II
shito@seinan-gu.ac.jp
2020 5 8
•
•
•
•
1
(1)
1
⇐⇒ 1
⇑
(a) ⇐⇒
(b) P.5
10 4
5 2
x1
x2
=
d1
d2
1
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
i. d1 = 2d2 2
d1 = 12 d2 = 6 10x1 + 4x2 = 12
ii. d1 = 2d2 2
10x1 + 4x2 = 12 5x1 + 2x2 = 0
• ⇐⇒
II 2
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
• ⇐⇒
1
⇓
(2) (rank)
: 1
⇐⇒
(1) pp.105–110
(2) 5.1
2 (determinant)
1
(determinant)
(1)
A |A|
A =
a b
c d
|A| =
B =
4 8
2 5
|B| =
C =
4 8
2 4
|C| =
D =
4 8
4 8
|D| =
1
II 3
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(2)
II 4
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(3) 3
A =



a11 a12 a13
a21 a22 a23
a31 a32 a33



(a)
3



a11 a12 a13
a21 a22 a23
a31 a32 a33



II 5
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(b) (Laplace expansion)
|A| =
a11 a12 a13
a21 a22 a23
a31 a32 a33
Cofactor minor
|Cij| ≡
|C11| =
|C12| =
|C13| =
|A| = a11|M11| − a12|M12| + a13|M13|
= a11|C11| + a12|C12| + a13|C13|
=
3
j=1
a1j|C1j|
1 or
II 6
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
:
5 6 1
2 3 0
7 −3 0
(4) 3
II 7
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(5) n
3
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
=
(6) n
2 3 n
1
(1) pp.110–116
(2) 5.2 1–4
II 8
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
3
(1) I
|A| = |A |
=⇒
=⇒
(2) III
k k
=⇒ k
k
=⇒ k
28 63 21
32 53 17
4 23 9
=
II 9
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(3) IV
7 × 4
1 9 3
8 53 17
1 23 9
=
(4) V
2
IV
=⇒
(5)
A n × n Ax = d
|A| = 0 ⇐⇒
⇐⇒
⇐⇒
⇐⇒
II 10
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(1) pp.117–122
(2) 5.3 1–6
4
Ax = d
↔ ¯x = A−1
d A
A−1
(1)
|A| =
a11 a12 a13
a21 a22 a23
a31 a32 a33
1 2
3
j=1
a1j|C2j| = a11|C21| + a12|C22| + a13|C23|
=
VI
0
a11 a12 a13
a11 a12 a13
a31 a32 a33
1



n
j=1
aij|Ci j| = 0 (i = i ) i i
n
i=1
aij|Cij | = 0 (j = j ) j j
II 11
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(2)
(a)
A
n×n
=






a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . .
an1 an2 . . . ann






=⇒
(b) C = (|Cij|)
C
n×n
=






|C11| |C12| . . . |C1n|
|C21| |C22| . . . |C2n|
. . . . . . . . . . . . . . . . . .
|Cn1| |Cn2| . . . |Cnn|






(c) (adj A) the adjoint of A
C
n×n
≡ adj A ≡
(d) AC
AC
n×n
=
II 12
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(e)
AC = |A|I
A−1
=
II 13
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
: A =
a b
c d
(1) pp.123–127
(2) 5.4 1–3
1
Suppose that we expand a fourth-order determinant by its third column and the cofactors
of the second-column elements. How would you write the resulting sum of products in
notation? What will be the sum of products in notation if we expand it by the second
row and the cofactors of the fourth-row elements?
II 14
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
5 (Cramer’s rule)
(1)
A
n×n
x = d
↔






¯x1
¯x2
...
¯xn






=
1
|A|






|C11| |C21| . . . |Cn1|
|C12| |C22| . . . |Cn2|
. . . . . . . . . . . . . . . . . .
|C1n| |C2n| . . . |Cnn|












d1
d2
...
dn






=
1
|A|






n
i=1 di|Ci1|
n
i=1 di|Ci2|
...
n
i=1 di|Cin|






1 ¯x1 =
n
i=1 di|Ci1|
|A|
|A| 1
|A| 1 di |A1| |A1| =
¯x1 =
¯xj =
II 15
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
: Cramer’s rule
5x1 + 3x2 = 30
6x1 − 2x2 = 8
II 16
www.seinan-gu.ac.jp/˜shito 2020 5 8 22:27
(1) pp.127–133 5.6
(2) 5.5 1–3
(3) 5.7 1
(4) p.56 (3.12) 2
6
=⇒
• =
=⇒
• =
=⇒
(1) pp.144–145
II 17

