SlideShare a Scribd company logo
1 of 64
Excitable Tissues,
Resting Membrane
Potential & Action
Potential
Prof. Vajira Weerasinghe
Professor of Physiology
Department of Physiology
Faculty of Medicine
www.slideshare.net/vajira54
MED1102 Foundation to Human Physiology
Excitable Tissues
• Tissues which are capable of generation and
transmission of electrochemical impulses along
the membrane
Nerve
Excitable tissues
excitable Non-excitable
Red cell
GIT
neuron
muscle
•RBC
•Intestinal cells
•Fibroblasts
•Adipocytes
•Nerve
•Muscle
•Skeletal
•Cardiac
•Smooth
Membrane potential
• A potential difference exists across all cell
membranes
• This is called
– Resting Membrane Potential (RMP)
Membrane potential
– Inside is negative with respect to the outside
– This is measured using microelectrodes and
oscilloscope
– This is about -70 to -90 mV
Excitable tissues
• Excitable tissues have more
negative RMP
( - 70 mV to - 90 mV)
excitable Non-excitable
Red cell
GIT
neuron
muscle
• Non-excitable tissues
have less negative RMP
-53 mV epithelial cells
-8.4 mV RBC
-20 to -30 mV fibroblasts
-58 mV adipocytes
Resting Membrane Potential
• This depends on following factors
– Ionic distribution across the membrane
– Membrane permeability
– Other factors
• Na+
/K+
pump
Ionic distribution
• Major ions
– Extracellular ions
• Sodium, Chloride
– Intracellular ions
• Potassium, Proteinate
K+
Pr-
Na+
Cl-
Ionic distribution
Ion Intracellular Extracellular
Na+
10 142
K+
140 4
Cl-
4 103
Ca2+
0 2.4
HCO3
-
10 28
Gibbs Donnan Equilibrium
• When two solutions
containing ions are
separated by membrane
that is permeable to some
of the ions and not to others
an electrochemical
equilibrium is established
• Electrical and chemical
energies on either side of
the membrane are equal
and opposite to each other
Flow of Potassium
• Potassium concentration intracellular is more
• Membrane is freely permeable to K+
• There is an efflux of K+
K+
K+K+
K+
K+ K+
K+
K+
K+
K+
Flow of Potassium
• Entry of positive ions in to the extracellular fluid
creates positivity outside and negativity inside
K+
K+K+
K+
K+ K+
K+
K+
K+
K+
Flow of Potassium
• Outside positivity resists efflux of K+
• (since K+
is a positive ion)
• At a certain voltage an equilibrium is reached
and K+
efflux stops
K+
K+K+
K+
K+ K+
K+
K+
K+
K+
Nernst potential (Equilibrium potential)
• The potential level across the membrane that
will exactly prevent net diffusion of an ion
• Nernst equation determines this potential
Nernst potential (Equilibrium potential)
• The potential level across the membrane that
will exactly prevent net diffusion of an ion
Ion Intracellular Extracellular Nernst
potential
Na+
10 142 +60
K+
140 4 -90
Cl-
4 103 -89
Ca2+
0 2.4 +129
HCO3
-
10 28 -23
(mmol/l)
Goldman Equation
• When the membrane is permeable to several ions the
equilibrium potential that develops depends on
– Polarity of each ion
– Membrane permeability
– Ionic conc
• This is calculated using Goldman Equation (or GHK
Equation)
• In the resting state
– K+ permeability is 20 times more than that of Na+
Ionic channels
• Leaky channels (leak channels)
– Allow free flow of ions
– K+ channels (large number)
– Na+ channels (fewer in number)
– Therefore membrane is more permeable to K+
Na/K pump
• Active transport system for Na+-K+
exchange using energy
• It is an electrogenic pump since 3 Na+
efflux coupled with 2 K+ influx
• Net effect of causing negative charge
inside the membrane
3 Na+
2 K+
ATP ADP
Factors contributing to RMP
• One of the main factors is K+ efflux (Nernst Potential:
-90mV)
• Contribution of Na+ influx is little (Nernst Potential:
+60mV)
• Na+/K+ pump causes more negativity inside the
membrane
• Negatively charged protein ions remaining inside the
membrane contributes to the negativity
• Net result: -70 to -90 mV inside
Electrochemical gradient
• At this electrochemical equilibrium, there is an exact
balance between two opposing forces:
• Chemical driving force = ratio of concentrations on 2
sides of membrane (concentration gradient)
• The concentration gradient that causes K+ to move from inside to
outside taking along positive charge and
• Electrical driving force = potential difference across
membrane
• opposing electrical gradient that increasingly tends to stop K+ from
moving across the membrane
• Equilibrium: when chemical driving force is balanced
by electrical driving force
Action potential
Action Potential (A.P.)
• When an impulse is generated
– Inside becomes positive
– Causes depolarisation
– Nerve impulses are transmitted as AP
Depolarisation
Repolarisation
-70
+30
RMP
Hyperpolarisation
Inside of the membrane is
• Negative
– During RMP
• Positive
– When an AP is generated
-70
+30
• Initially membrane is slowly depolarised
• Until the threshold level is reached
– (This may be caused by the stimulus)
-70
+30
Threshold level
• Then a sudden
change in polarisation
causes sharp
upstroke
(depolarisation) which
goes beyond the zero
level up to +35 mV
-70
+30
• Then a sudden
decrease in
polarisation causes
initial sharp down
stroke (repolarisation)
-70
+30
• When reaching the
Resting level rate
slows down
• Can go beyond the
resting level
– hyperpolarisation
-70
+30
• Spike potential
