Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Edge detection by Ishraq Fataftah 17914 views
- image processing- edge detection by SARBJEET SINGH 24069 views
- Mesh Processing Course : Differenti... by Gabriel Peyré 1240 views
- Tips mengetahui harga berlian berda... by Cincin Tunangan J... 1231 views
- Edge detection of video using matla... by Bhushan Deore 13963 views
- Edge Detection algorithm and code by vaddi manikanta 1866 views

4,168 views

Published on

This used dual FIS Optimization technique to find the high frequency or the edges in the images and neglect the lower frequencies.

No Downloads

Total views

4,168

On SlideShare

0

From Embeds

0

Number of Embeds

53

Shares

0

Downloads

166

Comments

0

Likes

2

No embeds

No notes for slide

- 1. Digital Image Processing Edge Detection using Dual FIS Optimization Ishaan Gupta 03914802810 7E123 – E2 Electronics and Communications MAIT Mentored By: Prof. Nitin Sharma Assistant Professor Electronics and Communications Dept MAIT
- 2. What is D.I.P. ? • Processing of digital images by means of a digital computer. • Output can be image and/or values. • Deals with spatial coordinates, amplitude of ‘f’ at any pair coordinates (x,y) called gray levels or intensity values which are finite and discrete.
- 3. Steps in DIP Image acquisition Image filtering and enhancement Image restoration Color Image Processing. Wavelets and multi-resolution Processing. Compression Morphological Processing. Segmentation Representation & Description. Object Recognition
- 4. Image acquisition • Done via: • Camera – Visible spectrum • Image matrix (Draw Functions / Convert intensity values -> Image) • Techniques : • Xray • Gamma • Ultrasound • IR • Satellite (Multi-resolution)
- 5. Image filters & enhancement • Filters – LPF, HPF, BPF, Gaussian Filters, etc. • Depth – Field view, panorama, IR based, Laser Based • Enhancement – Brightness, Contrast, Smoothening, Equalization, Saturation [RGB Master, R master, G Master, B Master] , etc.
- 6. Detection • Edge • Color • Intensity / gray level - Binary and grayscale Images • Objects and Object description.
- 7. Edge detection algos • Gaussian - Canny’s Algo, Shen-Castan, etc • LoG (Laplacian of Gaussian) – Marr-Hildreth – Second Derivative • Zero Crossing – LoG based • Classical - Prewitt • Classical - Sobel
- 8. Comparisons Operator Advantages Disadvantages Classical (Sobel, prewitt, Kirsch,…) Simplicity, Detection of edges and their orientations Sensitivity to noise, Inaccurate Zero Crossing(Laplacian, Second directional derivative) Detection of edges and their orientations. Having fixed characteristics in all directions Responding to some of the existing edges, Sensitivity to noise Laplacian of Gaussian(LoG) (Marr-Hildreth) Finding the correct places of edges, Testing wider area around the pixel Malfunctioning at the corners, curves and where the gray level intensity function varies. Not finding the orientation of edge because of using the Laplacian filter Gaussian(Canny, Shen-Castan) Using probability for finding error rate, Localization and response. Improving signal to noise ratio, Better detection specially in noise conditions Complex Computations, False zero crossing, Time consuming
- 9. Edge Detection 9
- 10. • Convert a 2D image into a set of curves • Extracts salient features of the scene • More compact than pixels 10
- 11. Origin of Edges • Edges are caused by a variety of factors depth discontinuity surface color discontinuity illumination discontinuity surface normal discontinuity 11
- 12. Profiles of image intensity edges 12
- 13. Edge detection 1. Detection of short linear edge segments (edgels) 2. Aggregation of edgels into extended edges • (maybe parametric description) 13
- 14. Edgel detection •Difference operators •Parametric-model matchers 14
- 15. Edge is Where Change Occurs • Change is measured by derivative in 1D • Biggest change, derivative has maximum magnitude • Or 2nd derivative is zero. 15
- 16. Image gradient • The gradient of an image: • The gradient points in the direction of most rapid change in intensity The gradient direction is given by: • how does this relate to the direction of the edge? The edge strength is given by the gradient magnitude 16
- 17. The discrete gradient • How can we differentiate a digital image f[x,y]? • Option 1: reconstruct a continuous image, then take gradient • Option 2: take discrete derivative (finite difference) 17
- 18. The Sobel operator • Better approximations of the derivatives exist • The Sobel operators below are very commonly used -1 0 1 -2 0 2 -1 0 1 1 2 1 0 0 0 -1 -2 -1 • The standard defn. of the Sobel operator omits the 1/8 term – doesn’t make a difference for edge detection – the 1/8 term is needed to get the right gradient value, however 18
- 19. Gradient operators (a): Roberts’ cross operator (b): 3x3 Prewitt operator (c): Sobel operator (d) 4x4 Prewitt operator 19
- 20. Effects of noise • Consider a single row or column of the image • Plotting intensity as a function of position gives a signal 20
- 21. Solution: Smooth first 21
