Image Processing Basics

47,672 views

Published on

Image Processing Basics

Published in: Technology, Business
13 Comments
40 Likes
Statistics
Notes
No Downloads
Views
Total views
47,672
On SlideShare
0
From Embeds
0
Number of Embeds
240
Actions
Shares
0
Downloads
4,663
Comments
13
Likes
40
Embeds 0
No embeds

No notes for slide

Image Processing Basics

  1. 1. Saudi Board of Radiology: Physics Refresher Course Kostas Chantziantoniou, MSc 2 , DABR Head, Imaging Physics Section King Faisal Specialist Hospital & Research Centre Biomedical Physics Department Riyadh, Kingdom of Saudi Arabia Image Processing Basics
  2. 2. Image Processing: Basics <ul><ul><li>They are many factors that determine the diagnostic usability of a digital image: </li></ul></ul><ul><ul><ul><li>exposure techniques </li></ul></ul></ul><ul><ul><ul><li>detector quality (technology dependent) </li></ul></ul></ul><ul><ul><ul><li>scatter </li></ul></ul></ul><ul><ul><ul><li>viewing conditions </li></ul></ul></ul><ul><ul><ul><li>quality of readers </li></ul></ul></ul><ul><ul><ul><li>number of readers </li></ul></ul></ul><ul><ul><ul><li>image processing </li></ul></ul></ul>
  3. 3. Image Processing: Basics <ul><ul><li>Why do we need image processing? </li></ul></ul><ul><ul><li>since the digital image is “invisible” it must be prepared for viewing on one </li></ul></ul><ul><ul><li>or more output device (laser printer, monitor, etc) </li></ul></ul><ul><ul><li>the digital image can be optimized for the application by enhancing or </li></ul></ul><ul><ul><li>altering the appearance of structures within it (based on: body part, </li></ul></ul><ul><ul><li>diagnostic task, viewing preferences, etc) </li></ul></ul><ul><ul><li>it might be possible to analyze the image in the computer and provide </li></ul></ul><ul><ul><li>cues to the radiologists to help detect important/suspicious structures </li></ul></ul><ul><ul><li>(e.g.: Computed Aided Diagnosis, CAD) </li></ul></ul>
  4. 4. Image Processing: Transformations <ul><ul><li>They are three types of image processing (transformation algorithms) used: </li></ul></ul><ul><ul><ul><li>image-to-image transformations </li></ul></ul></ul><ul><ul><ul><li>image-to-information transformations </li></ul></ul></ul><ul><ul><ul><li>information-to-image transformations </li></ul></ul></ul>
  5. 5. Image Processing: Image-to-Image Transformations <ul><ul><li>Image In  Image Out </li></ul></ul><ul><ul><ul><li>enhancement (make image more useful, pleasing) </li></ul></ul></ul><ul><ul><ul><li>restoration (compensate for known image degradations to produce </li></ul></ul></ul><ul><ul><ul><li>an image that is “closer” to the (aerial) image that came out of the </li></ul></ul></ul><ul><ul><ul><li>patient - e.g: deblurring, grid line removal) </li></ul></ul></ul><ul><ul><ul><li>geometry (scaling/sizing/zooming, morphing one object into </li></ul></ul></ul><ul><ul><ul><li>another, distorting or altering the spatial relationship between </li></ul></ul></ul><ul><ul><ul><li>pixels) </li></ul></ul></ul>
  6. 6. Image Processing: Image-to-Image Transformations <ul><ul><li>They are three types of image-to-image transformations: </li></ul></ul><ul><ul><ul><li>point transformation </li></ul></ul></ul><ul><ul><ul><li>local transformation </li></ul></ul></ul><ul><ul><ul><li>global transformation </li></ul></ul></ul>
  7. 7. Image Processing: Image-to-Image Transformations <ul><ul><li>Point Transformation (use Look-up Tables to adjust Tonescale or image contrast) </li></ul></ul><ul><ul><li>the shape of the LUT depends on the desired “look” of the output image </li></ul></ul><ul><ul><li>and the structure of the histogram </li></ul></ul>
  8. 8. Image Processing: Image-to-Image Transformations
  9. 9. Image Processing: Image-to-Image Transformations
