SlideShare a Scribd company logo
1 of 32
Download to read offline
FUEL CELLS
PRESENTED BY
DR.YOGESH C. DHOTE
ASSOCIATE PROFESSOR
MGM COLLEGE OF ENGINEERING NAVI-MUMBAI
INTRODUCTION
An electrochemical device capable of generating an
electric current by continuous conversion of
chemical energy of a fuel directly into electrical
energy without combustion is called Fuel cell.
Fuel cell systems generally operate on pure
hydrogen and air to produce electricity with water
and heat as the bi-products.
Fuel cells are modular in construction and their
efficiency is independent of size.
Contd…
A fuel cell requires continuous supply of a fuel
and oxidant to produce D.C. electric power.
The basic difference between battery and fuel cell
is that:
battery stores electrical charges, after discharge it
needs recharging while in fuel cells recharging is
not required.
Contd…
 In Fuel cells the chemical energy of the reactants is
converted into electrical energy as an Isothermal Process.
Thus heat is not involved in the conversion process and a
high conversion efficiency is possible.
 Another reason for the interest in fuel cells is that their
efficiency and cost per kW of power are independent of size
or rating of the fuel cell.
This advantage makes the prospects of fuel cells very
attractive as portable power plants for space crafts,
locomotives etc.
Contd…
 Fuel cells can be manufactured large or small as necessary
for the particular power application.
 Presently, there are micro fuel cells that are the size of a
pencil eraser and generate few milliwatts of power while
there are others large enough to provide large amount of
power.
 The power output of fuel cells is fully scalable by stacking
multiple cells in series to obtain the desired voltage.
PRINCIPLE OF WORKING
 A fuel cell has
- An anode,
- A Cathode,
- An electrolyte,
- A container,
- Separators,
- Sealing,
- Fuel supply,
- Oxidant supply etc.
 For explaining the principle and operation of fuel cells, the hydrogen-
oxygen fuel cell alkali (Solution of KOH) electrolyte is described. The
electrolyte can be acidic (Solution of H2SO4)
HYDROX (H2, O2) CELL
Chemical Reactions:
At Anode:
H2  2 H+ + 2e- -------- (i)
At Cathode:
½ O2 + H2O + 2e- 2 OH- ---(ii)
In the Electrolyte:
H+ + OH-  H2O -----------(iii)
The overall cell reaction:
H2 + ½ O2  H2O -------------(iv)
Contd…
• Fuel cells can be adopted to a variety of fuels by changing the
electrolyte, but ‘Hydrox’ fuel cells using hydrogen and oxygen as fuel
are the most efficient and highly developed cells.
• A single ‘Hydrox’ fuel cell can produce an e.m.f. of 1.23 V at one
atmospheric pressure at 25 oC.
• It is possible to create useful potentials of 100 to 1000 volts and power
level of 1 kW to 100 MW by connecting a number of cells in series-
parallel combination.
• Fuel cells are particularly suited for low voltage and high current
applications.
• The Apollo spacecraft used ‘hydrox’ fuel cells for their energy needs
and also as a source of drinking water.
Classification of Fuel Cells
Fuel Cells can be classified on various basis as:
Fuel and oxidant combination
Electrolyte
Direct fuel or Indirect fuel
Temperature
Power ratings
Applications
Contd…
The most common classification of Fuel Cells is by electrolyte
 Alkaline Fuel Cells (AFC)
 Direct Methanol Fuel Cells (DMFC)
 Phosphoric Acid Fuel Cells (PAFC)
 Proton Exchange Membrane Fuel Cells (PEMFC)
 Moltoen Carbonate Fuel Cell (MCFC)
 Solid Oxide Fuel Cell (SOFC)
 Zinc-Air Fuel Cell (ZAFC)
 Regenerative Fuel Cell (RFC)
Proton Exchange Membrane Fuel Cells
(PEMFC)
• In this type of cell electrolyte is a solid polymer membrane (Thin plastic film). This
polymer is permeable to protons when it is saturated with water, but it does not
conduct electrons.
Various Types of PEMFCs