– Sharp upstroke and
downstroke
• Time duration of AP
– 1 msec
-70
+30
1 msec
All or none law
• Until the threshold level the potential is graded
• Once the threshold level is reached
– AP is set off and no one can stop it !
– Like a gun
All or none law
• The principle that the strength by which a nerve
or muscle fiber responds to a stimulus is not
dependent on the strength of the stimulus
• If the stimulus is any strength above threshold,
the nerve or muscle fiber will give a complete
response or otherwise no response at all
Physiological basis of AP
• When the threshold level is reached
– Voltage-gated Na+ channels open up
– Since Na conc outside is more than the inside
– Na influx will occur
– Positive ion coming inside increases the positivity of the
membrane potential and causes depolarisation
– When it reaches +30, Na+ channels closes
– Then Voltage-gated K+ channels open up
– K+ efflux occurs
– Positive ion leaving the inside causes more negativity inside
the membrane
– Repolarisation occurs
Physiological basis of AP
• Since Na+ has come in and K+ has gone out
• Membrane has become negative
• But ionic distribution has become unequal
• Na+/K+ pump restores Na+ and K+ conc slowly
– By pumping 3 Na+ ions outward and 2+ K ions
inward
VOLTAGE-GATED ION CHANNELS
• Na+ channel
– This has two gates
• Activation and inactivation gates
outside
inside
Activation gate
Inactivation gate
• At rest: the activation gate is closed
• At threshold level: activation gate opens
– Na+ influx will occur
– Na+ permeability increases to 500 fold
• when reaching +30, inactivation gate closes
– Na influx stops
• Inactivation gate will not reopen until resting membrane potential is reached
• Na+ channel opens fast
outside
inside
outside
inside
-70 Threshold level +30
Na+ Na+
outside
inside
Na+m gate
h gate
VOLTAGE-GATED K+ Channel
• K+ channel
– This has only one gate
outside
inside
– At rest: K+ channel is closed
– At +30
• K+ channel open up slowly
• This slow activation causes K efflux
– After reaching the resting still slow K+ channels
may remain open: causing further hyperpolarisation
outside
inside
outside
inside
-70 At +30
K+ K+
n gate
Summary
Refractory Period
• Absolute refractory
period
– During this period nerve
membrane cannot be
excited again
– Because of the closure
of inactivation gate
-70
+30
outside
inside
Refractory Period
• Relative refractory
period
– During this period nerve
membrane can be
excited by supra
threshold stimuli
– At the end of
repolarisation phase
inactivation gate opens
and activation gate
closes
– This can be opened by
greater stimuli strength
-70
+30
outside
inside
Propagation of AP
• When one area is depolarised
• A potential difference exists between that site
and the adjacent membrane
• A local current flow is initiated
• Local circuit is completed by extra cellular fluid
Propagation of AP
• This local current flow will cause opening of
voltage-gated Na channel in the adjacent
membrane
• Na influx will occur
• Membrane is deloparised
Propagation of AP
• Then the previous area become repolarised
• This process continue to work
• Resulting in propagation of AP
Propagation of AP
Propagation of AP
Propagation of AP
Propagation of AP
Propagation of AP
Propagation of AP
Propagation of AP
Propagation of AP
AP propagation along myelinated
nerves
• Na channels are conc
around nodes
• Therefore depolarisation
mainly occurs at nodes
AP propagation along myelinated
nerves
• Local current will flow one node to another
• Thus propagation of A.P. is faster. Conduction
through myelinated fibres also faster.
• Known as Saltatory Conduction
• Re-establishment of Na & K conc after A.P.
– Na-K Pump is responsible for this.
– Energy is consumed
3 Na+
2 K+
ATP ADP
Membrane stabilisers
• Membrane stabilisers (these decrease excitability)
• Increased serum Ca++
– Hypocalcaemia causes membrane instability and spontaneous activation
of nerve membrane
– Reduced Ca level facilitates Na entry
– Spontaneous activation
• Decreased serum K+
• Local anaesthetics
• Acidosis
• Hypoxia
• Membrane destabilisers (these increase excitability)
• Decreased serum Ca++
• Increased serum K+
• Alkalosis
Muscle action potentials
• Skeletal muscle
• Smooth muscle
• Cardiac muscle
Skeletal muscle
• Similar to nerve action potential
Cardiac muscle action potential
Phases
• 0: depolarisation
• 1: short repolarisation
• 2: plateau phase
• 3: repolarisation
• 4: resting
Duration is about 250 msec
Cardiac muscle action potential
Phases
• 0: depolarisation
(Na+ influx through fast Na+
channels)
• 1: short repolarisation
(K+ efflux through K+
channels, Cl- influx as well)
• 2: plateau phase
(Ca++ influx through slow
Ca++ channels)
• 3: repolarisation
(K+ efflux through K+
channels)
• 4: resting
Smooth muscle
• Resting membrane potential may be about -55mV
• Action potential is similar to nerve AP
• But AP is not necessary for its contraction
• Smooth muscle contraction can occur by hormones
Depolarisation
• Activation of nerve membrane
• Membrane potential becomes positive
• Due to influx of Na+ or Ca++
Hyperpolarisation
• Inhibition of nerve membrane
• Membrane potential becomes more negative
• Due to efflux of K+ or influx of Cl-

