SlideShare a Scribd company logo
1 of 52
Finite Element Method
FEM Approaches
There are two main methods that are applied to solving
problems using the FEM method.
Variational methods that use the classical Rayleigh-Ritz
technique
Galerkin’s methods which is one technique in a family of
methods referred to as method of weighted residuals.
Variational Approach
In solving problems arising in physics and engineering it is
often possible to replace the problem of integrating a
differential equation by the equivalent problem of seeking
a function that gives a minimum value of some integral.
Problems of this type are called variational problems.
The methods that allow us to reduce the problem of
integrating a differential equation to the equivalent
variational problem are usually called variational
methods.
Variational Approach
What is a functional?
dx
y
y
x
F
y
I
b
a
)
,
,
(
)
(  

subjected to the boundary conditions
B
b
y
A
a
y 
 )
(
,
)
(
functional
Goal: Find a function F(x,y,y’) for which the functional
I(y) has an extremum (usually a minimum)
Variational Approach
Some problems:
dx
y
y
x
F
y
I
b
a
)
,
,
(
)
(  

NOT:
Question: Are there situations in which the function
F(x,y,y’) for which the functional I(y) in minimized is
ALSO a solution to the PDE and BCs??
.....
0
)
,
( 2
2
or
t
U
U
or
y
x
f
U 





 
Variational Approach
Question: Are there situations in which the function
F(x,y,y’) for which the functional I(y) in minimized is
ALSO a solution to the PDE and BCs??
Answer: Yes, all PDEs typically found in physics and
engineering have functionals or variational equations
whose solution is equivalent to solving the PDE
directly.
Variational Approach
Deriving those equations can be done using the calculus
of variations (beyond the scope of this class).
Answer: Yes, all PDEs typically found in physics and
engineering have functionals or variational equations
whose solution is equivalent to solving the PDE
directly.
Variational Approach
Name of equations PDE Variational principle
Homogeneous
wave equation with
sources
Homogeneous
wave equation
without sources
Diffusion equation
Homogenous
Poisson’s equation
Homogenous
Laplace’s equation
g
k 



 2
2
0
2
2




 k
0
2







t
k
g


2
0
2



 dv
g
k
I
v
 






 2
2
1
)
( 2
2
2
 dv
k
I
v
 




 2
2
2
2
1
)
(
dvdt
t
k
I
t v
 













 2
2
2
1
)
(
 dv
g
I
v
 




 2
2
1
)
(
2
 dv
I
v
 



2
2
1
)
(
Finite Element Method
The finite element method (FEM) has its origin in the field of
structural analysis. However, since then the method has
been employed in nearly all areas of computational
physics and engineering.
The FEM method, while more difficult to program than
either the finite difference (FD) or method of moments
(MOM), is a more powerful and versatile numerical
technique for handling problems involving complex
geometries and inhomogeneous media.
Basic concept
Although the behaviour may be complex when viewed over a large
region, a simple approximation may suffice over a small subregion.
The region is divided up into finite elements.
(usually, triangles or squares,
but can be more complicated)
Regardless of the shape the field is
approximated by a different
expression over each element,
maintaining continuity at adjoining
elements.
Solution Strategy: Variational Approach
The equations to be solved are usually stated not in terms of
field the variables but in terms of an integral-type functional
such as energy.
The functional is chosen such that the field solution makes
the functional stationary
The total functional is the sum of the integral over each element
Finite Element Method
The finite element method (FEM) involves basically four
steps:
(1) Discretize the solution region into a finite number of
subregions or elements
(2) Derive the governing equations for each element based
on either a variational approach or Galerkin’s method
(3) Assemble all the elements together in the solution
space.
(4) Solve the resulting system of equations
Finite Element Method
CREATING THE MESH
(1) Discretize the solution region into a finite number of
subregions or elements
Finite Element Method in 2D
CREATING THE MESH
(1) Discretize the solution region into a finite number of
subregions or elements
• divide the geometry into elements
(in 2D triangular elements are common)
• each element has a number of nodes
attached.
In this figure there are 8 elements (E1-E8)
and 9 nodes (N1-N9)
Finite Element Method
The mesh is often described using two tables
(element table and a node table)
Element Table
Element# Node1 Node2 Node3
1 4 7 8
2 4 8 5
3 8 9 5
......
8 2 6 3
Node Table
Node# x y
1 0 1
2 0.5 1
3 1 1
......
9 1 0
2D FEM: Right Triangular Single Element
The simplest element is the right triangle (0,1,2)
0
The potential can be
calculated as
 
,
x y a bx cy
   
a,b,c unknown
! Smart to specify the
interpolation at the vertices!
Then:   1 0 2 0
0
,
x y x y
h h
   
 
 
  
Other elements
Square element: consider as two triangles. This is ok, but does
not lead to a smooth interpolation over the square. Better to use
a higher order interpolation that uses four nodal values
 
,
x y a bx cy dxy
    
This scheme leads to:
0 1
2
8
4 5
3
6 7 8
0
1
1
8
i
i
 

 
Element expansion
In general we wish to approximate the unknown function, (x,y),
Inside an element by an interpolation of its values at the vertices.
element shape
functions or basis functions. In FEM these
are usually interpolation functions
unknown anywhere
within the element
Provided the values
at the vertices are known



N
i
i
i y
x
y
x
1
)
,
(
)
,
( 


Number of vertices
Generalized Triangular
Develop the Governing Equations for a Single Element
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
cy
bx
a
y
x
Ve 


)
,
(
Assume the unknown variable (V), in each
element can be found as a linear interpolation
of its value at the three nodes.
FIND a, b and c































c
b
a
y
x
y
x
y
x
V
V
V
e
e
e
3
3
2
2
1
1
3
2
1
1
1
1
Finite Element Method
Develop the Governing Equations for a Single Triangular Element
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)































c
b
a
y
x
y
x
y
x
V
V
V
e
e
e
3
3
2
2
1
1
3
2
1
1
1
1
Solve for the unknowns (a, b and c) and then
substituting that result into
cy
bx
a
y
x
Ve 


)
,
(
Finite Element Method
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)



3
1
)
,
(
)
,
(
i
ei
i
e V
y
x
y
x
V 
where
     
 
     
 
     
 
     
 
1
2
1
3
1
3
1
2
1
2
2
1
1
2
2
1
3
3
1
1
3
3
1
1
3
2
2
3
3
2
2
3
3
2
1
2
1
2
1
)
,
(
2
1
)
,
(
2
1
)
,
(
y
y
x
x
y
y
x
x
A
y
x
x
x
y
y
y
x
y
x
A
y
x
y
x
x
x
y
y
y
x
y
x
A
y
x
y
x
x
x
y
y
y
x
y
x
A
y
x



