• Planar cell
• Tubular cell
• Coil cell
Advantages and Disadvantages of PEMFC
Advantages:
• PEMFC generate more power for a given volume i.e. high power density.
• Rapid start.
• Operating temperature is less than 100 oC.
• Less expensive.
• Because of solid electrolyte, PEMFC has less problems with corrosion.
• Longer Life.
• Best suitable for transportation applications.
Disadvantages:
• Due to low operating temperature these are not enough to perform useful
cogeneration.
Phosphoric Acid Fuel Cells (PAFC)
• The electrolyte in this fuel cell is 100% concentrated phosphoric acid (H3PO4). The
ionic conductivity of phosphoric acid is low at low temperature.
Contd…
• PAFC is similar to PEMFC.
• PAFCs are operated at 150 oC to 220 oC.
• The PAFC operates at greater than 40% efficiency in generating
electricity.
• The PAFC when operated in cogeneration applications, the overall
efficiency is approximately 85%.
• At present they offer the lowest cost per kW and are used mainly for
plants of 50 to 200 kW capacities.
• In PAFC, the waste heat at operating temperature is capable of heating
the water or generating steam at atmospheric pressure.
Molten Carbonate Fuel Cells (MCFC)
Molten carbonate fuel cells use an electrolyte, which is a molten mixture of carbonate
salts.
Two mixtures are generally used:
a) Lithium Carbonate and Potassium Carbonate OR
b) Lithium Carbonate and Sodium Carbonate
Contd…
• Since these salts can act as electrolytes only in liquid phase, the operating
temperature should be as high as 650 oC.
• MCFCs are considered to be second generation fuel cells because they
will reach commercialization after PAFCs.
• Efficiency of MCFCs is more than PAFCs and is around 60%.
• The by-product heat from MCFC can be used to generate high pressure
steam that can be used in many industrial and commercial applications.
Direct Methanol Fuel Cells
(DMFC)
• In this cell also polymer is an electrolyte and charge carrier is the
hydrogen ion.
• The liquid methanol (CH3OH) is oxidized in the presence of water at
anode and generating carbon dioxide, hydrogen ions and electrons.
• Efficiency of these cells is approximately 40% at operating temperature
50oC - 120oC.
• The main disadvantage of this cell is that at low temperature oxidation of
methanol to hydrogen ions and carbon dioxide requires more active
catalyst, which increases the cost and weight.
Zinc-Air Fuel Cells (ZAFC)
• In this type of cells electrolyte is a ceramic solid and charge carries are
hydroxyl ions OH-.
• The operating temperature of this cell is high and remain around 700oC.
• The anode is composed of zinc and is supplied with hydrogen or
hydrocarbons.
• The cathode is separated from the air supply with gas diffusion electrode,
a permeable membrane that allows atmospheric oxygen to pass through.
• The by-product heat can be used to generate high pressure steam which
can be used for industrial or commercial applications.
Regenerative Fuel Cells
(RFC)
 In regenerative fuel cells reactants are regenerated from the products
and recycled.
 Regenerative fuel cells operate in a closed loop.
 Fuel cells generate the electricity, heat and water from Hydrogen and
Oxygen.
 The hydrogen would be generated from the electrolysis of water by
splitting it into hydrogen and oxygen by using renewable energy
source as solar, wind etc.
 The hydrogen thus generated is reused as fuel, oxygen as can be used
as oxidant and water is re-circulated for electrolysis.
Solid Oxide Fuel Cells
(SOFC)
• SOFC operates at high temperature between 650oC to 1000oC.
• The electrolyte in this cell is solid, non-porous metal oxide that is
conductive to oxygen ions.
Contd…
• The charge carrier in SOFC is the oxygen ion.
• At the cathode, the oxygen molecules from the air are split