More Related Content

What's hot

Action potential
Action potential Action potential
Action potential
Jinny Shaw
 
Action potential
Action   potentialAction   potential
Action potential
Neha Agarwal
 
Tousif, role of receptors
Tousif, role of receptorsTousif, role of receptors
Tousif, role of receptors
farhan_aq91
 
Synaptic Transmission
Synaptic TransmissionSynaptic Transmission
Synaptic Transmission
vacagodx
 
Y1 s1 membrane potentials 2013
Y1 s1 membrane potentials 2013Y1 s1 membrane potentials 2013
Y1 s1 membrane potentials 2013
vajira54
 

What's hot (20)

Action potential
Action potential Action potential
Action potential
 
Action potential
Action   potentialAction   potential
Action potential
 
EPSP and IPSP
EPSP and IPSPEPSP and IPSP
EPSP and IPSP
 
Hypothalamus (2)
Hypothalamus (2)Hypothalamus (2)
Hypothalamus (2)
 
Md surg nmj 2020
Md surg nmj 2020Md surg nmj 2020
Md surg nmj 2020
 
Neuron
NeuronNeuron
Neuron
 
Action potential (niraj)
Action potential (niraj)Action potential (niraj)
Action potential (niraj)
 
Tousif, role of receptors
Tousif, role of receptorsTousif, role of receptors
Tousif, role of receptors
 
Resting membrane potential
Resting membrane potentialResting membrane potential
Resting membrane potential
 
Receptor by Pandian M, Tutor, Dept of Physiology, DYPMCKOP, MH. This PPT for ...
Receptor by Pandian M, Tutor, Dept of Physiology, DYPMCKOP, MH. This PPT for ...Receptor by Pandian M, Tutor, Dept of Physiology, DYPMCKOP, MH. This PPT for ...
Receptor by Pandian M, Tutor, Dept of Physiology, DYPMCKOP, MH. This PPT for ...
 
