SlideShare a Scribd company logo
1 of 24
Vladimir S. Aslanov
               aslanov_vs@mail.ru



THE DYNAMICS AND CONTROL OF
     VARIABLE STUCTURE
  AXIAL SATELLITE GYROSTAS

      Theoretical Mechanics Department
                 www.termech.ru

   Samara State Aerospace University, Russia
                  www.ssau.ru




                      2012
Statement of the problem
• We study dynamics and control of an axial satellite gyrostat with variable structure and free of external
  torques.
• Depending on the relationship of inertia moments the paper discusses three basic types of gyrostats:
  oblate, prolate and intermediate and the two boundary types: oblate-intermediate, prolate-intermediate.
• During the motion of a satellite the inertia moments of the rotor change slowly in time, which may be
  related to the deployment of solar panels, solar sails and other constructions. In this case, the satellite
  gyrostat can take place all the types from prolate to oblate or vice versa.




 The dynamics of a rotating body studied famous mathematicians of all time as Euler, Cauchy, Jacobi, Poinsot,
 Lagrange and Kovalevskaya. The research of the dynamics of rotating bodies is very important for numerous
 applications such as the dynamics of satellite-gyrostat and spacecraft. In this area we note the papers
 scientists as Rumyantsev, Sarychev, Wittenburg, Cochran, Hall, Rand, Hughes, Kinsey, Elipe and Lanchares ,
 Kuang,Tong et al.
                                                                                                                2
Statement of the problem

The purpose of this report is to find the control for the satellite gyrostat. The
control law should allow keeping a stable motion in the vicinity of the equilibrium
position for slowly changing of the rotor inertia moments in time. The main idea
of ​the stabilization method is conservation of the stable position by selecting the
internal torque.

We solve the following tasks:

• The dynamics of the satellite is described by using ordinary differential
equations with Serret-Andoyer canonical variables.
• The equations of motion have a simple dimensionless form and contain a small
parameter.
• For undisturbed motion, when the inertia moments of the satellite gyrostat aren’t
changed and the internal torque is equal to zero the stationary solutions are
found, and their stability is studied.
• For disturbed motion of the gyrostat with variable structure the control law
obtained on the basis of the stationary solutions.
• Several numerical simulations are given to confirm effectiveness of the founded
control law.
                                                                                  3
The motion equations
The equations of the motion for the angular momentum variables of an axial gyrostat with
zero external torque may be written as

                           dh1    I 2 I3                                dh2       I3        IP           h3
                                           h2 h3 ,                                               h1 ha      ,
                           dt       I 2 I3                               dt            I3                IP
                                                                                                                             (1)
                           dh3     IP        I2            h2           dha
                                                  h1 ha       ,                 
                                                                                ga
                           dt           I2                 IP            dt

 where ei are principal axes;                
                                             ga   is the torque applied by P on R about e1;

    ha=IS(       S+    1)   is the angular momentum of R about e1;
    h1=I1       1+Is   s    is the angular momentum of P+R about e1;
    hi=Ii   i   are the angular momentum of P+R about ei (i=2,3);

    Ii are the moments of inertia of P+R about ei

     i   are the angular velocities of P about ei;                s   is the angular velocity of R about e1 relative to P.
    IP=I1 - IS is the moment of inertia of P about e1;
    Is is the moment of inertia of R about e1;
    IR is the moment of inertia of R about e2, e3                                                                                  4
The motion equations
The equations of the motion can be simplified by using two canonical Serret-Andoyer
(S-A) variables: l, L (Figure 1). Using the change of variables

                 h1     L, h2          G2    L2 sin l ,     h3         G2   L2 cos l                         (2)


We obtain the equations of the motion in terms of the S-A variables


 dl    1               1
          L ha           L a b (b a ) cos 2l ,
 dt    IP              2
 dL     1
            (b a) G 2          L2 sin 2l ,                       (3)
 dt    2I P
 dha
       ga
  dt
              IP        IP
where a          , b       .                              (4)
              I2        I3