into oxygen ions with the addition of four electrons.
• The oxygen ions are conducted through the electrolyte and
combine with hydrogen at the anode releasing four
electrons.
• The electrons move through the external circuit producing
electric power and by product heat.
Type of fuel cell Electrolyte Temp. in °C Fuel
AFC Potassium Hydroxide (KOH) 70-100 H2 + O2
PEM Proton Exchange Membrane (Nafion, Gore) 50-100 H2 + O2/Air
PAFC Phosphoric acid 160-210 H2 Hydrogen rich
gas + Air
MCFC High temperature compounds of salt
carbonates CO3 (Sodium or Magnesium)
650 H2 Hydrogen rich
gas + Air
SOFC Solid Ceramic Compound (Calcium or
Zirconium)
800-1000 H2 Hydrogen rich
gas + Air
DMFC Proton Exchange Membrane (Nafion, Gore) 50-100 Methanol/Ethanol +
O2/Air
ELECTRODE MATERIALS & CATALYSTS
ELECTRODE MATERIALS
• Porous Nickel Electrode (Commercial application)
• Porous Carbon Electrode (Commercial application)
• Platinum Electrode (Special applications in military and space)
CATALYST
Incorporated with electrode materials for speeding the reactions.
• Finely divided platinum (very costly)
• Nickel (for active material as H2)
• Silver (for active material as O2)
Performance Analysis of a Fuel Cell
 The Electromotive Force that will drive the electrons through external
load is proportional to Gibbs Free Energy change and given as
E = (-ΔG/nF) Volts
Where E = EMF
ΔG = Change in Gibbs free energy (J/mol)
n = Number of electrons per mole of fuel
= 2 for hydrogen
F = Faraday’s constant
= 96487 coulombs / mole
Contd…
Gibbs free energy is defined as
ΔG = ΔH – TΔs kcal/mol
Where ΔH = Heat of Reaction
Δs = Change of entropy
TΔs = Isothermal Heat Transfer
ηth = ΔG/ΔH
= 1 – T Δs/ΔH
For reversible e.m.f of the cell, the
efficiency is given as
ηi = -nFE/ΔH
= -ItE/ ΔH
Where I = current and
t = time for which current flows
The overall efficiency of fuel cell is
given as
ηoverall = ηth x Loss Factor
Contd…
The power output of a reversible fuel cell,
Prev = ΔGm/(Molar Mass of Hydrogen)
Molar mass of hydrogen = 2.016 kg/mole
Actual electrical power output ,
P = Prev x ηoverall
And
The rate of heat released,
Q = (Prev – P) (In Watts)
Fuel Cells Losses
a) Activation losses
b) Fuel cross-over losses
c) Ohmic or resistance losses
d) Mass transport losses
ADVANTAGES OF FUEL CELLS
 High conversion efficiency as high as 70%
 It can be installed near the use point reducing transmission losses.
 Because of very less mechanical components, its operation is fairly
quiet.
 It requires less attention and less maintenance.
 Creates very less or no pollution.
 No cooling water is required as in conventional steam power plant.
 They can be readily accepted in residential areas because of noise free
operation.
 It takes a little time to start its operation.
 Space requirement is considerably less as compared to conventional
power plant.
DISADVANTAGES OF FUEL CELLS
• High initial cost.
• Development costs are very high.
• Use costly catalysts for the reaction to takes place.
• Low service life.
• Low Voltage.
Applications of Fuel Cells
1. Vehicles
2. Submarine
3. Portable Power Plants
4. Central Base Load Power Plants
5. Space-Crafts
6. Locomotives
7. Defense Applications
CONCLUSION
• Fuel cells are particularly suited for low voltage and high current
applications.
• Hydrogen-Oxygen fuel cells have been proposed for propulsion of
electric vehicles, with metal hydride as the source of hydrogen.
• At present the use of hydrogen-oxygen cell is restricted to manned
space vehicles.
• Fuel cells with porous Nickel electrodes and Potassium hydroxide
electrolyte have been used to provide electric power for the Apollo and
Shuttle spacecraft.
• The hydrogen and oxygen for operating the cell are stored in liquid
form to minimize the volume occupied.
Fuel cells