Synaptic Transmission
Synaptic TransmissionSynaptic Transmission
Synaptic Transmission
 
Resting Membrane potential
Resting Membrane potentialResting Membrane potential
Resting Membrane potential
 
Muscle spindle and reflex activity
Muscle spindle and reflex activityMuscle spindle and reflex activity
Muscle spindle and reflex activity
 
Y1 s1 membrane potentials 2013
Y1 s1 membrane potentials 2013Y1 s1 membrane potentials 2013
Y1 s1 membrane potentials 2013
 
General Physiology - Action potential
General Physiology -  Action potentialGeneral Physiology -  Action potential
General Physiology - Action potential
 
Contractile mechanism of smooth muscle
Contractile mechanism of smooth muscleContractile mechanism of smooth muscle
Contractile mechanism of smooth muscle
 
Tubular reabsorption (The Guyton and Hall physiology)
Tubular reabsorption (The Guyton and Hall physiology)Tubular reabsorption (The Guyton and Hall physiology)
Tubular reabsorption (The Guyton and Hall physiology)
 
Receptors
ReceptorsReceptors
Receptors
 
Properties of reflexes
Properties of reflexesProperties of reflexes
Properties of reflexes
 
Action potential
Action potentialAction potential
Action potential
 

Viewers also liked

4. suppl. membrane transport 2
4. suppl. membrane transport 24. suppl. membrane transport 2
4. suppl. membrane transport 2
Azhen Qadir
 
Nerve impulses
Nerve impulsesNerve impulses
Nerve impulses
Katie B
 
Y1S2 Synapse NMJ Neurotransmitters
Y1S2 Synapse NMJ NeurotransmittersY1S2 Synapse NMJ Neurotransmitters
Y1S2 Synapse NMJ Neurotransmitters
vajira54
 
Biopotential generation
Biopotential generationBiopotential generation
Biopotential generation
Umar Shuaib
 
pain physiology Y2S1 2014
pain physiology Y2S1 2014pain physiology Y2S1 2014
pain physiology Y2S1 2014
vajira54
 
The Resting Potential And The Action Potential
The  Resting  Potential And The  Action  PotentialThe  Resting  Potential And The  Action  Potential
The Resting Potential And The Action Potential
neurosciust
 

Viewers also liked (12)

4. suppl. membrane transport 2
4. suppl. membrane transport 24. suppl. membrane transport 2
4. suppl. membrane transport 2
 
151 transport
151 transport151 transport
151 transport
 
Nerve impulses
Nerve impulsesNerve impulses
Nerve impulses
 
Y1S2 Synapse NMJ Neurotransmitters
Y1S2 Synapse NMJ NeurotransmittersY1S2 Synapse NMJ Neurotransmitters
Y1S2 Synapse NMJ Neurotransmitters
 
Action and Resting potential
Action and Resting potentialAction and Resting potential
Action and Resting potential
 
Nerve impulses - the over all story
Nerve impulses - the over all storyNerve impulses - the over all story
Nerve impulses - the over all story
 
Biopotential generation
Biopotential generationBiopotential generation
Biopotential generation
 
Bioelectrical signals
Bioelectrical signalsBioelectrical signals
Bioelectrical signals
 
Action potential
Action potentialAction potential
Action potential
 
pain physiology Y2S1 2014
pain physiology Y2S1 2014pain physiology Y2S1 2014
pain physiology Y2S1 2014
 
The Resting Potential And The Action Potential
The  Resting  Potential And The  Action  PotentialThe  Resting  Potential And The  Action  Potential
The Resting Potential And The Action Potential
 
People are the Media (DDB Edmonton Edition)
People are the Media (DDB Edmonton Edition)People are the Media (DDB Edmonton Edition)
People are the Media (DDB Edmonton Edition)
 

Similar to Y1 s1 membrane potentials

Md ophth neurophysiology
Md ophth neurophysiologyMd ophth neurophysiology
Md ophth neurophysiology
vajira54
 
Psych a electrophysiology
Psych a electrophysiologyPsych a electrophysiology
Psych a electrophysiology
vajira54
 

Similar to Y1 s1 membrane potentials (20)

Resting membrane and action potentials RMP AP
Resting membrane and action potentials RMP APResting membrane and action potentials RMP AP
Resting membrane and action potentials RMP AP
 
Nerve and Resting Membrane and Action Potentials
Nerve and Resting Membrane and Action PotentialsNerve and Resting Membrane and Action Potentials
Nerve and Resting Membrane and Action Potentials
 
Nerve equilibrium potential , RMP and action potential
Nerve   equilibrium potential , RMP and action potentialNerve   equilibrium potential , RMP and action potential
Nerve equilibrium potential , RMP and action potential
 
Nerve
Nerve      Nerve
Nerve
 
Excitable t is issues.pptx
Excitable t            is    issues.pptxExcitable t            is    issues.pptx
Excitable t is issues.pptx
 