  10. 10. Image Processing: Image-to-Image Transformations
  11. 11. Image Processing: Image-to-Image Transformations
  12. 12. Image Processing: Image-to-Image Transformations Image contrast window
  13. 13. Image Processing: Image-to-Image Transformations Image brightness window
  14. 14. Image Processing: Image-to-Image Transformations <ul><ul><li>Non-linear LUTs can be used as well (but more complex to implement) </li></ul></ul>
  15. 15. Image Processing: Image-to-Image Transformations <ul><ul><li>What LUT shape should be used? </li></ul></ul>
  16. 16. Image Processing: Image-to-Image Transformations <ul><ul><li>Local Transformation (Edge Enhancement, Zooming) </li></ul></ul>
  17. 17. Image Processing: Image-to-Image Transformations <ul><ul><li>Edge Enhancement (Un-sharp Masking Technique) </li></ul></ul>
  18. 18. Image Processing: Image-to-Image Transformations <ul><ul><li>Creating a blurred image </li></ul></ul>The pixels within the kernel are averaged to determine the value of the center pixel for the output image Repeat process for all pixels in image
  19. 19. Image Processing: Image-to-Image Transformations Kernel size will have a large effect on the level of smoothing that is performed Sum of all pixel weight factors in kernel must equal 1
  20. 20. Image Processing: Image-to-Image Transformations
  21. 21. Image Processing: Image-to-Image Transformations <ul><ul><li>Creating a “amplified” difference image </li></ul></ul>
  22. 22. Image Processing: Image-to-Image Transformations <ul><ul><li>Creating the final edge enhanced output image </li></ul></ul>
  23. 23. Image Processing: Image-to-Image Transformations <ul><ul><li>Global Transformation (Spatial frequency “Fourier” decomposition): </li></ul></ul>
  24. 24. Image Processing: Image-to-Image Transformations
  25. 25. Image Processing: Image-to-Information Transformations <ul><ul><li>Image In  Information (Data) Out </li></ul></ul><ul><ul><ul><li>image statistics (histograms) </li></ul></ul></ul><ul><ul><ul><li>image compression </li></ul></ul></ul><ul><ul><ul><li>image analysis (image segmentation, feature extraction, pattern </li></ul></ul></ul><ul><ul><ul><li>recognition) </li></ul></ul></ul><ul><ul><ul><li>computer-aided detection and diagnosis (CAD) </li></ul></ul></ul>
  26. 26. Image Processing: Image-to-Information Transformations <ul><ul><li>Image Statistics (Histogram) </li></ul></ul><ul><ul><li>the histogram is the fundamental tool for </li></ul></ul><ul><ul><li>image analysis and image processing </li></ul></ul><ul><ul><li>it histogram is created by examining each </li></ul></ul><ul><ul><li>pixel in the digital image and counting the </li></ul></ul><ul><ul><li>number of occurrences of each pixel value </li></ul></ul><ul><ul><li>(or Code Value) </li></ul></ul>
  27. 27. Image Processing: Image-to-Information Transformations
  28. 28. Image Processing: Image-to-Information Transformations <ul><ul><li>Low Contrast Image Histograms </li></ul></ul><ul><ul><li>low contrast images produce tall </li></ul></ul><ul><ul><li>and narrow histograms </li></ul></ul><ul><ul><li>histogram covers a short range of </li></ul></ul><ul><ul><li>pixels values </li></ul></ul><ul><ul><li>High Contrast Image Histograms </li></ul></ul><ul><ul><li>high contrast images produce </li></ul></ul><ul><ul><li>short and flat (wide) histograms </li></ul></ul><ul><ul><li>histogram covers a wide range of </li></ul></ul><ul><ul><li>pixels values </li></ul></ul><ul><ul><li>NOTE: histograms do not care for the location of the pixels (both high contrast images shown above have the same histogram) </li></ul></ul>
  29. 29. Image Processing: Image-to-Information Transformations
  30. 30. Image Processing: Image-to-Information Transformations <ul><ul><li>Image Compression </li></ul></ul><ul><ul><li>medical images can contain huge amounts of data (CT image: 0.25 MB, </li></ul></ul><ul><ul><li>CR chest image: 8 MB, Digital Mammo: 32 MB) </li></ul></ul><ul><ul><li>image compression aims to reduce the total number of bits needed to </li></ul></ul><ul><ul><li>represent the image without compromising image quality, which in turn: </li></ul></ul><ul><ul><ul><li>reduces storage requirements </li></ul></ul></ul><ul><ul><ul><li>reduces the time required to transmit images </li></ul></ul></ul><ul><ul><ul><li>uses existing network bandwidth more effectively </li></ul></ul></ul><ul><ul><li>Image compression is more than: </li></ul></ul><ul><ul><li>sampling at a lower rate or throwing away pixels </li></ul></ul><ul><ul><li>quantizing each pixel more coarsely or reducing the precision of each pixel </li></ul></ul>
  31. 31. Image Processing: Image-to-Information Transformations <ul><ul><li>Why can images be compressed? </li></ul></ul><ul><li>Redundancy : relationship do exist between pixels in an image based on their location </li></ul><ul><li>algorithms can be spatial (statistical), temporal or spectral (wavelet) in nature </li></ul>Irrelevancy : pixels included in image that do not add to the diagnostic information
  32. 32. Image Processing: Image-to-Information Transformations <ul><ul><li>Two types of image compression are used: </li></ul></ul><ul><ul><li>Lossless (Reversible) Compression </li></ul></ul><ul><ul><li>uses statistical redundancy only </li></ul></ul><ul><ul><li>compression ratios range from 2:1 to 4:1 </li></ul></ul><ul><ul><li>decompressed (reconstructed) images is numerically identical to original </li></ul></ul><ul><ul><li>Lossy (Irreversible) Compression </li></ul></ul><ul><ul><li>uses statistical redundancy and irrelevancy </li></ul></ul><ul><ul><li>compression ratios range from 6:1 to 20:1 and more </li></ul></ul><ul><ul><li>decompressed image is degraded relative to original </li></ul></ul>
  33. 33. Image Processing: Image-to-Information Transformations <ul><ul><li>Image Analysis (Segmentation) </li></ul></ul>Original image Original image with segmentation data
  34. 34. Image Processing: Information-to-Image Transformations <ul><ul><li>Information (Data) In  Image Out </li></ul></ul><ul><ul><ul><li>decompression of compressed image data </li></ul></ul></ul><ul><ul><ul><li>reconstruction of image slices from CT or MRI raw data </li></ul></ul></ul><ul><ul><ul><li>computer graphics, animations and virtual reality (synthetic objects) </li></ul></ul></ul>
  35. 35. Image Processing: Information-to-Image Transformations <ul><ul><li>3D Image Reconstruction </li></ul></ul>
  36. 36. Image Processing: Information-to-Image Transformations <ul><ul><li>Image Synthesis </li></ul></ul>
  37. 37. Image Output (Reconstruction): Basics <ul><ul><li>Why do we need to reconstruct the image? </li></ul></ul><ul><ul><li>the digital image is still a 2D array of numbers (pixels values) </li></ul></ul><ul><ul><li>if it is to be viewed by a human it must be converted back to an analog </li></ul></ul><ul><ul><li>image on some display device and/or medium (e.g.: CRT monitor, </li></ul></ul><ul><ul><li>hardcopy) </li></ul></ul><ul><ul><li>so digital image must be reconstructed for output device </li></ul></ul>
  38. 38. Image Output (Reconstruction): What is the problem? Nuclear medicine image (96 x 128, 6 bit) to be printed on a laser printer film (4k x 5k, 12 bit) <ul><ul><li>The problem is: </li></ul></ul><ul><ul><li>how do we match the gray scales (tonescale)? </li></ul></ul><ul><ul><li>how do we match the image size? </li></ul></ul>
  39. 39. Image Output (Reconstruction): What is the problem? CR image (2k x 2.5k, 12 bit) to be displayed on a CRT monitor (1.2k x 1k, 8 bit)