- 22. Derivative theorem of convolution • This saves us one operation: 22
- 23. Laplacian of Gaussian • Consider Laplacian of Gaussian operator 23
- 24. 2D edge detection filters • is the Laplacian operator: Laplacian of Gaussian Gaussian derivative of Gaussian 24
- 25. Optimal Edge Detection: Canny • Assume: • Linear filtering • Additive iid Gaussian noise • Edge detector should have: • Good Detection. Filter responds to edge, not noise. • Good Localization: detected edge near true edge. • Single Response: one per edge. 25
- 26. Optimal Edge Detection: Canny (continued) • Optimal Detector is approximately Derivative of Gaussian. • Detection/Localization trade-off • More smoothing improves detection • And hurts localization. 26
- 27. The Canny edge detector • original image (Lena) 27
- 28. The Canny edge detector norm of the gradient 28
- 29. The Canny edge detector thresholding 29
- 30. The Canny edge detector thinning (non-maximum suppression) 30
- 31. Non-maximum suppression • Check if pixel is local maximum along gradient direction • requires checking interpolated pixels p and r 31
- 32. Predicting the next edge point Assume the marked point is an edge point. Then we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points (here either r or s). (Forsyth & Ponce) 32
- 33. Hysteresis • Check that maximum value of gradient value is sufficiently large • drop-outs? use hysteresis • use a high threshold to start edge curves and a low threshold to continue them. 33
- 34. Effect of (Gaussian kernel size) Canny with Canny withoriginal The choice of depends on desired behavior • large detects large scale edges • small detects fine features 34
- 35. Scale • Smoothing • Eliminates noise edges. • Makes edges smoother. • Removes fine detail. 35
- 36. 36
- 37. fine scale high threshold 37
- 38. coarse scale, high threshold 38
- 39. coarse scale low threshold 39
- 40. Scale space • Properties of scale space (w/ Gaussian smoothing) • edge position may shift with increasing scale ( ) • two edges may merge with increasing scale • an edge may not split into two with increasing scale larger Gaussian filtered signal first derivative peaks 40
- 41. Edge detection by subtraction original 41
- 42. Edge detection by subtraction smoothed (5x5 Gaussian) 42
- 43. Edge detection by subtraction smoothed – original (scaled by 4, offset +128) Why does this work? filter demo 43
- 44. Gaussian - image filter Laplacian of Gaussian Gaussian delta function 44
- 45. An edge is not a line... 45
- 46. Finding lines in an image • Option 1: • Search for the line at every possible position/orientation • What is the cost of this operation? • Option 2: • Use a voting scheme: Hough transform 46
- 47. Finding lines in an image • Connection between image (x,y) and Hough (m,b) spaces • A line in the image corresponds to a point in Hough space • To go from image space to Hough space: • given a set of points (x,y), find all (m,b) such that y = mx + b x y m b m0 b0 image space Hough space 47
- 48. Finding lines in an image • Connection between image (x,y) and Hough (m,b) spaces • A line in the image corresponds to a point in Hough space • To go from image space to Hough space: • given a set of points (x,y), find all (m,b) such that y = mx + b • What does a point (x0, y0) in the image space map to? x y m b image space Hough space – A: the solutions of b = -x0m + y0 – this is a line in Hough space x0 y0 48
- 49. Corners contain more edges than lines. • A point on a line is hard to match. Corner detection 49
- 50. Corners contain more edges than lines. • A corner is easier 50
- 51. Edge Detectors Tend to Fail at Corners 51
- 52. Finding Corners Intuition: • Right at corner, gradient is ill defined. • Near corner, gradient has two different values. 52
- 53. Fuzzy Logic & Fuzzy Inference System (FIS)
- 54. Introduction to Fuzzy Sets • Introduced by A. L. Zadeh (1965) • Fuzzy sets provide the mechanism for dealing with imprecise information • Based and related closely to usage of probability in crisp information. • Provides margin for error and its correction possibilities in both input and output values. • Takes into account full or partial membership and relationship between one value to another.
- 55. Fuzzy Inference System (FIS) FIS Types Mamdani Sugeno Components Membership Functions IF-THEN Rules Logical Operations Applications DIP Localizations Network Analysis
- 56. Steps in FIS
- 57. FIS Toolbox in MATLAB
- 58. Conventional FIS usage in DIP FIS(4Input) Image processor Edge
- 59. My usage Image Restoration Image Enhancement Noise Removal using LoG FIS OutDIP2 Edge Detection2 DIP 1 Edge detection1 Mat2Gray out1 FIS Image processor FIS Image Processor Edge Out Mat2Gray out Filtration Noise Removal Image enhancement Image restoration
- 60. FIS 1
- 61. Membership Function of Input
- 62. Membership of Output
- 63. IF-THEN Rule set = 16
- 64. FIS2
- 65. Membership Function of Input
- 66. Membership of Output
- 67. IF-THEN Ruleset = 28 +10
- 68. Final Outputs Compare d
- 69. Thank You

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment