lecture17Lecture17
Lecture17zukun
 
Lecture14
Lecture14Lecture14
Lecture14zukun
 
Lecture13
Lecture13Lecture13
Lecture13zukun
 
Lecture01
Lecture01Lecture01
Lecture01zukun
 
Lecture03
Lecture03Lecture03
Lecture03zukun
 
Lecture04
Lecture04Lecture04
Lecture04zukun
 
Lecture31
Lecture31Lecture31
Lecture31zukun
 
Lecture24
Lecture24Lecture24
Lecture24zukun
 

Similar to Lecture19 (12)

Lecture20
Lecture20Lecture20
Lecture20
 
Lecture23
Lecture23Lecture23
Lecture23
 
Lecture21
Lecture21Lecture21
Lecture21
 
Lecture21
Lecture21Lecture21
Lecture21
 
Lecture17
Lecture17Lecture17
Lecture17
 
Lecture14
Lecture14Lecture14
Lecture14
 
Lecture13
Lecture13Lecture13
Lecture13
 
Lecture01
Lecture01Lecture01
Lecture01
 
Lecture03
Lecture03Lecture03
Lecture03
 
Lecture04
Lecture04Lecture04
Lecture04
 
Lecture31
Lecture31Lecture31
Lecture31
 
Lecture24
Lecture24Lecture24
Lecture24
 

More from zukun

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009zukun
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVzukun
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Informationzukun
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statisticszukun
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibrationzukun
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionzukun
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluationzukun
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-softwarezukun
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptorszukun
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectorszukun
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-introzukun
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video searchzukun
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video searchzukun
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video searchzukun
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learningzukun
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionzukun
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick startzukun
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysiszukun
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structureszukun
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities zukun
 

More from zukun (20)

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCV
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Information
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statistics
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibration
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer vision
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluation
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-software
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptors
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectors
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-intro
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video search
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video search
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video search
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learning
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer vision
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick start
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structures
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities
 