MD Surg NMJ 2022.ppt
MD Surg NMJ 2022.pptMD Surg NMJ 2022.ppt
MD Surg NMJ 2022.ppt
 
Md ophth neurophysiology
Md ophth neurophysiologyMd ophth neurophysiology
Md ophth neurophysiology
 
Nerve physiology
Nerve physiology Nerve physiology
Nerve physiology
 
Nerve and muscle physiology
Nerve and muscle physiologyNerve and muscle physiology
Nerve and muscle physiology
 
Cell membrane potential.pdf
Cell membrane potential.pdfCell membrane potential.pdf
Cell membrane potential.pdf
 
Excitable Tissues, Resting Membrane Potential & Action.pptx
Excitable Tissues, Resting Membrane Potential & Action.pptxExcitable Tissues, Resting Membrane Potential & Action.pptx
Excitable Tissues, Resting Membrane Potential & Action.pptx
 
Psych a electrophysiology
Psych a electrophysiologyPsych a electrophysiology
Psych a electrophysiology
 
IB BIOLOGY 6.5.5 Explain how a nerve impulse passes along a non-myelinated ne...
IB BIOLOGY 6.5.5 Explain how a nerve impulse passes along a non-myelinated ne...IB BIOLOGY 6.5.5 Explain how a nerve impulse passes along a non-myelinated ne...
IB BIOLOGY 6.5.5 Explain how a nerve impulse passes along a non-myelinated ne...
 
Fundamental Types of Neurons.ppt
Fundamental Types of Neurons.pptFundamental Types of Neurons.ppt
Fundamental Types of Neurons.ppt
 
Ch 11b
Ch 11bCh 11b
Ch 11b
 
Ch 11b
Ch 11bCh 11b
Ch 11b
 
Cardiac electrophysiology by Dr. Vaibhav Yawalkar , MD,DM Cardiology
Cardiac electrophysiology by Dr. Vaibhav Yawalkar , MD,DM CardiologyCardiac electrophysiology by Dr. Vaibhav Yawalkar , MD,DM Cardiology
Cardiac electrophysiology by Dr. Vaibhav Yawalkar , MD,DM Cardiology
 
DCM DPH 1.1 EXCITITATORY NEUR TX 24.pptx
DCM DPH 1.1 EXCITITATORY NEUR TX 24.pptxDCM DPH 1.1 EXCITITATORY NEUR TX 24.pptx
DCM DPH 1.1 EXCITITATORY NEUR TX 24.pptx
 
PPt action potential.pptx
PPt action potential.pptxPPt action potential.pptx
PPt action potential.pptx
 
Nerve action potential
Nerve action potentialNerve action potential
Nerve action potential
 

More from vajira54

Psych b sensory 2020 final
Psych b sensory 2020 finalPsych b sensory 2020 final
Psych b sensory 2020 final
vajira54
 
Psych Electrophysiology 2020 final
Psych Electrophysiology 2020 finalPsych Electrophysiology 2020 final
Psych Electrophysiology 2020 final
vajira54
 
Synapse nmj y1 s1 2020 slides
Synapse nmj y1 s1 2020 slidesSynapse nmj y1 s1 2020 slides
Synapse nmj y1 s1 2020 slides
vajira54
 
Y2 s1 pain physiology 2019
Y2 s1 pain physiology 2019Y2 s1 pain physiology 2019
Y2 s1 pain physiology 2019
vajira54
 
Y2 s1 motor system reflexes basal ganglia 2018 comple lecture
Y2 s1 motor system reflexes basal ganglia 2018 comple lectureY2 s1 motor system reflexes basal ganglia 2018 comple lecture
Y2 s1 motor system reflexes basal ganglia 2018 comple lecture
vajira54
 
Y2 s1 pain physiology 2018
Y2 s1 pain physiology 2018Y2 s1 pain physiology 2018
Y2 s1 pain physiology 2018
vajira54
 
Y3 s1 locomotion muscle dysfunction 2018 final
Y3 s1 locomotion muscle dysfunction 2018 finalY3 s1 locomotion muscle dysfunction 2018 final
Y3 s1 locomotion muscle dysfunction 2018 final
vajira54
 
Units and measurements & basic statistics
Units and measurements & basic statisticsUnits and measurements & basic statistics
Units and measurements & basic statistics
vajira54
 

More from vajira54 (20)