Assume that     I2     I3 , b a                           (5)
                                                                                 Fig. 1 The axial gyrostat         5
The motion equations
The transformation of the Equations (3) to a dimensionless form is obtained by using four
parameters:           L      ha       G         
                                               ga I p
                    s       , d        ,        t        , ga       2
                                                                            abs s   1   (6)
                        G          G                Ip          G
The change of variables (6) leads to the equivalent set of dimensionless equations
                  dl        s
                      s d      a b (b a) cos 2l ,
                  d         2
                  ds 1
                        (b a) 1 s 2 sin 2l ,                                            (7)
                  d   2
                  d d
                         ga
                    d
Let us assume the inertia moments of the axisymmetric rotor R about e1, e2, e3 are
continuous functions of the dimensionless time
                                                                                        (8)
                                           IS       I S ( ), I R        IR ( )
A separate study is showed that the form of the motion Equations (7) doesn’t change in this case.
We assume the derivative of the rotor inertia moments and the internal torque by small
                                                dI S dI R
                                                    ,     , ga          O                (9)
                                                d d
where is a small parameter.                                                                     6
The undisturbed motion
At ε=0 the disturbed Equations are reduced to an undisturbed canonical system
           H             s
     l             s d       a b       (b a ) cos 2l ,
           s             2                                                           (10)
               H    1
     s                (b a ) 1 s 2 sin 2l
               l    2
     a, b, d   const

where H is Hamiltonian by
                             1 s2                             s2
                    H l, s             a b     (b a) cos 2l        sd   h   const.   (11)
                              4                               2

Solving the Eq. (11) with respect to cos2l, we get an equation of the phase trajectory:


                                          a b 2 s 2 4ds 4h a b                       (12)
                              cos 2l
                                                  1 s2 b a


                                                                                            7
The undisturbed motion

 Canonical Eq. (10) have four stationary solutions:


              cos 2l*    1,                          s*   d/ 1 b ,                    (13)
              cos 2l*         1,                     s*   d/ 1 a ,                    (14)
              cos 2l*     2 a b 2d / b a ,           s* 1,
                                                                                      (15)
              cos 2l*     2 a b 2d / b a ,           s*    1                          (16)


 Determined by the stability of the solutions.

 It’s proved12 that the stationary solution (14) is stable if   b 1 IP       I3
                                            and unstable if     b 1 IP       I3
                                                                                        (17)
                    the stationary solution (15) is stable if   a 1 IP      I2
                                            and unstable if     a    1 IP        I2
the stationary solutions (16) and (17) are unstable always.
                                                                                               8
The undisturbed motion
Let us give complete classification of all types gyrostats depending on the ratio of the
inertia moments:

  1. Oblate Gyrostat:                 Ip   I2   I3   b   a 1
  2. Oblate-Intermediate Gyrostat:    Ip   I2   I3   b   a 1
  3. Intermediate Gyrostat:           I2   Ip   I3   b 1 a
  4. Prolate-Intermediate Gyrostat:   I2   Ip   I3   b 1 a
  5. Prolate Gyrostat:                I2   I3   Ip   1 b   a



Gyrostats 1, 3 and 5 correspond to areas with the same
numbers in Figure 2.

Gyrostat 2 corresponds to the border
between areas 1 and 3 and Gyrostat 4 – to the border between
areas 3 and 5.