経済数学II 「第5章 線型モデルと行列代数 II」

  • 1.
    II shito@seinan-gu.ac.jp 2020 5 8 • • • • 1 (1) 1 ⇐⇒1 ⇑ (a) ⇐⇒ (b) P.5 10 4 5 2 x1 x2 = d1 d2 1
  • 2.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 i. d1 = 2d2 2 d1 = 12 d2 = 6 10x1 + 4x2 = 12 ii. d1 = 2d2 2 10x1 + 4x2 = 12 5x1 + 2x2 = 0 • ⇐⇒ II 2
  • 3.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 • ⇐⇒ 1 ⇓ (2) (rank) : 1 ⇐⇒ (1) pp.105–110 (2) 5.1 2 (determinant) 1 (determinant) (1) A |A| A = a b c d |A| = B = 4 8 2 5 |B| = C = 4 8 2 4 |C| = D = 4 8 4 8 |D| = 1 II 3
  • 4.
  • 5.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (3) 3 A =    a11 a12 a13 a21 a22 a23 a31 a32 a33    (a) 3    a11 a12 a13 a21 a22 a23 a31 a32 a33    II 5
  • 6.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (b) (Laplace expansion) |A| = a11 a12 a13 a21 a22 a23 a31 a32 a33 Cofactor minor |Cij| ≡ |C11| = |C12| = |C13| = |A| = a11|M11| − a12|M12| + a13|M13| = a11|C11| + a12|C12| + a13|C13| = 3 j=1 a1j|C1j| 1 or II 6
  • 7.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 : 5 6 1 2 3 0 7 −3 0 (4) 3 II 7
  • 8.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (5) n 3 a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44 = (6) n 2 3 n 1 (1) pp.110–116 (2) 5.2 1–4 II 8
  • 9.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 3 (1) I |A| = |A | =⇒ =⇒ (2) III k k =⇒ k k =⇒ k 28 63 21 32 53 17 4 23 9 = II 9
  • 10.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (3) IV 7 × 4 1 9 3 8 53 17 1 23 9 = (4) V 2 IV =⇒ (5) A n × n Ax = d |A| = 0 ⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒ II 10
  • 11.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (1) pp.117–122 (2) 5.3 1–6 4 Ax = d ↔ ¯x = A−1 d A A−1 (1) |A| = a11 a12 a13 a21 a22 a23 a31 a32 a33 1 2 3 j=1 a1j|C2j| = a11|C21| + a12|C22| + a13|C23| = VI 0 a11 a12 a13 a11 a12 a13 a31 a32 a33 1    n j=1 aij|Ci j| = 0 (i = i ) i i n i=1 aij|Cij | = 0 (j = j ) j j II 11
  • 12.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (2) (a) A n×n =       a11 a12 . . . a1n a21 a22 . . . a2n . . . . . . . . . . . . . . . an1 an2 . . . ann       =⇒ (b) C = (|Cij|) C n×n =       |C11| |C12| . . . |C1n| |C21| |C22| . . . |C2n| . . . . . . . . . . . . . . . . . . |Cn1| |Cn2| . . . |Cnn|       (c) (adj A) the adjoint of A C n×n ≡ adj A ≡ (d) AC AC n×n = II 12
  • 13.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (e) AC = |A|I A−1 = II 13
  • 14.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 : A = a b c d (1) pp.123–127 (2) 5.4 1–3 1 Suppose that we expand a fourth-order determinant by its third column and the cofactors of the second-column elements. How would you write the resulting sum of products in notation? What will be the sum of products in notation if we expand it by the second row and the cofactors of the fourth-row elements? II 14
  • 15.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 5 (Cramer’s rule) (1) A n×n x = d ↔       ¯x1 ¯x2 ... ¯xn       = 1 |A|       |C11| |C21| . . . |Cn1| |C12| |C22| . . . |Cn2| . . . . . . . . . . . . . . . . . . |C1n| |C2n| . . . |Cnn|             d1 d2 ... dn       = 1 |A|       n i=1 di|Ci1| n i=1 di|Ci2| ... n i=1 di|Cin|       1 ¯x1 = n i=1 di|Ci1| |A| |A| 1 |A| 1 di |A1| |A1| = ¯x1 = ¯xj = II 15
  • 16.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 : Cramer’s rule 5x1 + 3x2 = 30 6x1 − 2x2 = 8 II 16
  • 17.
    www.seinan-gu.ac.jp/˜shito 2020 58 22:27 (1) pp.127–133 5.6 (2) 5.5 1–3 (3) 5.7 1 (4) p.56 (3.12) 2 6 =⇒ • = =⇒ • = =⇒ (1) pp.144–145 II 17