  40. 40. Image Output (Reconstruction): Tonescale <ul><ul><li>Output system tonescale depends on: </li></ul></ul><ul><ul><li>image processing applied (output device should not change any post </li></ul></ul><ul><ul><li>processing that was done on the image prior to this step) </li></ul></ul><ul><ul><li>calibration of output device (very important & can vary with time) </li></ul></ul><ul><ul><li>dynamic range of output device </li></ul></ul><ul><ul><li>viewing conditions </li></ul></ul><ul><ul><li>observer </li></ul></ul>
  41. 41. Image Output (Reconstruction): Tonescale <ul><ul><li>Output Calibration (needs to be performed frequently) </li></ul></ul><ul><ul><li>every output device has a LUT that relates its output pixel values to the </li></ul></ul><ul><ul><li>input pixel values that generated them </li></ul></ul>Laser Printer CRT Monitor
  42. 42. Image Output (Reconstruction): Tonescale <ul><ul><li>Dynamic Range </li></ul></ul><ul><ul><li>every output device has a different dynamic range that must be considered </li></ul></ul><ul><ul><li>when selecting or calibrating the device LUT </li></ul></ul><ul><ul><li>Dynamic Range = Highest signal value device can produce </li></ul></ul><ul><ul><ul><ul><ul><li> Lowest signal value device can produce </li></ul></ul></ul></ul></ul>Dynamic Range = antilog(3.0) = 1000 therefore dynamic range of film is 1,000:1
  43. 43. Image Output (Reconstruction): Tonescale <ul><li>Must use LUTs that compensate for differences in dynamic range : </li></ul><ul><li>CRT monitors: non-linear </li></ul><ul><li>Laser printers: linear or non-linear (to introduce additional contrast) </li></ul>
  44. 44. Image Output (Reconstruction): Tonescale <ul><ul><li>Viewing Conditions </li></ul></ul>
  45. 45. Image Output (Reconstruction): Output Geometry <ul><ul><li>Image Scaling Techniques </li></ul></ul><ul><ul><li>in order to display images properly on the output device, the image may </li></ul></ul><ul><ul><li>have to be scaled by the use of one of the following techniques: </li></ul></ul><ul><ul><ul><li>decimation (sub-sampling) </li></ul></ul></ul><ul><ul><ul><li>interpolation </li></ul></ul></ul>
  46. 46. Image Output (Reconstruction): Decimation <ul><ul><li>this technique is required when image matrix size is too big for output </li></ul></ul><ul><ul><li>device </li></ul></ul><ul><ul><li>method of decimation is determined by degree of reduction (may have </li></ul></ul><ul><ul><li>image quality concerns) </li></ul></ul>
  47. 47. Image Output (Reconstruction): Decimation <ul><ul><li>Methodology </li></ul></ul>
  48. 48. Image Output (Reconstruction): Decimation <ul><ul><li>Imaging Concerns </li></ul></ul><ul><ul><li>decimation can be dangerous </li></ul></ul><ul><ul><li>high frequency signals can be </li></ul></ul><ul><ul><li>removed during sub-sampling and </li></ul></ul><ul><ul><li>cause artifacts </li></ul></ul><ul><ul><li>proper decimation requires that the </li></ul></ul><ul><ul><li>digital image be smoothed (blurred) </li></ul></ul><ul><ul><li>first to remove any signal frequencies </li></ul></ul><ul><ul><li>that are higher then half of the new </li></ul></ul><ul><ul><li>sampling frequency </li></ul></ul>
  49. 49. Image Output (Reconstruction): Decimation
  50. 50. Image Output (Reconstruction): Interpolation <ul><ul><li>Why do we need to interpolation? </li></ul></ul><ul><ul><li>the digital image is too small for output device and we have to scale it up </li></ul></ul><ul><ul><li>problem is that when we scale the image up, we have new pixels that will </li></ul></ul><ul><ul><li>require new pixel values, that should make the new image appear </li></ul></ul><ul><ul><li>continuous in space and in gray scale, note output devices are analog </li></ul></ul><ul><ul><li>devices (e.g.: laser printer, CRT monitor) </li></ul></ul><ul><ul><li>three interpolation techniques are often used: </li></ul></ul><ul><ul><ul><li>nearest neighbor interpolation (pixel replication) </li></ul></ul></ul><ul><ul><ul><li>linear (or bilinear) interpolation </li></ul></ul></ul><ul><ul><ul><li>cubic (spline) interpolation (nonlinear interpolation) </li></ul></ul></ul>