Shape or basis functions
(only function of geometry)
Finite Element Method
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
     
 
     
 
     
 
     
 
1
2
1
3
1
3
1
2
1
2
2
1
1
2
2
1
3
3
1
1
3
3
1
1
3
2
2
3
3
2
2
3
3
2
1
2
1
2
1
)
,
(
2
1
)
,
(
2
1
)
,
(
y
y
x
x
y
y
x
x
A
y
x
x
x
y
y
y
x
y
x
A
y
x
y
x
x
x
y
y
y
x
y
x
A
y
x
y
x
x
x
y
y
y
x
y
x
A
y
x



























Properties of the shape functions
1
)
,
(
,
0
,
1
)
,
(
3
1









i
i
i
y
x
j
i
j
i
y
x


2D Example:
Laplace’s Equation
When the quantity being sought (here the electrostatic potential V)
Recall:
The true potential is known to minimize the electrostatic
field energy.
 dv
V
V
I
v
 

2
2
1
)
(
0
)
,
(
2

 y
x
V
Create the Mesh
Step #1: Discretize the surface/volume to be solved into small
finite elements. Label each element and its associated nodes
1
2
3
4
1 2 3
Basic concept: Review
Step #2: Approximate the complex solution within the whole region
in terms of a sum of solutions found within each element
1
2
3
4
1 2 3



e
N
e
e y
x
V
y
x
V
1
)
,
(
)
,
(
FEM Laplace’s Equation
Approximate the solution within each element in terms of
each value at the corresponding nodes. (i.e. interpolation)
(x1,y1)
(x2,y2)
(x3,y3) Element        
       
       
1 2 3 3 2 2 3 3 2
2 3 1 1 3 3 1 1 3
3 1 2 2 3 1 2 2 1
1
,
2
1
,
2
1
,
2
x y x y x y y y x x x y
A
x y x y x y y y x x x y
A
x y x y x y y y x x x y
A



 
     
 
 
     
 
 
     
 



3
1
)
,
(
)
,
(
i
ei
i
e V
y
x
y
x
V 
Finite Element Method
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
To derive an equation for each element we plug in our
linear approximation into an functional expression.
dv
y
x
V
dv
V
y
x
V
I
v i
i
ei
v i
ei
i
e  
  

































2
3
1
2
3
1
)
,
(
2
1
)
,
(
2
1
)
( 




3
1
)
,
(
)
,
(
i
ei
i
e V
y
x
y
x
V 
 dv
V
V
I
v
e
e  

2
2
1
)
(
ej
i j
j
v
i
ei
e V
ds
y
x
y
x
V
V
I  
 









3
1
3
1
)
,
(
)
,
(
2
1
)
( 

Finite Element Method
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
To derive an equation for each element we plug in our
linear approximation into an functional expression.
dv
y
x
V
dv
V
y
x
V
I
v i
i
ei
v i
ei
i
e  
  

































2
3
1
2
3
1
)
,
(
2
1
)
,
(
2
1
)
( 




3
1
)
,
(
)
,
(
i
ei
i
e V
y
x
y
x
V 
 dv
V
V
I
v
e
e  

2
2
1
)
(
ej
i j
j
v
i
ei
e V
ds
y
x
y
x
V
V
I  
 









3
1
3
1
)
,
(
)
,
(
2
1
)
( 

       
       
       
1 2 3 3 2 2 3 3 2
2 3 1 1 3 3 1 1 3
3 1 2 2 3 1 2 2 1
1
,
2
1
,
2
1
,
2
x y x y x y y y x x x y
A
x y x y x y y y x x x y
A
x y x y x y y y x x x y
A



 
     
 
 
     
 
 
     
 
Finite Element Method
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
Example: Laplace’s Equation
ds
y
x
y
x
V
V
I j
v
i
i j
ei
e )
,
(
)
,
(
2
1
)
(
3
1
3
1

 

 

 
dxdy
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 
 

 
Let
    
e
e
t
e
e V
C
V
V
I
2
1
)
( 
where
 











3
2
1
e
e
e
e
V
V
V
V and  











e
e
e
e
e
e
e
e
e
e
C
C
C
C
C
C
C
C
C
C
33
32
31
23
22
21
13
12
11
element coefficient matrix
Finite Element Method
Example: Laplace’s Equation
dxdy
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 
 

 
    
e
e
t
e
e V
C
V
V
I
2
1
)
( 
 
2
3
3
2
2
1
Q
P
Q
P
A 

       
       
       
1 2 3 3 2 2 3 3 2
2 3 1 1 3 3 1 1 3
3 1 2 2 3 1 2 2 1
1
,
2
1
,
2
1
,
2
x y x y x y y y x x x y
A
x y x y x y y y x x x y
A
x y x y x y y y x x x y
A



 
     
 
 
     
 
 
     
 
 
j
i
j
i
e
ij Q
Q
P
P
A
C 

4
1
x
y
Ve(
x,y
)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
 
 
 
2
1
3
1
3
2
3
2
1
y
y
P
y
y
P
y
y
P





  
 
 
1
2
3
2
1
2
2
3
1
x
x
Q
x
x
Q
x
x
Q






Solution for triangular elements
Finite Element Method
x
y
Ve(x,y)
1
2
3
Ve1
(x1, y1)
Ve2
(x2, y2)
Ve3
(x3, y3)
dxdy
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 
 

 
Main property of the coefficient matrix:
e
ji
e
ij C
C 
Finite Element Method
Assembling of All Elements Together
Solve for the unknowns (a, b and c) and then
substituting that result into



N
e
e y
x
I
y
x
I
1
)
,
(
)
,
(
    
V
C
V
y
x
I
y
x
I
t
N
e
e
2
1
)
,
(
)
,
(
1

 

where
 

















N
V
V
V
V
V
....
3
2
1
and  

















NN
N
N
e
C
C
C
C
C
C
C
C
C
C
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
31
22
21
1
13
12
11
Global coefficient matrix
Finite Element Method
Assembling of All Elements Together
 

















NN
N
N
e
C
C
C
C
C
C
C
C
C
C
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
31
22
21
1
13
12
11
Coefficients are only non-zero for
elements that touch each other
1
2 4
3
5
E1
1-4-2
(1-2-3) E2
1-3-4
(1-2-3)
E3
3-5-4
(1-2-3)
 

























3
22
3
23
3
21
3
32
3
33
2
33
1
22
3
31
2
32
1
23
2
31
1
21
3
12
3
13
2
23
3
11
1
22
2
21
1
32
1
33
1
31
2
13
1
12
2
12
1
13
2
11
1
11
0
0
0
0
0
0
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Finite Element Method
Setting up and solving the resulting equations
The solution for the node values is the ones that result in the functional
obtaining its minimum value!
    