Lecture19

  • 1. Robert Collins CSE486, Penn State Lecture 19: Essential and Fundamental Matrices
  • 2. Robert Collins CSE486, Penn State Epipolar Geometry image1 image 2 Epipole : location of cam2 Epipole : location of cam1 as seen by cam1. as seen by cam2.
  • 3. Robert Collins CSE486, Penn State Epipolar Geometry image1 image 2 Corresponding points lie on conjugate epipolar lines
  • 4. Robert Collins CSE486, Penn State This Lecture… image1 image 2 Given a point in one image, how do we determine the corresponding epipolar line to search along in the second image?
  • 5. Robert Collins CSE486, Penn State Essential Matrix The essential and fundamental matrices are 3x3 matrices that “encode” the epipolar geometry of two views. Motivation: Given a point in one image, multiplying by the essential/fundamental matrix will tell us which epipolar line to search along in the second view.
  • 6. Robert Collins CSE486, Penn State Essential Matrix P Pl Pr pl pr Ol el er Or T R,T = rotation, and translation S= E=RS is “essential matrix”
  • 7. Robert Collins CSE486, Penn State Essential Matrix Properties • has rank 2  has both a left and right nullspace (important!!!!) • depends only on the EXTRINSIC Parameters (R & T)
  • 8. Robert Collins CSE486, Penn State Longuet-Higgins equation
  • 9. Robert Collins CSE486, Penn State Longuet-Higgins equation This relates viewing rays Importance of Longuet-Higgens ... This relates 2D film points
  • 10. Robert Collins CSE486, Penn State Longuet-Higgins Makes Sense • Note, there is nothing magic about Longuet- Higgins equation. • A film point can also be thought of as a viewing ray. They are equivalent. • (u,v) 2D film point • (u,v,f) 3D point on film plane • k(u,v,f) viewing ray into the scene • k(X, Y, Z) ray through point P in the scene [hint: k=f/Z, and we have u=fX/Z, v=fY/Z].
  • 11. Robert Collins CSE486, Penn State Epipolar Lines • Let l be a line in the image: • Using homogeneous coordinates:
  • 12. Robert Collins CSE486, Penn State Epipolar Lines • Remember: pr belongs to epipolar line in the right image defined by
  • 13. Robert Collins CSE486, Penn State Epipolar Lines • Remember: pl belongs to epipolar line in the left image defined by
  • 14. Robert Collins CSE486, Penn State Epipoles • Remember: epipoles belong to the epipolar lines • And they belong to all the epipolar lines We can use this to compute the location of the epipoles. There will be an example, shortly...
  • 15. Robert Collins CSE486, Penn State Essential Matrix Summary Longuet-Higgins equation Epipolar lines: Epipoles:
  • 16. Robert Collins CSE486, Penn State Fundamental Matrix The essential matrix uses CAMERA coordinates To use image coordinates we must consider the INTRINSIC camera parameters: Affine transform matrix Pixel coord Camera (film) coord (row,col)
  • 17. Robert Collins CSE486, Penn State Fundamental Matrix short version: The same equation works in pixel coordinates too!
  • 18. Robert Collins CSE486, Penn State Fundamental Matrix Properties • has rank 2 • depends on the INTRINSIC and EXTRINSIC Parameters (f, etc ; R & T) Analogous to essential matrix. The fundamental matrix also tells how pixels (points) in each image are related to epipolar lines in the other image.
  • 21. Robert Collins CSE486, Penn State Example -0.00310695 -0.0025646 2.96584 F= -0.028094 -0.00771621 56.3813 13.1905 -29.2007 -9999.79
  • 22. Robert Collins CSE486, Penn State Example -0.00310695 -0.0025646 2.96584 343.53 F= -0.028094 -0.00771621 56.3813 221.70 13.1905 -29.2007 -9999.79 1.0 left 0.0001 0.0295 0.0045  0.9996 -1.1942 -265.1531 normalize so sum of squares of first two terms is 1 (optional) x = 343.5300 y = 221.7005
  • 23. Robert Collins CSE486, Penn State Example -0.00310695 -0.0025646 2.96584 343.53 F= -0.028094 -0.00771621 56.3813 221.70 13.1905 -29.2007 -9999.79 1.0 left right 0.0295 0.9996 -265.1531 x = 343.5300 y = 221.7005
  • 24. Robert Collins CSE486, Penn State Example ( 205.5526 80.5 1.0) -0.00310695 -0.0025646 2.96584 -0.028094 -0.00771621 56.3813 13.1905 -29.2007 -9999.79 L = (0.0010 -0.0030 -0.4851) right  (0.3211 -0.9470 -151.39) x = 205.5526 y = 80.5000
  • 25. Robert Collins CSE486, Penn State Example ( 205.5526 80.5 1.0) -0.00310695 -0.0025646 2.96584 -0.028094 -0.00771621 56.3813 13.1905 -29.2007 -9999.79 L= (0.3211 -0.9470 -151.39) right left x = 205.5526 y = 80.5000
  • 26. Robert Collins CSE486, Penn State Example where is the epipole? F * eL = 0 vector in the right nullspace of matrix F However, due to noise, F may not be singular. So instead, next best thing is eigenvector associated with smallest eigenvalue of F
  • 27. Robert Collins CSE486, Penn State Example >> [u,d] = eigs(F’ * F) u= d = 1.0e8* -0.0013 0.2586 -0.9660 -1.0000 0 0 0.0029 -0.9660 -0.2586 0 -0.0000 0 1.0000 0.0032 -0.0005 0 0 -0.0000 eigenvector associated with smallest eigenvalue >> uu = u(:,3) uu = ( -0.9660 -0.2586 -0.0005) >> uu / uu(3) : to get pixel coords (1861.02 498.21 1.0)
  • 28. Robert Collins CSE486, Penn State Example where is the epipole? e’r * F = 0  F’ * er = 0 vector in the right nullspace of matrix F’ However, due to noise, F’ may not be singular. So instead, next best thing is eigenvector associated with smallest eigenvalue of F’
  • 29. Robert Collins CSE486, Penn State Example >> [u,d] = eigs(F * F’) u= d = 1.0e8* -0.0003 -0.0618 -0.9981 -1.0000 0 0 -0.0056 -0.9981 0.0618 0 -0.0000 0 1.0000 -0.0056 0.0001 0 0 -0.0000 eigenvector associated with smallest eigenvalue >> uu = u(:,3) uu = (-0.9981 0.0618 0.0001) >> uu / uu(3) : to get pixel coords (-19021.8 1177.97 1.0)