More Related Content

What's hot

What's hot (20)

fuel cell
fuel cellfuel cell
fuel cell
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
Fuel cells and its types
Fuel cells and its typesFuel cells and its types
Fuel cells and its types
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cell
 
Lithium ion batteries
Lithium ion batteriesLithium ion batteries
Lithium ion batteries
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
Types of fuel cells
Types of fuel cellsTypes of fuel cells
Types of fuel cells
 
How fuel cells work
How fuel cells workHow fuel cells work
How fuel cells work
 
molten carbonate fuel cell
molten carbonate fuel cellmolten carbonate fuel cell
molten carbonate fuel cell
 
Solar power plant
Solar power plantSolar power plant
Solar power plant
 
Energy Storage
Energy StorageEnergy Storage
Energy Storage
 
Batteries & fuel cells
Batteries & fuel cellsBatteries & fuel cells
Batteries & fuel cells
 
Fuel cell
Fuel cell Fuel cell
Fuel cell
 
Hydrogen energy
Hydrogen energyHydrogen energy
Hydrogen energy
 
Rechargeable Sodium-ion Battery - The Future of Battery Development
Rechargeable Sodium-ion Battery - The Future of Battery DevelopmentRechargeable Sodium-ion Battery - The Future of Battery Development
Rechargeable Sodium-ion Battery - The Future of Battery Development
 
Lithium Ion Batteries, an Overview
Lithium Ion Batteries, an OverviewLithium Ion Batteries, an Overview
Lithium Ion Batteries, an Overview
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Lithium-Ion Battery
Lithium-Ion BatteryLithium-Ion Battery
Lithium-Ion Battery
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
Fuel cells presentation
Fuel cells presentationFuel cells presentation
Fuel cells presentation
 

Similar to Fuel cells

fuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdffuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdfShashankIET
 
Unit 06 - Fuel Cells, Hybrid power plant and Power factor improvement
Unit 06 - Fuel Cells, Hybrid power plant and Power factor improvementUnit 06 - Fuel Cells, Hybrid power plant and Power factor improvement
Unit 06 - Fuel Cells, Hybrid power plant and Power factor improvementPremanandDesai
 
Fuel cell: an Overview
Fuel cell: an OverviewFuel cell: an Overview
Fuel cell: an OverviewBapi Mondal
 
FUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdf
FUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdfFUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdf
FUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdfsungamsucram
 
Fuelcell & types;its technologies
Fuelcell & types;its technologiesFuelcell & types;its technologies
Fuelcell & types;its technologiesKarthik amarakanti
 
Alkaline fuel cell pradeep jaiswal msc part 1 mithibai college
Alkaline fuel cell pradeep jaiswal msc part 1 mithibai collegeAlkaline fuel cell pradeep jaiswal msc part 1 mithibai college
Alkaline fuel cell pradeep jaiswal msc part 1 mithibai collegePradeep Jaiswal
 
MREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptxMREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptxSeanTapiwaKabera1
 
MREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptxMREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptxSeanTapiwaKabera1
 

Similar to Fuel cells (20)

Fuel Cell.pptx
Fuel Cell.pptxFuel Cell.pptx
Fuel Cell.pptx
 
fuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdffuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdf
 
Fuel Cell.pptx
Fuel Cell.pptxFuel Cell.pptx
Fuel Cell.pptx
 
CH 3 Fuel Cell
CH 3 Fuel CellCH 3 Fuel Cell
CH 3 Fuel Cell
 
Ch03-ESR-L05_FCellP1.pdf
Ch03-ESR-L05_FCellP1.pdfCh03-ESR-L05_FCellP1.pdf
Ch03-ESR-L05_FCellP1.pdf
 
fuel cell
fuel cellfuel cell
fuel cell
 
Unit 06 - Fuel Cells, Hybrid power plant and Power factor improvement
Unit 06 - Fuel Cells, Hybrid power plant and Power factor improvementUnit 06 - Fuel Cells, Hybrid power plant and Power factor improvement
Unit 06 - Fuel Cells, Hybrid power plant and Power factor improvement
 
Fuel cell: an Overview
Fuel cell: an OverviewFuel cell: an Overview
Fuel cell: an Overview
 
Fuel cell
Fuel cell Fuel cell
Fuel cell
 
Types of fuel cells
Types of fuel cellsTypes of fuel cells
Types of fuel cells
 
FUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdf
FUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdfFUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdf
FUEL CELLS - NS 316 UNIT III and IV Supporting PPT.pdf
 
Fuelcell & types;its technologies
Fuelcell & types;its technologiesFuelcell & types;its technologies
Fuelcell & types;its technologies
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Alkaline fuel cell pradeep jaiswal msc part 1 mithibai college
Alkaline fuel cell pradeep jaiswal msc part 1 mithibai collegeAlkaline fuel cell pradeep jaiswal msc part 1 mithibai college
Alkaline fuel cell pradeep jaiswal msc part 1 mithibai college
 
Fuel Cells.pptx
Fuel Cells.pptxFuel Cells.pptx
Fuel Cells.pptx
 
Honors PPT.pptx
Honors PPT.pptxHonors PPT.pptx
Honors PPT.pptx
 
MREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptxMREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptx
 
MREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptxMREe 505 Fuel cells or fuel storage pptx
MREe 505 Fuel cells or fuel storage pptx
 
Fuel cell ,PEM Fuel Cell
Fuel cell ,PEM Fuel CellFuel cell ,PEM Fuel Cell
Fuel cell ,PEM Fuel Cell
 
fuelcells++++-.pptx
fuelcells++++-.pptxfuelcells++++-.pptx
fuelcells++++-.pptx
 

Recently uploaded

Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 

Recently uploaded (20)

Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 

Fuel cells

  • 1. FUEL CELLS PRESENTED BY DR.YOGESH C. DHOTE ASSOCIATE PROFESSOR MGM COLLEGE OF ENGINEERING NAVI-MUMBAI
  • 2. INTRODUCTION An electrochemical device capable of generating an electric current by continuous conversion of chemical energy of a fuel directly into electrical energy without combustion is called Fuel cell. Fuel cell systems generally operate on pure hydrogen and air to produce electricity with water and heat as the bi-products. Fuel cells are modular in construction and their efficiency is independent of size.
  • 3. Contd… A fuel cell requires continuous supply of a fuel and oxidant to produce D.C. electric power. The basic difference between battery and fuel cell is that: battery stores electrical charges, after discharge it needs recharging while in fuel cells recharging is not required.
  • 4. Contd…  In Fuel cells the chemical energy of the reactants is converted into electrical energy as an Isothermal Process. Thus heat is not involved in the conversion process and a high conversion efficiency is possible.  Another reason for the interest in fuel cells is that their efficiency and cost per kW of power are independent of size or rating of the fuel cell. This advantage makes the prospects of fuel cells very attractive as portable power plants for space crafts, locomotives etc.
  • 5. Contd…  Fuel cells can be manufactured large or small as necessary for the particular power application.  Presently, there are micro fuel cells that are the size of a pencil eraser and generate few milliwatts of power while there are others large enough to provide large amount of power.  The power output of fuel cells is fully scalable by stacking multiple cells in series to obtain the desired voltage.
  • 6. PRINCIPLE OF WORKING  A fuel cell has - An anode, - A Cathode, - An electrolyte, - A container, - Separators, - Sealing, - Fuel supply, - Oxidant supply etc.  For explaining the principle and operation of fuel cells, the hydrogen- oxygen fuel cell alkali (Solution of KOH) electrolyte is described. The electrolyte can be acidic (Solution of H2SO4)
  • 7. HYDROX (H2, O2) CELL Chemical Reactions: At Anode: H2  2 H+ + 2e- -------- (i) At Cathode: ½ O2 + H2O + 2e- 2 OH- ---(ii) In the Electrolyte: H+ + OH-  H2O -----------(iii) The overall cell reaction: H2 + ½ O2  H2O -------------(iv)
  • 8. Contd… • Fuel cells can be adopted to a variety of fuels by changing the electrolyte, but ‘Hydrox’ fuel cells using hydrogen and oxygen as fuel are the most efficient and highly developed cells. • A single ‘Hydrox’ fuel cell can produce an e.m.f. of 1.23 V at one atmospheric pressure at 25 oC. • It is possible to create useful potentials of 100 to 1000 volts and power level of 1 kW to 100 MW by connecting a number of cells in series- parallel combination. • Fuel cells are particularly suited for low voltage and high current applications. • The Apollo spacecraft used ‘hydrox’ fuel cells for their energy needs and also as a source of drinking water.
  • 9. Classification of Fuel Cells Fuel Cells can be classified on various basis as: Fuel and oxidant combination Electrolyte Direct fuel or Indirect fuel Temperature Power ratings Applications