                                                               FIGURE 2. Partition of the parameter plane
                                                                                 a 1, b   1
                                                                                                            9
The undisturbed motion
Five gyrostat types determined by ratio of the inertia moments for different
                           kinematic conditions

#         Type          Subtype    Conditions        Kinematic conditions
                           a           IP>I2>I3           |d/(1-a)|<1
1        Oblate
                           b          (b>a>1)             |d/(1-a)|≥1
         Oblate-               IP=I2>I3 (b>a=1)          |d/(1-a)|
2
      intermediate
                          a                               |d/(1-a)|≥1
                                       I2>IP>I3
3     Intermediate        b                         |d/(1-a)|<1, |d/(1-b)|<1
                                      (b>1>a)
                          c                               |d/(1-b)|≥1
     Intermediate-             I2>IP=I3 (b=1>a)          |d/(1-b)|
4
        prolate
                          a           I2>I3 >IP           |d/(1-b)|≥1
5       Prolate
                          b           (1>b>a)             |d/(1-b)|<1

                                                                               10
Phase space: Oblate gyrostat
                      There are two types of the phase space when I p          I2     I3     b   a 1




      d                                                               d
If           1 (1a case) the critical points are defined as   If               1 (1b case)
     1 a                                                            1 a
          saddles:                                                 saddles:
                     ls          k , ss    d / (1 a)                                2 a b 2d
                          2                                            cos 2ls               , ss      sgn d
                                                                                       b a
          centers:                                                 centers:
                     lc       k , sc      d/ 1 b                          lc        k , sc   d/ 1 b

                                                                                                               11
Phase space: Oblate-intermediate (2), Intermediate (3.a)
       There is the same phase space for the oblate-intermediate and intermediate gyrostats




                                                                                             abs s     1




  Oblate-intermediate (case 2)                            Intermediate (case 3.a)

  IP    I2    I3 (b a 1)                                  I2      IP     I3 (b a 1), d / (1 a) 1
  Critical points                                              Critical points

        saddles                                                        saddles
                       2 a b 2d                                                     2 a b 2d
             cos 2ls            , ss     sgn d                            cos 2ls            , ss          sgn d
                          b a                                                          b a
        centers                                                        centers

             lc        k , sc   d/ 1 b                                     lc       k , sc    d/ 1 b
                                                                                                              12
Phase space: Intermediate gyrostat
                                 I2      IP     I3 (b 1 a)




Intermediate gyrostat (3b case) has two sets of the critical points for each type
                                              saddles
                2 a b 2d                                           2 a b 2d
     cos 2ls             , ss    sgn d                  cos 2ls             , ss   sgn d
                   b a                                                b a
                                              centers
    lc         k , sc   d/ 1 b                          lc        /2   k , sc   d/ 1 b
                                                                                           13
Phase space: Intermediate (3.c), Intermediate-prolate (4)
       There is the same phase space for the intermediate (3.c) and intermediate-prolate gyrostats




             Intermediate (3.c)                                     Intermediate-prolate (4)
  I2    IP     I3 (b a 1), d        b 1                             I2   IP       I3 (b 1 a)

  Critical points                                           Critical points

  saddles                                                   saddles
                       2 a b 2d                                          2 a b 2d
             cos 2ls            , ss      sgn d               cos 2ls             , ss         sgn d
                          b a                                               b a
  centers                                                  centers

              lc       k , sc   d/ 1 b                         lc        k , sc    d/ 1 b
                                                                                                       14
Phase space: Prolate gyrostat

               There are two types of the phase space when I 2     I3      I P (1 b a)




                                d                                                    d
Critical points for 5a case            1            Critical points for 5b case           1
                               1 b                                                  1 b
saddles                                             saddles
                    2 a b 2d
          cos 2ls            , ss      sgn d                  ls   0, ss     d / (1 b)
                       b a
centers                                             centers

          lc         k , sc   d/ 1 a                          lc           k , sc   d/ 1 a
                2                                                  2
                                                                                              15
Variable moments of inertia
We study the stabilization of the gyrostat with the axisymmetric rotor. Rotor has a
variable inertia moments:
                                  I R = I R (t ), I S = I S (t )                (18)




   For example we can see
   deployment a solar sail




                                             IP              IP
  Equations (10) for time-varying a ( )           , b( )            have the same form:
                                           I2 ( )          I3 ( )
                       H            s
                  l          s d      a b       b a cos 2l
                       s            2
                         H   1
                 s             b a 1 s 2 sin 2l                                           (19)
                         l   2
                  d ' = ga
                                   where   ga   is internal torque (control)                     16
Phase space deformation of gyrostat with
                 variable moments of inertia
Here you can see phase space deformation when gyrostat changes it’s type from oblate
to prolate due to change (increase) in the inertia moments of the rotor.