V
C
V
y
x
I
y
x
I
t
N
e
e
2
1
)
,
(
)
,
(
1

 

N
k
V
y
x
I
V
y
x
I
V
y
x
I
V
y
x
I
k
N
,....,
2
,
1
0
)
,
(
0
)
,
(
......
)
,
(
)
,
(
2
1














Finite Element Method
Setting up and solving the resulting equations
N
k
V
y
x
I
k
,....,
2
,
1
0
)
,
(




Example for five nodes:
 

































5
4
3
2
1
55
54
53
52
51
45
44
43
42
41
35
34
33
32
31
25
24
23
22
21
15
14
13
12
11
5
4
3
2
1
V
V
V
V
V
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
V
V
V
V
V
I
0
2
51
5
41
4
31
3
21
2
15
5
14
4
13
3
12
2
11
1
1












C
V
C
V
C
V
C
V
C
V
C
V
C
V
C
V
C
V
V
I
Finite Element Method
Setting up and solving the resulting equations
N
k
V
y
x
I
k
,....,
2
,
1
0
)
,
(




Example for five nodes:
0
2
51
5
41
4
31
3
21
2
15
5
14
4
13
3
12
2
11
1
1












C
V
C
V
C
V
C
V
C
V
C
V
C
V
C
V
C
V
V
I
In general:
N
k
C
V
N
i
ik
i ,....
3
,
2
,
1
0
1




Iterative solution method
At node k in a mesh with n nodes, we have the solution
e.g. see previous
slide
We note that Cki = 0 if node k is not directly connected to node i,
only nodes that are directly connected to node k contribute to Vk.
We apply this iteratively to all free nodes (not at fixed boundary
value) where the potential is unknown. Initially we assign either
0, random or some average value to each free node and then
iterate on the above equation until convergence is met.





n
k
i
i
ki
i
kk
k C
V
C
V
,
1
1
Finite Element Method
Example: Poisson’s Equation
dv
V
y
x
g
y
x
V
y
x
V
I
v i
ei
i
i
ei
i
i
ei
i
e  

 



















3
1
3
1
2
3
1
)
,
(
)
,
(
2
)
,
(
2
1
)
( 





3
1
)
,
(
)
,
(
i
ei
i
e V
y
x
y
x
V 
ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
e g
ds
y
x
y
x
V
V
ds
y
x
y
x
V
V
I 














 


  
 
)
,
(
)
,
(
)
,
(
)
,
(
2
1
)
(
3
1
3
1
3
1
3
1




)
,
(
2
y
x
g
V 

 dv
gV
V
V
I
v
 

 2
2
1
)
(
2



3
1
)
,
(
)
,
(
i
ei
i g
y
x
y
x
g 
Equations for single element:
Finite Element Method
Example: Poisson’s Equation
ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
e g
ds
y
x
y
x
V
V
ds
y
x
y
x
V
V
I 














 


  
 
)
,
(
)
,
(
)
,
(
)
,
(
2
1
)
(
3
1
3
1
3
1
3
1




)
,
(
2
y
x
g
V 

 dv
gV
V
V
I
v
 

 2
2
1
)
(
2
Equations for single element:
         
e
e
t
e
e
e
t
e
e g
T
V
V
C
V
V
I 

2
1
)
(
where
 











3
2
1
e
e
e
e
V
V
V
V and








  ds
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 

ds
y
x
y
x
T j
v
i
e
ij )
,
(
)
,
( 



Finite Element Method
Example: Poisson’s Equation )
,
(
2
y
x
g
V 

Equations for single element:          
e
e
t
e
e
e
t
e
e g
T
V
V
C
V
V
I 

2
1
)
(








  ds
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 
 ds
y
x
y
x
T j
v
i
e
ij )
,
(
)
,
( 



 
2
3
3
2
2
1
Q
P
Q
P
A 

 
j
i
j
i
e
ij Q
Q
P
P
A
C 

4
1
 
 
 
2
1
3
1
3
2
3
2
1
y
y
P
y
y
P
y
y
P





  
 
 
1
2
3
2
1
2
2
3
1
x
x
Q
x
x
Q
x
x
Q






Solution for triangular elements
 
2
3
3
2
2
1
Q
P
Q
P
A 







j
i
A
j
i
A
Te
ij
6
/
12
/
 
 
 
2
1
3
1
3
2
3
2
1
y
y
P
y
y
P
y
y
P





  
 
 
1
2
3
2
1
2
2
3
1
x
x
Q
x
x
Q
x
x
Q






Solution for triangular elements
Finite Element Method
Example: Poisson’s Equation )
,
(
2
y
x
g
V 

 dv
gV
V
V
I
v
 

 2
2
1
)
(
2
Put all the elements together:
         
g
T
V
V
C
V
V
I
V
I
t
t
N
e
e 

 
 2
1
)
(
)
(
1
Construct matrix and then solve:
       
N
k
V
g
T
V
V
C
V
V
V
I
k
t
t
k
,.....
3
,
2
,
1
0
2
1
)
(














Finite Element Method
Example: Poisson’s Equation )
,
(
2
y
x
g
V 

Example:
       
N
k
V
g
T
V
V
C
V
V
V
I
k
t
t
k
,.....
3
,
2
,
1
0
2
1
)
(














    0
2
1
5
4
3
2
1
55
54
53
52
51
45
44
43
42
41
35
34
33
32
31
25
24
23
22
21
15
14
13
12
11
5
4
3
2
1
5
4
3
2
1
55
54
53
52
51
45
44
43
42
41
35
34
33
32
31
25
24
23
22
21
15
14
13
12
11
5
4
3
2
1
1






















































































g
g
g
g
g
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
V
V
V
V
V
V
V
V
V
V
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
V
V
V
V
V
V

 




5
1
1
11
5
2
1
11
1
1
1
i
i
i
i
i
i g
T
C
C
V
C
V
Result in:
In General: 
 





N
i
i
ki
kk
N
k
i
i
ki
i
kk
k g
T
C
C
V
C
V
1
)
(
1
1
1
Finite Element Method
Example: Homogenous
Wave Equation
dv
y
x
g
y
x
y
x
k
y
x
I
v i
ei
i
i
ei
i
i
ei
i
i
ei
i
e  


 