  51. 51. Image Output (Reconstruction): Interpolation <ul><ul><li>What are the effects of interpolation? </li></ul></ul>NOTE the human eye-brain system is an efficient interpolator After blurring your eyes
  52. 52. Image Output (Reconstruction): Interpolation <ul><ul><li>What does an interpolator do? </li></ul></ul><ul><ul><li>creates enough pixels in the new digital image such that the matrix sent to </li></ul></ul><ul><ul><li>the output device produces an image of the right size </li></ul></ul><ul><ul><li>generates new pixels with gray values in such a way that when the display </li></ul></ul><ul><ul><li>aperture (electron gun: CRT’s or laser spot: laser cameras) marks the </li></ul></ul><ul><ul><li>output medium, it creates the impression that the image is continuous in </li></ul></ul><ul><ul><li>space and continuous in values </li></ul></ul>NOTE excessive interpolation can degrade image quality
  53. 53. Image Output (Reconstruction): Interpolation <ul><ul><li>the interpolator uses the known pixels values to calculate or produce new </li></ul></ul><ul><ul><li>pixels anywhere within the image </li></ul></ul><ul><ul><li>interpolation adds no new information or detail to the image </li></ul></ul>
  54. 54. Image Output (Reconstruction): Nears Neighbor Interpolation <ul><ul><li>Methodology </li></ul></ul>
  55. 55. Image Output (Reconstruction): Bi-linear Interpolation <ul><ul><li>Methodology </li></ul></ul>
  56. 56. Image Output (Reconstruction): Cubic Interpolation <ul><ul><li>Methodology </li></ul></ul>
  57. 57. Image Output (Reconstruction): Interpolation <ul><ul><li>all reconstructions of analog signals are approximations </li></ul></ul><ul><ul><li>which interpolator to use depends on the application needs: </li></ul></ul><ul><ul><ul><li>Nearest neighbor : maintains/inserts hard edges around pixels (good </li></ul></ul></ul><ul><ul><ul><li>for text and some images like nuclear medicine) </li></ul></ul></ul><ul><ul><ul><li>Linear : smoothing effect, sometimes excessive (good to suppress </li></ul></ul></ul><ul><ul><ul><li>high frequency structures or noise), very easy to implement </li></ul></ul></ul><ul><ul><ul><li>Cubic : can produce very accurate reconstructions but more complex </li></ul></ul></ul><ul><ul><ul><li>and costly to implement </li></ul></ul></ul>
  58. 58. Image Output (Reconstruction): Display Aperture <ul><ul><li>Output device aperture size does effect image quality and perceived image resolution </li></ul></ul>
  59. 59. Image Output (Reconstruction): Addressability/Resolution <ul><ul><li>Because output device has 2k x 2.5 pixels it does not mean you can see all of them </li></ul></ul><ul><ul><li>Addressability (matrix size) </li></ul></ul><ul><ul><li>is the data capacity of the output device characterized by the number of </li></ul></ul><ul><ul><li>values that are addressable by the user (a 4k x 5k laser printer has about </li></ul></ul><ul><ul><li>4000 x 5000 = 20,000,000 addressable points (pixels) over its usable area </li></ul></ul><ul><ul><li>Resolution </li></ul></ul><ul><ul><li>the ability to see or measure details in the output </li></ul></ul><ul><ul><li>device </li></ul></ul><ul><ul><li>more important than addressability since it </li></ul></ul><ul><ul><li>determines the usefulness of a given output device </li></ul></ul><ul><ul><li>is usually lower than addressability (due to effects of </li></ul></ul><ul><ul><li>display aperture) </li></ul></ul>

×