IS ( )    a( )
IR ( )    b( )




                                                                                       17
Gyrostat stabilization
We claim that s s* while   I R = I R (t )   I S = I S (t )

                      • To keep stable point for I P         I 2 (Oblate gyrostat)
                             d
                      s*          const                                       (20)
                           1 b

                       • After differentiating d (1 b) s* we get a
                       control law for the internal torque :
                                                                 IP IR ¢
                                     d ' = g a = s* (1- b) ' =           s*   (21)
                                                                  I 32


                       • To keep stable point for I 2        I P (Prolate gyrostat)
                             d
                       s*          const                                      (22)
                            1 a

                       • After differentiating d (1 b) s* we get a
                       control law for the internal torque :
                                                                 IPIR¢
                                    d ' = g a = s* (1- a ) ' =     2
                                                                       s*     (23)
                                                                  I2
Numerical example
To confirm control efficiency we consider a numeric example.
Suppose that the rotor has deployable construction (solar array or solar sail).
This leads to time-dependent inertia moments of the rotor:
I R (t ) = I R 0 - k2t , I S (t ) = kS I R (t ) - gyrostat changes its type from prolate to oblate.


                Uncontrolled gyrostat with variable moments of inertia
                                           s0=0.5,   s0   = 0.2
                           s                                          Relative angular velocity       s




• In this case gyrostat lose its orientation: the angle between e1 axis and angular
  momentum vector changes sufficiently.
• Changes in inertia moments affect the angular velocities of R about e1 .
                                                                                                          19
Numerical example
         Controlled gyrostat with variable inertia moments (s0=0.5,               s0   = 0.2)
                                                         IPIR¢
                            d ' = g a = s* (1- a ) ' =     2
                                                               s*
                                                          I2
                s remains practically constant: s=s0=0.5 (|s-s0|<2 10-7)
            Control torque ga( )                                    Relative angular velocity   s




• Angular velocities of R about e1 relative to P is decreased.
• System preserves its state in phase space, despite to changes in the inertia moments
  of the rotor.
                                                                                                    20
Numerical example
• Here we can see how internal torque affects to the angular velocities of the gyrostat
  with variable inertia moments. Uncontrolled gyrostat has oscillations in angular
  velocities that can cause unwanted high accelerations of the gyrostat.

• The angular velocities of the controlled gyrostat are monotonic functions of   and we
  can expect that small accelerations.

                                Platform angular velocities

      Case 1: Uncontrolled gyrostat                     Case 2: Controlled gyrostat


                                                          2




                 2

     1                                                    1




         3


                                                           3




                                                                                          21
Conclusion

1. The dynamics of the dual-spin gyrostat spacecraft is described by using
   ordinary differential equations with Serret-Andoyer canonical variables.
2. The equations of motion have a simple dimensionless form and contain a small
   parameter.
3. For undisturbed motion the stationary solutions are found, and their stability is
   studied for the all the types of the gyrostats.
4. For disturbed motion of the gyrostat with variable structure the control law
   obtained on the basis of the stationary solutions.
5. It’s shown that uncontrolled gyrostat satellite can lose its axis orientation and
   because of change in moments of inertia of the rotor.
6. The oscillations of the angular velocities and accelerations of the gyrostat
   accompany changes in moments of inertia of the rotor.
7. Obtained internal torque keeps axis orientation of the gyrostat and get angular
   velocities and accelerations monotonic functions of time.