3
1
3
1
2
3
1
2
2
3
1
)
,
(
)
,
(
2
)
,
(
)
,
(
2
1
)
( 








3
1
)
,
(
)
,
(
i
ei
i
e y
x
y
x 
ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
e
g
ds
y
x
y
x
ds
y
x
y
x
k
ds
y
x
y
x
I



































 
 
 
)
,
(
)
,
(
)
,
(
)
,
(
2
)
,
(
)
,
(
2
1
)
(
3
1
3
1
3
1
3
1
2
3
1
3
1






)
,
(
)
,
(
)
,
( 2
2
y
x
g
y
x
k
y
x 







3
1
)
,
(
)
,
(
i
ei
i g
y
x
y
x
g 
Equations for single element:
 dv
g
k
I
v
 






 2
2
1
)
( 2
2
2
Finite Element Method
Example: Wave Equation
Equations for single element:
              
e
e
t
e
e
e
t
e
e
e
t
e
e g
T
T
k
C
I 








2
2
1
)
(
2
where
 















3
2
1
e
e
e
e and








  ds
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 

ds
y
x
y
x
T j
v
i
e
ij )
,
(
)
,
( 



)
,
(
)
,
(
)
,
( 2
2
y
x
g
y
x
k
y
x 




ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
e
g
ds
y
x
y
x
ds
y
x
y
x
k
ds
y
x
y
x
I



































 
 
 
)
,
(
)
,
(
)
,
(
)
,
(
2
)
,
(
)
,
(
2
1
)
(
3
1
3
1
3
1
3
1
2
3
1
3
1






Finite Element Method
Example: Wave Equation
with no sources
Equations for single element:
         
e
e
t
e
e
e
t
e
e T
k
C
I 






2
2
1
)
(
2
where
 















3
2
1
e
e
e
e and








  ds
y
x
y
x
C j
v
i
e
ij )
,
(
)
,
( 

ds
y
x
y
x
T j
v
i
e
ij )
,
(
)
,
( 



0
)
,
(
)
,
( 2
2




 y
x
k
y
x
ej
j
v
i
i j
ei
ej
j
v
i
i j
ei
e ds
y
x
y
x
k
ds
y
x
y
x
I 



















 


  
 
)
,
(
)
,
(
2
)
,
(
)
,
(
2
1
)
(
3
1
3
1
2
3
1
3
1




Finite Element Method
Example: Wave Equation
Put all the elements together:
       








 

T
k
C
I
I
t
t
N
e
e
2
2
1
)
(
)
(
2
1
0
)
,
(
)
,
( 2
2




 y
x
k
y
x
x
y
z
Finite Element Method: Waveguide
TM Modes
2
2
t
z k
k 
 

z
jk
z
z
e
y
x
z
y
x
E 

 )
,
(
)
,
,
(
TE Modes
z
jk
z
z
e
y
x
z
y
x
H 

 )
,
(
)
,
,
(
where 0
)
,
(
)
,
( 2
2




 y
x
k
y
x t
and
Finite Element Method: Waveguide
TM Modes
Put all the elements together:
       








 

T
k
C
I
I
t
t
t
N
e
e
2
2
1
)
(
)
(
2
1
0
)
,
(
)
,
( 2
2




 y
x
k
y
x t
Band Matrix Solution: Break the matrices up into sub-matrices that distinguishes
free-nodes from those that are known or prescribed nodes (i.e. boundary values):
    

































p
f
pp
pf
fp
ff
p
f
t
p
f
pp
pf
fp
ff
p
f
T
T
T
T
k
C
C
C
C
I
2
2
1 2
z
jk
z
z
e
y
x
z
y
x
E 

 )
,
(
)
,
,
(
Finite Element Method: Waveguide
TM Modes
0
)
,
(
)
,
( 2
2




 y
x
k
y
x t
Minimize the functional:
    

































p
f
pp
pf
fp
ff
p
f
t
p
f
pp
pf
fp
ff
p
f
T
T
T
T
k
C
C
C
C
I
2
2
1 2
z
jk
z
z
e
y
x
z
y
x
E 

 )
,
(
)
,
,
(
    0
0
2






















p
f
fp
ff
t
p
f
fp
ff
f
T
T
k
C
C
I
Finite Element Method: Waveguide
TM Modes
0
)
,
(
)
,
( 2
2




 y
x
k
y
x t
z
jk
z
z
e
y
x
z
y
x
E 

 )
,
(
)
,
,
(
For TM modes: 0

p
since tangential E field must vanish on PEC boundary
    0
2


















p
f
fp
ff
t
p
f
fp
ff T
T
k
C
C
  0
2


 f
ff
t
ff T
k
C
Finite Element Method: Waveguide
TM Modes 0
)
,
(
)
,
( 2
2




 y
x
k
y
x t
z
jk
z
z
e
y
x
z
y
x
E 

 )
,
(
)
,
,
(
  0
2


 f
ff
t
ff T
k
C
Pre-multiply both sides by
1

ff
T
 
 
  0
0
0
2
1
1
2
1












f
f
t
ff
ff
f
ff
ff
t
ff
ff
I
A
I
k
C
T
T
T
k
C
T

Where:
2
1
t
ff
ff
k
C
T
A




Finite Element Method
Project #2: Write a FEM program that calculates the mode shapes and
cutoff frequencies of the TM modes for the air filled ridge waveguide
shown below.
h
w w
d
t
1
1


r
r


PEC Walls

More Related Content

What's hot

Linear integral equations -rainer kress
Linear integral equations -rainer kressLinear integral equations -rainer kress
Linear integral equations -rainer kressEduardo Espinosa Perez
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Ej derivadas-sol
Ej derivadas-solEj derivadas-sol
Ej derivadas-solklorofila
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
application of first order ordinary Differential equations
application of first order ordinary Differential equationsapplication of first order ordinary Differential equations
application of first order ordinary Differential equationsEmdadul Haque Milon
 
Solutions manual for logic and computer design fundamentals 5th edition by ma...
Solutions manual for logic and computer design fundamentals 5th edition by ma...Solutions manual for logic and computer design fundamentals 5th edition by ma...
Solutions manual for logic and computer design fundamentals 5th edition by ma...Beckham000
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsMatthew Leingang
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations University of Windsor
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian IntegrationReza Rahimi
 
Advance engineering mathematics
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematicsmihir jain
 
MATLAB ODE
MATLAB ODEMATLAB ODE
MATLAB ODEKris014
 

What's hot (20)

Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
GAUSS ELIMINATION METHOD
 GAUSS ELIMINATION METHOD GAUSS ELIMINATION METHOD
GAUSS ELIMINATION METHOD
 