  • 10. Contd… The most common classification of Fuel Cells is by electrolyte  Alkaline Fuel Cells (AFC)  Direct Methanol Fuel Cells (DMFC)  Phosphoric Acid Fuel Cells (PAFC)  Proton Exchange Membrane Fuel Cells (PEMFC)  Moltoen Carbonate Fuel Cell (MCFC)  Solid Oxide Fuel Cell (SOFC)  Zinc-Air Fuel Cell (ZAFC)  Regenerative Fuel Cell (RFC)
  • 11. Proton Exchange Membrane Fuel Cells (PEMFC) • In this type of cell electrolyte is a solid polymer membrane (Thin plastic film). This polymer is permeable to protons when it is saturated with water, but it does not conduct electrons.
  • 12. Various Types of PEMFCs • Planar cell • Tubular cell • Coil cell
  • 13. Advantages and Disadvantages of PEMFC Advantages: • PEMFC generate more power for a given volume i.e. high power density. • Rapid start. • Operating temperature is less than 100 oC. • Less expensive. • Because of solid electrolyte, PEMFC has less problems with corrosion. • Longer Life. • Best suitable for transportation applications. Disadvantages: • Due to low operating temperature these are not enough to perform useful cogeneration.
  • 14. Phosphoric Acid Fuel Cells (PAFC) • The electrolyte in this fuel cell is 100% concentrated phosphoric acid (H3PO4). The ionic conductivity of phosphoric acid is low at low temperature.
  • 15. Contd… • PAFC is similar to PEMFC. • PAFCs are operated at 150 oC to 220 oC. • The PAFC operates at greater than 40% efficiency in generating electricity. • The PAFC when operated in cogeneration applications, the overall efficiency is approximately 85%. • At present they offer the lowest cost per kW and are used mainly for plants of 50 to 200 kW capacities. • In PAFC, the waste heat at operating temperature is capable of heating the water or generating steam at atmospheric pressure.
  • 16. Molten Carbonate Fuel Cells (MCFC) Molten carbonate fuel cells use an electrolyte, which is a molten mixture of carbonate salts. Two mixtures are generally used: a) Lithium Carbonate and Potassium Carbonate OR b) Lithium Carbonate and Sodium Carbonate
  • 17. Contd… • Since these salts can act as electrolytes only in liquid phase, the operating temperature should be as high as 650 oC. • MCFCs are considered to be second generation fuel cells because they will reach commercialization after PAFCs. • Efficiency of MCFCs is more than PAFCs and is around 60%. • The by-product heat from MCFC can be used to generate high pressure steam that can be used in many industrial and commercial applications.
  • 18. Direct Methanol Fuel Cells (DMFC) • In this cell also polymer is an electrolyte and charge carrier is the hydrogen ion. • The liquid methanol (CH3OH) is oxidized in the presence of water at anode and generating carbon dioxide, hydrogen ions and electrons. • Efficiency of these cells is approximately 40% at operating temperature 50oC - 120oC. • The main disadvantage of this cell is that at low temperature oxidation of methanol to hydrogen ions and carbon dioxide requires more active catalyst, which increases the cost and weight.
  • 19. Zinc-Air Fuel Cells (ZAFC) • In this type of cells electrolyte is a ceramic solid and charge carries are hydroxyl ions OH-. • The operating temperature of this cell is high and remain around 700oC. • The anode is composed of zinc and is supplied with hydrogen or hydrocarbons. • The cathode is separated from the air supply with gas diffusion electrode, a permeable membrane that allows atmospheric oxygen to pass through. • The by-product heat can be used to generate high pressure steam which can be used for industrial or commercial applications.
  • 20. Regenerative Fuel Cells (RFC)  In regenerative fuel cells reactants are regenerated from the products and recycled.  Regenerative fuel cells operate in a closed loop.  Fuel cells generate the electricity, heat and water from Hydrogen and Oxygen.  The hydrogen would be generated from the electrolysis of water by splitting it into hydrogen and oxygen by using renewable energy source as solar, wind etc.  The hydrogen thus generated is reused as fuel, oxygen as can be used as oxidant and water is re-circulated for electrolysis.