                                                                                       22
References
[1] Cochran, J. E. Shu, P.-H. and Rew, S. D. “Attitude Motion of Asymmetric Dual-Spin Spacecraft”
Journal of Guidance, Control, and Dynamics, V. 5, n 1, 1982, pp. 37-42.
[2] Hall, C. D. and Rand, R. H.: “Spinup Dynamics of Axial Dual-Spin Spacecraft” Journal of Guidance,
Control, and Dynamics. V. 17, n. 1, 1994, pp. 30-37.
[3] Hall C.D. “Escape from gyrostat trap states” J. Guidance Control Dyn. V. 21. 1998. pp. 421-426.
[4] A. Elipe and Lanchares “Exact solution of a triaxial gyrostat with one rotor” Celestial Mechanics and
Dynamical Astronomy V. 101 (1-2). 2008. pp. 49-68.
[5] Lanchares, V., Iñarrea, M., Salas, J.P. “Spin rotor stabilization of a dual-spin spacecraft with time
dependent moments of inertia” Int. J. Bifurcat. Chaos 8. 1998. pp. 609-617.
[6] Hughes, P.C. “Spacecraft Attitude Dynamics” Wiley, New York, 1986.
[7] Kinsey K.J., Mingori D.L., Rand R.H. “Non-linear control of dual-spin spacecraft during despin
through precession phase lock” J. Guidance Control Dyn. 19, 1996, 60-67.
[8] Kane,T.R. “Solution of the Equations of rotational motion for a class of torque-free gyrostats” AIAA
Journal. V. 8. n 6. 1970. pp. 1141-1143.
[9] El-Gohary, A. I. “On the stability of an equilibrium position and rotational motion of a gyrostat” Mech.
Res. Comm. 24. 1997. pp. 457-462.

                                                                                                            23
References
[10] Neishtadt A.I., Pivovarov M.L. “Separatrix crossing in the dynamics of a dual-spin satellite” J. of
Applied Mathematics and Mechanics. 64. 2000. pp. 741-746.
[11] Aslanov, V. S., Doroshin, A.V. “Chaotic dynamics of an unbalanced gyrostat” J. of Applied
Mathematics and Mechanics 74. 2010. pp. 524-535.
[12] Aslanov, V. S. “Integrable cases in the dynamics of axial gyrostats and adiabatic invariants”
Nonlinear Dynamics, Volume 68, Issue 1 (2012), Page 259-273 (DOI 10.1007/s11071-011-0225-x).
[13] Aslanov, V. S. “Dynamics of free dual-spin spacecraft” Engineering Letters (International
Association of Engineers). 19. 2011. pp. 271–278.
[14] Sarychev, V. A., Guerman, A. D., and Paglione, P. “The Influence of Constant Torque on Equilibria of
Satellite in Circular Orbit” Celestial Mechanics and Dynamical Astronomy, Vol. 87, No. 3, 2003.
[15] J. Wittenburg Dynamics of Systems of Rigid Bodies. B.G. Teubner Stuttgard, 1977.
[16] V. A. Sarychev and S. A. Mirer “Relative equilibria of a gyrostat satellite with internal angular
momentum along aprincipal axis” Acta Astronautica, 49(11). 2001. pp. 641–644.
[17] Rumyantsev V. V. “On the Lyapunov’s methods in the study of stability of motions of rigid bodies
with fluid-filled cavities” Adv. Appl. Mech. 8. 1964. pp. 183-232.
[18] Serret, J.A., “Me moiresurl'emploi de la me thode de la variation des arbitrairesdans theorie des
mouvementsde rotations”. Memoires de l’Academie des sciences de Paris, Vol. 35, 1866, pp. 585-616.
[19] Andoyer H. “Cours de Mechanique Celeste” Vol. 1, Gauthier-Villars. 1923.