Md surg pain 2020
Md surg pain 2020Md surg pain 2020
Md surg pain 2020
 
Md surg nmj 2020
Md surg nmj 2020Md surg nmj 2020
Md surg nmj 2020
 
Psych b sensory 2020 final
Psych b sensory 2020 finalPsych b sensory 2020 final
Psych b sensory 2020 final
 
Psych Electrophysiology 2020 final
Psych Electrophysiology 2020 finalPsych Electrophysiology 2020 final
Psych Electrophysiology 2020 final
 
Synapse nmj y1 s1 2020 slides
Synapse nmj y1 s1 2020 slidesSynapse nmj y1 s1 2020 slides
Synapse nmj y1 s1 2020 slides
 
MD surg nmj 2019
MD surg nmj 2019MD surg nmj 2019
MD surg nmj 2019
 
Y2 s1 pain physiology 2019
Y2 s1 pain physiology 2019Y2 s1 pain physiology 2019
Y2 s1 pain physiology 2019
 
Y2 s1 motor system 2019
Y2 s1 motor system 2019Y2 s1 motor system 2019
Y2 s1 motor system 2019
 
Ecg 2019 b
Ecg 2019 bEcg 2019 b
Ecg 2019 b
 
ECG A 2019
ECG A 2019ECG A 2019
ECG A 2019
 
Y2 s1 motor system reflexes basal ganglia 2018 comple lecture
Y2 s1 motor system reflexes basal ganglia 2018 comple lectureY2 s1 motor system reflexes basal ganglia 2018 comple lecture
Y2 s1 motor system reflexes basal ganglia 2018 comple lecture
 
Y2 s1 pain physiology 2018
Y2 s1 pain physiology 2018Y2 s1 pain physiology 2018
Y2 s1 pain physiology 2018
 
Y3 s1 locomotion muscle dysfunction 2018 final
Y3 s1 locomotion muscle dysfunction 2018 finalY3 s1 locomotion muscle dysfunction 2018 final
Y3 s1 locomotion muscle dysfunction 2018 final
 
Motor system introduction
Motor system introductionMotor system introduction
Motor system introduction
 
Y2 s1 pain physiology 2016
Y2 s1 pain physiology 2016Y2 s1 pain physiology 2016
Y2 s1 pain physiology 2016
 
Units and measurements & basic statistics
Units and measurements & basic statisticsUnits and measurements & basic statistics
Units and measurements & basic statistics
 
Statistics introduction
Statistics introductionStatistics introduction
Statistics introduction
 
Circulation through special regions 3
Circulation through special regions 3Circulation through special regions 3
Circulation through special regions 3
 
Circulation through special regions 2
Circulation through special regions 2Circulation through special regions 2
Circulation through special regions 2
 
Circulation through special regions 1
Circulation through special regions 1Circulation through special regions 1
Circulation through special regions 1
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 