Linear integral equations -rainer kress
Linear integral equations -rainer kressLinear integral equations -rainer kress
Linear integral equations -rainer kress
 
Ellipse
EllipseEllipse
Ellipse
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Ej derivadas-sol
Ej derivadas-solEj derivadas-sol
Ej derivadas-sol
 
Green Theorem
Green TheoremGreen Theorem
Green Theorem
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
application of first order ordinary Differential equations
application of first order ordinary Differential equationsapplication of first order ordinary Differential equations
application of first order ordinary Differential equations
 
Solutions manual for logic and computer design fundamentals 5th edition by ma...
Solutions manual for logic and computer design fundamentals 5th edition by ma...Solutions manual for logic and computer design fundamentals 5th edition by ma...
Solutions manual for logic and computer design fundamentals 5th edition by ma...
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
 
FPDE presentation
FPDE presentationFPDE presentation
FPDE presentation
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Advance engineering mathematics
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematics
 
MATLAB ODE
MATLAB ODEMATLAB ODE
MATLAB ODE
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 

Similar to Finite Element Method.ppt

A Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsA Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsSara Alvarez
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transformsujathavvv
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transformMohanamalar8
 
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET Journal
 
Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016kalpeshvaghdodiya
 
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...IOSR Journals
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model jiang-min zhang
 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguideAnuj012
 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016Anuj012
 
generalformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelgeneralformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelPiyushDhuri1
 
generalformulation.ppt
generalformulation.pptgeneralformulation.ppt
generalformulation.pptRajuRaju183149
 
3D Math Primer: CocoaConf Atlanta
3D Math Primer: CocoaConf Atlanta3D Math Primer: CocoaConf Atlanta
3D Math Primer: CocoaConf AtlantaJanie Clayton
 
Introduction to Artificial Neural Networks
Introduction to Artificial Neural NetworksIntroduction to Artificial Neural Networks
Introduction to Artificial Neural NetworksStratio
 

Similar to Finite Element Method.ppt (20)

A Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsA Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation Problems
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
dalrymple_slides.ppt
dalrymple_slides.pptdalrymple_slides.ppt
dalrymple_slides.ppt
 
ODE.pdf
ODE.pdfODE.pdf
ODE.pdf
 
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
 
Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016
 
Cs jog
Cs jogCs jog
Cs jog
 
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguide
 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016
 
generalformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelgeneralformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodel
 
generalformulation.ppt
generalformulation.pptgeneralformulation.ppt
generalformulation.ppt
 
3D Math Primer: CocoaConf Atlanta
3D Math Primer: CocoaConf Atlanta3D Math Primer: CocoaConf Atlanta
3D Math Primer: CocoaConf Atlanta
 
Introduction to Artificial Neural Networks
Introduction to Artificial Neural NetworksIntroduction to Artificial Neural Networks
Introduction to Artificial Neural Networks
 

More from werom2

lecture_slides_for_signals_and_systems-3.0.pdf
lecture_slides_for_signals_and_systems-3.0.pdflecture_slides_for_signals_and_systems-3.0.pdf
lecture_slides_for_signals_and_systems-3.0.pdfwerom2
 
DSP digital signal processing Course_Contents.ppt
DSP digital signal processing  Course_Contents.pptDSP digital signal processing  Course_Contents.ppt
DSP digital signal processing Course_Contents.pptwerom2
 
Frequency and FDTD.ppt
Frequency and FDTD.pptFrequency and FDTD.ppt
Frequency and FDTD.pptwerom2
 
Скрипты для OptiSystem.ppt
Скрипты для OptiSystem.pptСкрипты для OptiSystem.ppt
Скрипты для OptiSystem.pptwerom2
 
Метод конечных элементов.ppt
Метод конечных элементов.pptМетод конечных элементов.ppt
Метод конечных элементов.pptwerom2
 
Ray Tracing.pptx
Ray Tracing.pptxRay Tracing.pptx
Ray Tracing.pptxwerom2
 
Qualcomm.pdf
Qualcomm.pdfQualcomm.pdf
Qualcomm.pdfwerom2
 

More from werom2 (7)

lecture_slides_for_signals_and_systems-3.0.pdf
lecture_slides_for_signals_and_systems-3.0.pdflecture_slides_for_signals_and_systems-3.0.pdf
lecture_slides_for_signals_and_systems-3.0.pdf
 
DSP digital signal processing Course_Contents.ppt
DSP digital signal processing  Course_Contents.pptDSP digital signal processing  Course_Contents.ppt
DSP digital signal processing Course_Contents.ppt
 
Frequency and FDTD.ppt
Frequency and FDTD.pptFrequency and FDTD.ppt
Frequency and FDTD.ppt
 
Скрипты для OptiSystem.ppt
Скрипты для OptiSystem.pptСкрипты для OptiSystem.ppt
Скрипты для OptiSystem.ppt
 
Метод конечных элементов.ppt
Метод конечных элементов.pptМетод конечных элементов.ppt
Метод конечных элементов.ppt
 
Ray Tracing.pptx
Ray Tracing.pptxRay Tracing.pptx
Ray Tracing.pptx
 
Qualcomm.pdf
Qualcomm.pdfQualcomm.pdf
Qualcomm.pdf
 

Recently uploaded

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 

Recently uploaded (20)