                                                                                                           24

More Related Content

What's hot

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filtersNikolay Karpov
 
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedfoxtrot jp R
 
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...Xavier Terri
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jay Wacker
 
MIMO Stability Margins
MIMO Stability MarginsMIMO Stability Margins
MIMO Stability Marginsapexyz
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modulguestcc333c
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 
S. Duplij, Constraintless approach to singular theories, new brackets and mul...
S. Duplij, Constraintless approach to singular theories, new brackets and mul...S. Duplij, Constraintless approach to singular theories, new brackets and mul...
S. Duplij, Constraintless approach to singular theories, new brackets and mul...Steven Duplij (Stepan Douplii)
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graphguestcc333c
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiYuri Anischenko
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZoe Zontou
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologySEENET-MTP
 
Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...
Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...
Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...guest9fa195
 

What's hot (20)

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
 
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
 
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Physics test2011 1
Physics test2011 1Physics test2011 1
Physics test2011 1
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI), International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI),
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
MIMO Stability Margins
MIMO Stability MarginsMIMO Stability Margins
MIMO Stability Margins
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modul
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
S. Duplij, Constraintless approach to singular theories, new brackets and mul...
S. Duplij, Constraintless approach to singular theories, new brackets and mul...S. Duplij, Constraintless approach to singular theories, new brackets and mul...
S. Duplij, Constraintless approach to singular theories, new brackets and mul...
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graph
 
Lec02
Lec02Lec02
Lec02
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nuclei
 
Lecture notes 02
Lecture notes 02Lecture notes 02
Lecture notes 02
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
 
Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...
Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...
Gauge Invariance Of The Action Principle For Gauge Systems With Noncanonical ...
 

Viewers also liked

Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and controlZuliana Ismail
 
Active Suspension System
Active Suspension SystemActive Suspension System
Active Suspension SystemBehzad Samadi
 
Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Theoretical mechanics department
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuSEENET-MTP
 
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -Milan Milošević
 
Написание научной статьи на английском языке
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языкеTheoretical mechanics department
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugTheoretical mechanics department
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3SEENET-MTP
 
Rocket science experiment for class iv
Rocket science experiment for class ivRocket science experiment for class iv
Rocket science experiment for class ivvaignan
 
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Oka Kurniawan
 
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...Masahiro Kanazaki
 
Brief introduction to perturbation theory
Brief introduction to perturbation theoryBrief introduction to perturbation theory
Brief introduction to perturbation theoryAnamika Banerjee
 
Future inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentationFuture inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentationAsad Jamil
 

Viewers also liked (20)

Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and control
 
Active Suspension System
Active Suspension SystemActive Suspension System
Active Suspension System
 
Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
 
Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust
 
Написание научной статьи на английском языке
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языке
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
 
Attitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry VehicleAttitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry Vehicle
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
Turbines
TurbinesTurbines
Turbines
 
Basic Ray Theory
Basic Ray TheoryBasic Ray Theory
Basic Ray Theory
 
Rocket science experiment for class iv
Rocket science experiment for class ivRocket science experiment for class iv
Rocket science experiment for class iv
 
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
 
Aerospace engineering
Aerospace engineeringAerospace engineering
Aerospace engineering
 
Airplane
AirplaneAirplane
Airplane
 
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch using Genetic Al...
 
Brief introduction to perturbation theory
Brief introduction to perturbation theoryBrief introduction to perturbation theory
Brief introduction to perturbation theory
 
Against Space
Against SpaceAgainst Space
Against Space
 
Future inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentationFuture inventions of aerospace engineering presentation
Future inventions of aerospace engineering presentation
 

Similar to The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure

Physics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid BodyPhysics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid BodyMuhammad Solehin
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsSpringer
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsEditor IJCATR
 
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological modelsSome bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological modelsAlexander Decker
 
Nevenko Bilić "Tachyon inflation on the holographic braneworld"
Nevenko Bilić "Tachyon inflation on the holographic braneworld"Nevenko Bilić "Tachyon inflation on the holographic braneworld"
Nevenko Bilić "Tachyon inflation on the holographic braneworld"SEENET-MTP
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationinventy
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsIAEME Publication
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsIAEME Publication
 
legendre transformatio.pptx
legendre transformatio.pptxlegendre transformatio.pptx
legendre transformatio.pptxMohsan10
 