Y1 s1 membrane potentials

  • 1. Excitable Tissues, Resting Membrane Potential & Action Potential Prof. Vajira Weerasinghe Professor of Physiology Department of Physiology Faculty of Medicine www.slideshare.net/vajira54 MED1102 Foundation to Human Physiology
  • 2. Excitable Tissues • Tissues which are capable of generation and transmission of electrochemical impulses along the membrane Nerve
  • 3. Excitable tissues excitable Non-excitable Red cell GIT neuron muscle •RBC •Intestinal cells •Fibroblasts •Adipocytes •Nerve •Muscle •Skeletal •Cardiac •Smooth
  • 4. Membrane potential • A potential difference exists across all cell membranes • This is called – Resting Membrane Potential (RMP)
  • 5. Membrane potential – Inside is negative with respect to the outside – This is measured using microelectrodes and oscilloscope – This is about -70 to -90 mV
  • 6. Excitable tissues • Excitable tissues have more negative RMP ( - 70 mV to - 90 mV) excitable Non-excitable Red cell GIT neuron muscle • Non-excitable tissues have less negative RMP -53 mV epithelial cells -8.4 mV RBC -20 to -30 mV fibroblasts -58 mV adipocytes
  • 7. Resting Membrane Potential • This depends on following factors – Ionic distribution across the membrane – Membrane permeability – Other factors • Na+ /K+ pump
  • 8. Ionic distribution • Major ions – Extracellular ions • Sodium, Chloride – Intracellular ions • Potassium, Proteinate K+ Pr- Na+ Cl-
  • 9. Ionic distribution Ion Intracellular Extracellular Na+ 10 142 K+ 140 4 Cl- 4 103 Ca2+ 0 2.4 HCO3 - 10 28
  • 10. Gibbs Donnan Equilibrium • When two solutions containing ions are separated by membrane that is permeable to some of the ions and not to others an electrochemical equilibrium is established • Electrical and chemical energies on either side of the membrane are equal and opposite to each other
  • 11. Flow of Potassium • Potassium concentration intracellular is more • Membrane is freely permeable to K+ • There is an efflux of K+ K+ K+K+ K+ K+ K+ K+ K+ K+ K+
  • 12. Flow of Potassium • Entry of positive ions in to the extracellular fluid creates positivity outside and negativity inside K+ K+K+ K+ K+ K+ K+ K+ K+ K+
  • 13. Flow of Potassium • Outside positivity resists efflux of K+ • (since K+ is a positive ion) • At a certain voltage an equilibrium is reached and K+ efflux stops K+ K+K+ K+ K+ K+ K+ K+ K+ K+
  • 14. Nernst potential (Equilibrium potential) • The potential level across the membrane that will exactly prevent net diffusion of an ion • Nernst equation determines this potential
  • 15. Nernst potential (Equilibrium potential) • The potential level across the membrane that will exactly prevent net diffusion of an ion Ion Intracellular Extracellular Nernst potential Na+ 10 142 +60 K+ 140 4 -90 Cl- 4 103 -89 Ca2+ 0 2.4 +129 HCO3 - 10 28 -23 (mmol/l)
  • 16. Goldman Equation • When the membrane is permeable to several ions the equilibrium potential that develops depends on – Polarity of each ion – Membrane permeability – Ionic conc • This is calculated using Goldman Equation (or GHK Equation) • In the resting state – K+ permeability is 20 times more than that of Na+
  • 17. Ionic channels • Leaky channels (leak channels) – Allow free flow of ions – K+ channels (large number) – Na+ channels (fewer in number) – Therefore membrane is more permeable to K+
  • 18. Na/K pump • Active transport system for Na+-K+ exchange using energy • It is an electrogenic pump since 3 Na+ efflux coupled with 2 K+ influx • Net effect of causing negative charge inside the membrane 3 Na+ 2 K+ ATP ADP
  • 19. Factors contributing to RMP • One of the main factors is K+ efflux (Nernst Potential: -90mV) • Contribution of Na+ influx is little (Nernst Potential: +60mV) • Na+/K+ pump causes more negativity inside the membrane • Negatively charged protein ions remaining inside the membrane contributes to the negativity • Net result: -70 to -90 mV inside
  • 20. Electrochemical gradient • At this electrochemical equilibrium, there is an exact balance between two opposing forces: • Chemical driving force = ratio of concentrations on 2 sides of membrane (concentration gradient) • The concentration gradient that causes K+ to move from inside to outside taking along positive charge and • Electrical driving force = potential difference across membrane • opposing electrical gradient that increasingly tends to stop K+ from moving across the membrane • Equilibrium: when chemical driving force is balanced by electrical driving force
  • 22. Action Potential (A.P.) • When an impulse is generated – Inside becomes positive – Causes depolarisation – Nerve impulses are transmitted as AP
  • 24. Inside of the membrane is • Negative – During RMP • Positive – When an AP is generated -70 +30
  • 25. • Initially membrane is slowly depolarised • Until the threshold level is reached – (This may be caused by the stimulus) -70 +30 Threshold level
  • 26. • Then a sudden change in polarisation causes sharp upstroke (depolarisation) which goes beyond the zero level up to +35 mV -70 +30
  • 27. • Then a sudden decrease in polarisation causes initial sharp down stroke (repolarisation) -70 +30
  • 28. • When reaching the Resting level rate slows down • Can go beyond the resting level – hyperpolarisation -70 +30