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 

Finite Element Method.ppt

  • 2. FEM Approaches There are two main methods that are applied to solving problems using the FEM method. Variational methods that use the classical Rayleigh-Ritz technique Galerkin’s methods which is one technique in a family of methods referred to as method of weighted residuals.
  • 3. Variational Approach In solving problems arising in physics and engineering it is often possible to replace the problem of integrating a differential equation by the equivalent problem of seeking a function that gives a minimum value of some integral. Problems of this type are called variational problems. The methods that allow us to reduce the problem of integrating a differential equation to the equivalent variational problem are usually called variational methods.
  • 4. Variational Approach What is a functional? dx y y x F y I b a ) , , ( ) (    subjected to the boundary conditions B b y A a y   ) ( , ) ( functional Goal: Find a function F(x,y,y’) for which the functional I(y) has an extremum (usually a minimum)
  • 5. Variational Approach Some problems: dx y y x F y I b a ) , , ( ) (    NOT: Question: Are there situations in which the function F(x,y,y’) for which the functional I(y) in minimized is ALSO a solution to the PDE and BCs?? ..... 0 ) , ( 2 2 or t U U or y x f U        
  • 6. Variational Approach Question: Are there situations in which the function F(x,y,y’) for which the functional I(y) in minimized is ALSO a solution to the PDE and BCs?? Answer: Yes, all PDEs typically found in physics and engineering have functionals or variational equations whose solution is equivalent to solving the PDE directly.
  • 7. Variational Approach Deriving those equations can be done using the calculus of variations (beyond the scope of this class). Answer: Yes, all PDEs typically found in physics and engineering have functionals or variational equations whose solution is equivalent to solving the PDE directly.
  • 8. Variational Approach Name of equations PDE Variational principle Homogeneous wave equation with sources Homogeneous wave equation without sources Diffusion equation Homogenous Poisson’s equation Homogenous Laplace’s equation g k      2 2 0 2 2      k 0 2        t k g   2 0 2     dv g k I v          2 2 1 ) ( 2 2 2  dv k I v        2 2 2 2 1 ) ( dvdt t k I t v                 2 2 2 1 ) (  dv g I v        2 2 1 ) ( 2  dv I v      2 2 1 ) (
  • 9. Finite Element Method The finite element method (FEM) has its origin in the field of structural analysis. However, since then the method has been employed in nearly all areas of computational physics and engineering. The FEM method, while more difficult to program than either the finite difference (FD) or method of moments (MOM), is a more powerful and versatile numerical technique for handling problems involving complex geometries and inhomogeneous media.
  • 10. Basic concept Although the behaviour may be complex when viewed over a large region, a simple approximation may suffice over a small subregion. The region is divided up into finite elements. (usually, triangles or squares, but can be more complicated) Regardless of the shape the field is approximated by a different expression over each element, maintaining continuity at adjoining elements.
  • 11. Solution Strategy: Variational Approach The equations to be solved are usually stated not in terms of field the variables but in terms of an integral-type functional such as energy. The functional is chosen such that the field solution makes the functional stationary The total functional is the sum of the integral over each element
  • 12. Finite Element Method The finite element method (FEM) involves basically four steps: (1) Discretize the solution region into a finite number of subregions or elements (2) Derive the governing equations for each element based on either a variational approach or Galerkin’s method (3) Assemble all the elements together in the solution space. (4) Solve the resulting system of equations
  • 13. Finite Element Method CREATING THE MESH (1) Discretize the solution region into a finite number of subregions or elements
  • 14. Finite Element Method in 2D CREATING THE MESH (1) Discretize the solution region into a finite number of subregions or elements • divide the geometry into elements (in 2D triangular elements are common) • each element has a number of nodes attached. In this figure there are 8 elements (E1-E8) and 9 nodes (N1-N9)
  • 15. Finite Element Method The mesh is often described using two tables (element table and a node table) Element Table Element# Node1 Node2 Node3 1 4 7 8 2 4 8 5 3 8 9 5 ...... 8 2 6 3 Node Table Node# x y 1 0 1 2 0.5 1 3 1 1 ...... 9 1 0
  • 16. 2D FEM: Right Triangular Single Element The simplest element is the right triangle (0,1,2) 0 The potential can be calculated as   , x y a bx cy     a,b,c unknown ! Smart to specify the interpolation at the vertices! Then:   1 0 2 0 0 , x y x y h h           
  • 17. Other elements Square element: consider as two triangles. This is ok, but does not lead to a smooth interpolation over the square. Better to use a higher order interpolation that uses four nodal values   , x y a bx cy dxy      This scheme leads to: 0 1 2 8 4 5 3 6 7 8 0 1 1 8 i i     
  • 18. Element expansion In general we wish to approximate the unknown function, (x,y), Inside an element by an interpolation of its values at the vertices. element shape functions or basis functions. In FEM these are usually interpolation functions unknown anywhere within the element Provided the values at the vertices are known    N i i i y x y x 1 ) , ( ) , (    Number of vertices
  • 19. Generalized Triangular Develop the Governing Equations for a Single Element x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3) cy bx a y x Ve    ) , ( Assume the unknown variable (V), in each element can be found as a linear interpolation of its value at the three nodes. FIND a, b and c                                c b a y x y x y x V V V e e e 3 3 2 2 1 1 3 2 1 1 1 1
  • 20. Finite Element Method Develop the Governing Equations for a Single Triangular Element x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3)                                c b a y x y x y x V V V e e e 3 3 2 2 1 1 3 2 1 1 1 1 Solve for the unknowns (a, b and c) and then substituting that result into cy bx a y x Ve    ) , (