Geolocation techniques
Geolocation techniquesGeolocation techniques
Geolocation techniquesSpringer
 
Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.Valentin De Bortoli
 
Analysis of multiple groove guide
Analysis of multiple groove guideAnalysis of multiple groove guide
Analysis of multiple groove guideYong Heui Cho
 

Similar to The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure (16)

Chapter 8 sesi 1112 1
Chapter 8 sesi 1112 1Chapter 8 sesi 1112 1
Chapter 8 sesi 1112 1
 
Physics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid BodyPhysics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid Body
 
Ef24836841
Ef24836841Ef24836841
Ef24836841
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological modelsSome bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
 
Nevenko Bilić "Tachyon inflation on the holographic braneworld"
Nevenko Bilić "Tachyon inflation on the holographic braneworld"Nevenko Bilić "Tachyon inflation on the holographic braneworld"
Nevenko Bilić "Tachyon inflation on the holographic braneworld"
 
Asymptotic Analysis
Asymptotic  AnalysisAsymptotic  Analysis
Asymptotic Analysis
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equation
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductors
 
Strong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductorsStrong coupling model for high tc copper-oxide superconductors
Strong coupling model for high tc copper-oxide superconductors
 
legendre transformatio.pptx
legendre transformatio.pptxlegendre transformatio.pptx
legendre transformatio.pptx
 
Geolocation techniques
Geolocation techniquesGeolocation techniques
Geolocation techniques
 
Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.Introduction to harmonic analysis on groups, links with spatial correlation.
Introduction to harmonic analysis on groups, links with spatial correlation.
 
Ct24621630
Ct24621630Ct24621630
Ct24621630
 
Analysis of multiple groove guide
Analysis of multiple groove guideAnalysis of multiple groove guide
Analysis of multiple groove guide
 

More from Theoretical mechanics department

Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Theoretical mechanics department
 
Основы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыОсновы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыTheoretical mechanics department
 
Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Theoretical mechanics department
 
Docking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismDocking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismTheoretical mechanics department
 
Алгоритмы и языки программирования
Алгоритмы и языки программированияАлгоритмы и языки программирования
Алгоритмы и языки программированияTheoretical mechanics department
 
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherChaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherTheoretical mechanics department
 
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Theoretical mechanics department
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingTheoretical mechanics department
 
Методы решения нелинейных уравнений
Методы решения нелинейных уравненийМетоды решения нелинейных уравнений
Методы решения нелинейных уравненийTheoretical mechanics department
 

More from Theoretical mechanics department (20)

Космический мусор
Космический мусорКосмический мусор
Космический мусор
 
Основы SciPy
Основы SciPyОсновы SciPy
Основы SciPy
 
Основы NumPy
Основы NumPyОсновы NumPy
Основы NumPy
 
Модификация механизма Йо-Йо
Модификация механизма Йо-ЙоМодификация механизма Йо-Йо
Модификация механизма Йо-Йо
 
Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование
 
Python. Обработка ошибок
Python. Обработка ошибокPython. Обработка ошибок
Python. Обработка ошибок
 
Python: ввод и вывод
Python: ввод и выводPython: ввод и вывод
Python: ввод и вывод
 
Python: Модули и пакеты
Python: Модули и пакетыPython: Модули и пакеты
Python: Модули и пакеты
 
Основы Python. Функции
Основы Python. ФункцииОсновы Python. Функции
Основы Python. Функции
 
Основы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыОсновы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторы
 
Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754
 
Docking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismDocking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanism
 
Алгоритмы и языки программирования
Алгоритмы и языки программированияАлгоритмы и языки программирования
Алгоритмы и языки программирования
 