  • 21. Solid Oxide Fuel Cells (SOFC) • SOFC operates at high temperature between 650oC to 1000oC. • The electrolyte in this cell is solid, non-porous metal oxide that is conductive to oxygen ions.
  • 22. Contd… • The charge carrier in SOFC is the oxygen ion. • At the cathode, the oxygen molecules from the air are split into oxygen ions with the addition of four electrons. • The oxygen ions are conducted through the electrolyte and combine with hydrogen at the anode releasing four electrons. • The electrons move through the external circuit producing electric power and by product heat.
  • 23. Type of fuel cell Electrolyte Temp. in °C Fuel AFC Potassium Hydroxide (KOH) 70-100 H2 + O2 PEM Proton Exchange Membrane (Nafion, Gore) 50-100 H2 + O2/Air PAFC Phosphoric acid 160-210 H2 Hydrogen rich gas + Air MCFC High temperature compounds of salt carbonates CO3 (Sodium or Magnesium) 650 H2 Hydrogen rich gas + Air SOFC Solid Ceramic Compound (Calcium or Zirconium) 800-1000 H2 Hydrogen rich gas + Air DMFC Proton Exchange Membrane (Nafion, Gore) 50-100 Methanol/Ethanol + O2/Air
  • 24. ELECTRODE MATERIALS & CATALYSTS ELECTRODE MATERIALS • Porous Nickel Electrode (Commercial application) • Porous Carbon Electrode (Commercial application) • Platinum Electrode (Special applications in military and space) CATALYST Incorporated with electrode materials for speeding the reactions. • Finely divided platinum (very costly) • Nickel (for active material as H2) • Silver (for active material as O2)
  • 25. Performance Analysis of a Fuel Cell  The Electromotive Force that will drive the electrons through external load is proportional to Gibbs Free Energy change and given as E = (-ΔG/nF) Volts Where E = EMF ΔG = Change in Gibbs free energy (J/mol) n = Number of electrons per mole of fuel = 2 for hydrogen F = Faraday’s constant = 96487 coulombs / mole
  • 26. Contd… Gibbs free energy is defined as ΔG = ΔH – TΔs kcal/mol Where ΔH = Heat of Reaction Δs = Change of entropy TΔs = Isothermal Heat Transfer ηth = ΔG/ΔH = 1 – T Δs/ΔH For reversible e.m.f of the cell, the efficiency is given as ηi = -nFE/ΔH = -ItE/ ΔH Where I = current and t = time for which current flows The overall efficiency of fuel cell is given as ηoverall = ηth x Loss Factor
  • 27. Contd… The power output of a reversible fuel cell, Prev = ΔGm/(Molar Mass of Hydrogen) Molar mass of hydrogen = 2.016 kg/mole Actual electrical power output , P = Prev x ηoverall And The rate of heat released, Q = (Prev – P) (In Watts) Fuel Cells Losses a) Activation losses b) Fuel cross-over losses c) Ohmic or resistance losses d) Mass transport losses
  • 28. ADVANTAGES OF FUEL CELLS  High conversion efficiency as high as 70%  It can be installed near the use point reducing transmission losses.  Because of very less mechanical components, its operation is fairly quiet.  It requires less attention and less maintenance.  Creates very less or no pollution.  No cooling water is required as in conventional steam power plant.  They can be readily accepted in residential areas because of noise free operation.  It takes a little time to start its operation.  Space requirement is considerably less as compared to conventional power plant.
  • 29. DISADVANTAGES OF FUEL CELLS • High initial cost. • Development costs are very high. • Use costly catalysts for the reaction to takes place. • Low service life. • Low Voltage.
  • 30. Applications of Fuel Cells 1. Vehicles 2. Submarine 3. Portable Power Plants 4. Central Base Load Power Plants 5. Space-Crafts 6. Locomotives 7. Defense Applications
  • 31. CONCLUSION • Fuel cells are particularly suited for low voltage and high current applications. • Hydrogen-Oxygen fuel cells have been proposed for propulsion of electric vehicles, with metal hydride as the source of hydrogen. • At present the use of hydrogen-oxygen cell is restricted to manned space vehicles. • Fuel cells with porous Nickel electrodes and Potassium hydroxide electrolyte have been used to provide electric power for the Apollo and Shuttle spacecraft. • The hydrogen and oxygen for operating the cell are stored in liquid form to minimize the volume occupied.