  • 29. • Spike potential – Sharp upstroke and downstroke • Time duration of AP – 1 msec -70 +30 1 msec
  • 30. All or none law • Until the threshold level the potential is graded • Once the threshold level is reached – AP is set off and no one can stop it ! – Like a gun
  • 31. All or none law • The principle that the strength by which a nerve or muscle fiber responds to a stimulus is not dependent on the strength of the stimulus • If the stimulus is any strength above threshold, the nerve or muscle fiber will give a complete response or otherwise no response at all
  • 32. Physiological basis of AP • When the threshold level is reached – Voltage-gated Na+ channels open up – Since Na conc outside is more than the inside – Na influx will occur – Positive ion coming inside increases the positivity of the membrane potential and causes depolarisation – When it reaches +30, Na+ channels closes – Then Voltage-gated K+ channels open up – K+ efflux occurs – Positive ion leaving the inside causes more negativity inside the membrane – Repolarisation occurs
  • 33. Physiological basis of AP • Since Na+ has come in and K+ has gone out • Membrane has become negative • But ionic distribution has become unequal • Na+/K+ pump restores Na+ and K+ conc slowly – By pumping 3 Na+ ions outward and 2+ K ions inward
  • 34. VOLTAGE-GATED ION CHANNELS • Na+ channel – This has two gates • Activation and inactivation gates outside inside Activation gate Inactivation gate
  • 35. • At rest: the activation gate is closed • At threshold level: activation gate opens – Na+ influx will occur – Na+ permeability increases to 500 fold • when reaching +30, inactivation gate closes – Na influx stops • Inactivation gate will not reopen until resting membrane potential is reached • Na+ channel opens fast outside inside outside inside -70 Threshold level +30 Na+ Na+ outside inside Na+m gate h gate
  • 36. VOLTAGE-GATED K+ Channel • K+ channel – This has only one gate outside inside
  • 37. – At rest: K+ channel is closed – At +30 • K+ channel open up slowly • This slow activation causes K efflux – After reaching the resting still slow K+ channels may remain open: causing further hyperpolarisation outside inside outside inside -70 At +30 K+ K+ n gate
  • 39. Refractory Period • Absolute refractory period – During this period nerve membrane cannot be excited again – Because of the closure of inactivation gate -70 +30 outside inside
  • 40. Refractory Period • Relative refractory period – During this period nerve membrane can be excited by supra threshold stimuli – At the end of repolarisation phase inactivation gate opens and activation gate closes – This can be opened by greater stimuli strength -70 +30 outside inside
  • 41. Propagation of AP • When one area is depolarised • A potential difference exists between that site and the adjacent membrane • A local current flow is initiated • Local circuit is completed by extra cellular fluid
  • 42. Propagation of AP • This local current flow will cause opening of voltage-gated Na channel in the adjacent membrane • Na influx will occur • Membrane is deloparised
  • 43. Propagation of AP • Then the previous area become repolarised • This process continue to work • Resulting in propagation of AP
  • 52. AP propagation along myelinated nerves • Na channels are conc around nodes • Therefore depolarisation mainly occurs at nodes
  • 53. AP propagation along myelinated nerves • Local current will flow one node to another • Thus propagation of A.P. is faster. Conduction through myelinated fibres also faster. • Known as Saltatory Conduction
  • 54.
  • 55.
  • 56. • Re-establishment of Na & K conc after A.P. – Na-K Pump is responsible for this. – Energy is consumed 3 Na+ 2 K+ ATP ADP
  • 57. Membrane stabilisers • Membrane stabilisers (these decrease excitability) • Increased serum Ca++ – Hypocalcaemia causes membrane instability and spontaneous activation of nerve membrane – Reduced Ca level facilitates Na entry – Spontaneous activation • Decreased serum K+ • Local anaesthetics • Acidosis • Hypoxia • Membrane destabilisers (these increase excitability) • Decreased serum Ca++ • Increased serum K+ • Alkalosis
  • 58. Muscle action potentials • Skeletal muscle • Smooth muscle • Cardiac muscle
  • 59. Skeletal muscle • Similar to nerve action potential
  • 60. Cardiac muscle action potential Phases • 0: depolarisation • 1: short repolarisation • 2: plateau phase • 3: repolarisation • 4: resting Duration is about 250 msec
  • 61. Cardiac muscle action potential Phases • 0: depolarisation (Na+ influx through fast Na+ channels) • 1: short repolarisation (K+ efflux through K+ channels, Cl- influx as well) • 2: plateau phase (Ca++ influx through slow Ca++ channels) • 3: repolarisation (K+ efflux through K+ channels) • 4: resting
  • 62. Smooth muscle • Resting membrane potential may be about -55mV • Action potential is similar to nerve AP • But AP is not necessary for its contraction • Smooth muscle contraction can occur by hormones
  • 63. Depolarisation • Activation of nerve membrane • Membrane potential becomes positive • Due to influx of Na+ or Ca++
  • 64. Hyperpolarisation • Inhibition of nerve membrane • Membrane potential becomes more negative • Due to efflux of K+ or influx of Cl-