  • 21. Finite Element Method x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3)    3 1 ) , ( ) , ( i ei i e V y x y x V  where                                 1 2 1 3 1 3 1 2 1 2 2 1 1 2 2 1 3 3 1 1 3 3 1 1 3 2 2 3 3 2 2 3 3 2 1 2 1 2 1 ) , ( 2 1 ) , ( 2 1 ) , ( y y x x y y x x A y x x x y y y x y x A y x y x x x y y y x y x A y x y x x x y y y x y x A y x                            Shape or basis functions (only function of geometry)
  • 22. Finite Element Method x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3)                                 1 2 1 3 1 3 1 2 1 2 2 1 1 2 2 1 3 3 1 1 3 3 1 1 3 2 2 3 3 2 2 3 3 2 1 2 1 2 1 ) , ( 2 1 ) , ( 2 1 ) , ( y y x x y y x x A y x x x y y y x y x A y x y x x x y y y x y x A y x y x x x y y y x y x A y x                            Properties of the shape functions 1 ) , ( , 0 , 1 ) , ( 3 1          i i i y x j i j i y x  
  • 23. 2D Example: Laplace’s Equation When the quantity being sought (here the electrostatic potential V) Recall: The true potential is known to minimize the electrostatic field energy.  dv V V I v    2 2 1 ) ( 0 ) , ( 2   y x V
  • 24. Create the Mesh Step #1: Discretize the surface/volume to be solved into small finite elements. Label each element and its associated nodes 1 2 3 4 1 2 3
  • 25. Basic concept: Review Step #2: Approximate the complex solution within the whole region in terms of a sum of solutions found within each element 1 2 3 4 1 2 3    e N e e y x V y x V 1 ) , ( ) , (
  • 26. FEM Laplace’s Equation Approximate the solution within each element in terms of each value at the corresponding nodes. (i.e. interpolation) (x1,y1) (x2,y2) (x3,y3) Element                         1 2 3 3 2 2 3 3 2 2 3 1 1 3 3 1 1 3 3 1 2 2 3 1 2 2 1 1 , 2 1 , 2 1 , 2 x y x y x y y y x x x y A x y x y x y y y x x x y A x y x y x y y y x x x y A                                     3 1 ) , ( ) , ( i ei i e V y x y x V 
  • 27. Finite Element Method x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3) To derive an equation for each element we plug in our linear approximation into an functional expression. dv y x V dv V y x V I v i i ei v i ei i e                                       2 3 1 2 3 1 ) , ( 2 1 ) , ( 2 1 ) (      3 1 ) , ( ) , ( i ei i e V y x y x V   dv V V I v e e    2 2 1 ) ( ej i j j v i ei e V ds y x y x V V I              3 1 3 1 ) , ( ) , ( 2 1 ) (  
  • 28. Finite Element Method x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3) To derive an equation for each element we plug in our linear approximation into an functional expression. dv y x V dv V y x V I v i i ei v i ei i e                                       2 3 1 2 3 1 ) , ( 2 1 ) , ( 2 1 ) (      3 1 ) , ( ) , ( i ei i e V y x y x V   dv V V I v e e    2 2 1 ) ( ej i j j v i ei e V ds y x y x V V I              3 1 3 1 ) , ( ) , ( 2 1 ) (                           1 2 3 3 2 2 3 3 2 2 3 1 1 3 3 1 1 3 3 1 2 2 3 1 2 2 1 1 , 2 1 , 2 1 , 2 x y x y x y y y x x x y A x y x y x y y y x x x y A x y x y x y y y x x x y A                                 
  • 29. Finite Element Method x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3) Example: Laplace’s Equation ds y x y x V V I j v i i j ei e ) , ( ) , ( 2 1 ) ( 3 1 3 1          dxdy y x y x C j v i e ij ) , ( ) , (       Let      e e t e e V C V V I 2 1 ) (  where              3 2 1 e e e e V V V V and              e e e e e e e e e e C C C C C C C C C C 33 32 31 23 22 21 13 12 11 element coefficient matrix
  • 30. Finite Element Method Example: Laplace’s Equation dxdy y x y x C j v i e ij ) , ( ) , (            e e t e e V C V V I 2 1 ) (    2 3 3 2 2 1 Q P Q P A                           1 2 3 3 2 2 3 3 2 2 3 1 1 3 3 1 1 3 3 1 2 2 3 1 2 2 1 1 , 2 1 , 2 1 , 2 x y x y x y y y x x x y A x y x y x y y y x x x y A x y x y x y y y x x x y A                                    j i j i e ij Q Q P P A C   4 1 x y Ve( x,y ) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3)       2 1 3 1 3 2 3 2 1 y y P y y P y y P             1 2 3 2 1 2 2 3 1 x x Q x x Q x x Q       Solution for triangular elements
  • 31. Finite Element Method x y Ve(x,y) 1 2 3 Ve1 (x1, y1) Ve2 (x2, y2) Ve3 (x3, y3) dxdy y x y x C j v i e ij ) , ( ) , (       Main property of the coefficient matrix: e ji e ij C C 
  • 32. Finite Element Method Assembling of All Elements Together Solve for the unknowns (a, b and c) and then substituting that result into    N e e y x I y x I 1 ) , ( ) , (      V C V y x I y x I t N e e 2 1 ) , ( ) , ( 1     where                    N V V V V V .... 3 2 1 and                    NN N N e C C C C C C C C C C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 31 22 21 1 13 12 11 Global coefficient matrix
  • 33. Finite Element Method Assembling of All Elements Together                    NN N N e C C C C C C C C C C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 31 22 21 1 13 12 11 Coefficients are only non-zero for elements that touch each other 1 2 4 3 5 E1 1-4-2 (1-2-3) E2 1-3-4 (1-2-3) E3 3-5-4 (1-2-3)                            3 22 3 23 3 21 3 32 3 33 2 33 1 22 3 31 2 32 1 23 2 31 1 21 3 12 3 13 2 23 3 11 1 22 2 21 1 32 1 33 1 31 2 13 1 12 2 12 1 13 2 11 1 11 0 0 0 0 0 0 C C C C C C C C C C C C C C C C C C C C C C C C C C C C
  • 34. Finite Element Method Setting up and solving the resulting equations The solution for the node values is the ones that result in the functional obtaining its minimum value!      V C V y x I y x I t N e e 2 1 ) , ( ) , ( 1     N k V y x I V y x I V y x I V y x I k N ,...., 2 , 1 0 ) , ( 0 ) , ( ...... ) , ( ) , ( 2 1              
  • 35. Finite Element Method Setting up and solving the resulting equations N k V y x I k ,...., 2 , 1 0 ) , (     Example for five nodes:                                    5 4 3 2 1 55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 5 4 3 2 1 V V V V V C C C C C C C C C C C C C C C C C C C C C C C C C V V V V V I 0 2 51 5 41 4 31 3 21 2 15 5 14 4 13 3 12 2 11 1 1             C V C V C V C V C V C V C V C V C V V I
  • 36. Finite Element Method Setting up and solving the resulting equations N k V y x I k ,...., 2 , 1 0 ) , (     Example for five nodes: 0 2 51 5 41 4 31 3 21 2 15 5 14 4 13 3 12 2 11 1 1             C V C V C V C V C V C V C V C V C V V I In general: N k C V N i ik i ,.... 3 , 2 , 1 0 1    
  • 37. Iterative solution method At node k in a mesh with n nodes, we have the solution e.g. see previous slide We note that Cki = 0 if node k is not directly connected to node i, only nodes that are directly connected to node k contribute to Vk. We apply this iteratively to all free nodes (not at fixed boundary value) where the potential is unknown. Initially we assign either 0, random or some average value to each free node and then iterate on the above equation until convergence is met.      n k i i ki i kk k C V C V , 1 1
  • 38. Finite Element Method Example: Poisson’s Equation dv V y x g y x V y x V I v i ei i i ei i i ei i e                         3 1 3 1 2 3 1 ) , ( ) , ( 2 ) , ( 2 1 ) (       3 1 ) , ( ) , ( i ei i e V y x y x V  ej j v i i j ei ej j v i i j ei e g ds y x y x V V ds y x y x V V I                         ) , ( ) , ( ) , ( ) , ( 2 1 ) ( 3 1 3 1 3 1 3 1     ) , ( 2 y x g V    dv gV V V I v     2 2 1 ) ( 2    3 1 ) , ( ) , ( i ei i g y x y x g  Equations for single element:
  • 39. Finite Element Method Example: Poisson’s Equation ej j v i i j ei ej j v i i j ei e g ds y x y x V V ds y x y x V V I                         ) , ( ) , ( ) , ( ) , ( 2 1 ) ( 3 1 3 1 3 1 3 1     ) , ( 2 y x g V    dv gV V V I v     2 2 1 ) ( 2 Equations for single element:           e e t e e e t e e g T V V C V V I   2 1 ) ( where              3 2 1 e e e e V V V V and           ds y x y x C j v i e ij ) , ( ) , (   ds y x y x T j v i e ij ) , ( ) , (    
  • 40. Finite Element Method Example: Poisson’s Equation ) , ( 2 y x g V   Equations for single element:           e e t e e e t e e g T V V C V V I   2 1 ) (           ds y x y x C j v i e ij ) , ( ) , (   ds y x y x T j v i e ij ) , ( ) , (       2 3 3 2 2 1 Q P Q P A     j i j i e ij Q Q P P A C   4 1       2 1 3 1 3 2 3 2 1 y y P y y P y y P             1 2 3 2 1 2 2 3 1 x x Q x x Q x x Q       Solution for triangular elements   2 3 3 2 2 1 Q P Q P A         j i A j i A Te ij 6 / 12 /       2 1 3 1 3 2 3 2 1 y y P y y P y y P             1 2 3 2 1 2 2 3 1 x x Q x x Q x x Q       Solution for triangular elements
  • 41. Finite Element Method Example: Poisson’s Equation ) , ( 2 y x g V    dv gV V V I v     2 2 1 ) ( 2 Put all the elements together:           g T V V C V V I V I t t N e e      2 1 ) ( ) ( 1 Construct matrix and then solve:         N k V g T V V C V V V I k t t k ,..... 3 , 2 , 1 0 2 1 ) (              
  • 42. Finite Element Method Example: Poisson’s Equation ) , ( 2 y x g V   Example:         N k V g T V V C V V V I k t t k ,..... 3 , 2 , 1 0 2 1 ) (                   0 2 1 5 4 3 2 1 55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 5 4 3 2 1 5 4 3 2 1 55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 5 4 3 2 1 1                                                                                       g g g g g T T T T T T T T T T T T T T T T T T T T T T T T T V V V V V V V V V V C C C C C C C C C C C C C C C C C C C C C C C C C V V V V V V        5 1 1 11 5 2 1 11 1 1 1 i i i i i i g T C C V C V Result in: In General:         N i i ki kk N k i i ki i kk k g T C C V C V 1 ) ( 1 1 1
  • 43. Finite Element Method Example: Homogenous Wave Equation dv y x g y x y x k y x I v i ei i i ei i i ei i i ei i e                                      3 1 3 1 2 3 1 2 2 3 1 ) , ( ) , ( 2 ) , ( ) , ( 2 1 ) (          3 1 ) , ( ) , ( i ei i e y x y x  ej j v i i j ei ej j v i i j ei ej j v i i j ei e g ds y x y x ds y x y x k ds y x y x I                                          ) , ( ) , ( ) , ( ) , ( 2 ) , ( ) , ( 2 1 ) ( 3 1 3 1 3 1 3 1 2 3 1 3 1       ) , ( ) , ( ) , ( 2 2 y x g y x k y x         3 1 ) , ( ) , ( i ei i g y x y x g  Equations for single element:  dv g k I v          2 2 1 ) ( 2 2 2
  • 44. Finite Element Method Example: Wave Equation Equations for single element:                e e t e e e t e e e t e e g T T k C I          2 2 1 ) ( 2 where                  3 2 1 e e e e and           ds y x y x C j v i e ij ) , ( ) , (   ds y x y x T j v i e ij ) , ( ) , (     ) , ( ) , ( ) , ( 2 2 y x g y x k y x      ej j v i i j ei ej j v i i j ei ej j v i i j ei e g ds y x y x ds y x y x k ds y x y x I                                          ) , ( ) , ( ) , ( ) , ( 2 ) , ( ) , ( 2 1 ) ( 3 1 3 1 3 1 3 1 2 3 1 3 1      
  • 45. Finite Element Method Example: Wave Equation with no sources Equations for single element:           e e t e e e t e e T k C I        2 2 1 ) ( 2 where                  3 2 1 e e e e and           ds y x y x C j v i e ij ) , ( ) , (   ds y x y x T j v i e ij ) , ( ) , (     0 ) , ( ) , ( 2 2      y x k y x ej j v i i j ei ej j v i i j ei e ds y x y x k ds y x y x I                              ) , ( ) , ( 2 ) , ( ) , ( 2 1 ) ( 3 1 3 1 2 3 1 3 1    
  • 46. Finite Element Method Example: Wave Equation Put all the elements together:                    T k C I I t t N e e 2 2 1 ) ( ) ( 2 1 0 ) , ( ) , ( 2 2      y x k y x
  • 47. x y z Finite Element Method: Waveguide TM Modes 2 2 t z k k     z jk z z e y x z y x E    ) , ( ) , , ( TE Modes z jk z z e y x z y x H    ) , ( ) , , ( where 0 ) , ( ) , ( 2 2      y x k y x t and
  • 48. Finite Element Method: Waveguide TM Modes Put all the elements together:                    T k C I I t t t N e e 2 2 1 ) ( ) ( 2 1 0 ) , ( ) , ( 2 2      y x k y x t Band Matrix Solution: Break the matrices up into sub-matrices that distinguishes free-nodes from those that are known or prescribed nodes (i.e. boundary values):                                       p f pp pf fp ff p f t p f pp pf fp ff p f T T T T k C C C C I 2 2 1 2 z jk z z e y x z y x E    ) , ( ) , , (
  • 49. Finite Element Method: Waveguide TM Modes 0 ) , ( ) , ( 2 2      y x k y x t Minimize the functional:                                       p f pp pf fp ff p f t p f pp pf fp ff p f T T T T k C C C C I 2 2 1 2 z jk z z e y x z y x E    ) , ( ) , , (     0 0 2                       p f fp ff t p f fp ff f T T k C C I
  • 50. Finite Element Method: Waveguide TM Modes 0 ) , ( ) , ( 2 2      y x k y x t z jk z z e y x z y x E    ) , ( ) , , ( For TM modes: 0  p since tangential E field must vanish on PEC boundary     0 2                   p f fp ff t p f fp ff T T k C C   0 2    f ff t ff T k C
  • 51. Finite Element Method: Waveguide TM Modes 0 ) , ( ) , ( 2 2      y x k y x t z jk z z e y x z y x E    ) , ( ) , , (   0 2    f ff t ff T k C Pre-multiply both sides by 1  ff T       0 0 0 2 1 1 2 1             f f t ff ff f ff ff t ff ff I A I k C T T T k C T  Where: 2 1 t ff ff k C T A    
  • 52. Finite Element Method Project #2: Write a FEM program that calculates the mode shapes and cutoff frequencies of the TM modes for the air filled ridge waveguide shown below. h w w d t 1 1   r r   PEC Walls