Deployers for nanosatellites
Deployers for nanosatellitesDeployers for nanosatellites
Deployers for nanosatellites
 
CubeSat separation dynamics
CubeSat separation dynamicsCubeSat separation dynamics
CubeSat separation dynamics
 
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherChaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a Tether
 
Основы MATLAB. Численные методы
Основы MATLAB. Численные методыОсновы MATLAB. Численные методы
Основы MATLAB. Численные методы
 
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towing
 
Методы решения нелинейных уравнений
Методы решения нелинейных уравненийМетоды решения нелинейных уравнений
Методы решения нелинейных уравнений
 

Recently uploaded

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbuapidays
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusZilliz
 

Recently uploaded (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 

The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure

  • 1. Vladimir S. Aslanov aslanov_vs@mail.ru THE DYNAMICS AND CONTROL OF VARIABLE STUCTURE AXIAL SATELLITE GYROSTAS Theoretical Mechanics Department www.termech.ru Samara State Aerospace University, Russia www.ssau.ru 2012
  • 2. Statement of the problem • We study dynamics and control of an axial satellite gyrostat with variable structure and free of external torques. • Depending on the relationship of inertia moments the paper discusses three basic types of gyrostats: oblate, prolate and intermediate and the two boundary types: oblate-intermediate, prolate-intermediate. • During the motion of a satellite the inertia moments of the rotor change slowly in time, which may be related to the deployment of solar panels, solar sails and other constructions. In this case, the satellite gyrostat can take place all the types from prolate to oblate or vice versa. The dynamics of a rotating body studied famous mathematicians of all time as Euler, Cauchy, Jacobi, Poinsot, Lagrange and Kovalevskaya. The research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellite-gyrostat and spacecraft. In this area we note the papers scientists as Rumyantsev, Sarychev, Wittenburg, Cochran, Hall, Rand, Hughes, Kinsey, Elipe and Lanchares , Kuang,Tong et al. 2
  • 3. Statement of the problem The purpose of this report is to find the control for the satellite gyrostat. The control law should allow keeping a stable motion in the vicinity of the equilibrium position for slowly changing of the rotor inertia moments in time. The main idea of ​the stabilization method is conservation of the stable position by selecting the internal torque. We solve the following tasks: • The dynamics of the satellite is described by using ordinary differential equations with Serret-Andoyer canonical variables. • The equations of motion have a simple dimensionless form and contain a small parameter. • For undisturbed motion, when the inertia moments of the satellite gyrostat aren’t changed and the internal torque is equal to zero the stationary solutions are found, and their stability is studied. • For disturbed motion of the gyrostat with variable structure the control law obtained on the basis of the stationary solutions. • Several numerical simulations are given to confirm effectiveness of the founded control law. 3
  • 4. The motion equations The equations of the motion for the angular momentum variables of an axial gyrostat with zero external torque may be written as dh1 I 2 I3 dh2 I3 IP h3 h2 h3 , h1 ha , dt I 2 I3 dt I3 IP (1) dh3 IP I2 h2 dha h1 ha ,  ga dt I2 IP dt where ei are principal axes;  ga is the torque applied by P on R about e1; ha=IS( S+ 1) is the angular momentum of R about e1; h1=I1 1+Is s is the angular momentum of P+R about e1; hi=Ii i are the angular momentum of P+R about ei (i=2,3); Ii are the moments of inertia of P+R about ei i are the angular velocities of P about ei; s is the angular velocity of R about e1 relative to P. IP=I1 - IS is the moment of inertia of P about e1; Is is the moment of inertia of R about e1; IR is the moment of inertia of R about e2, e3 4
  • 5. The motion equations The equations of the motion can be simplified by using two canonical Serret-Andoyer (S-A) variables: l, L (Figure 1). Using the change of variables h1 L, h2 G2 L2 sin l , h3 G2 L2 cos l (2) We obtain the equations of the motion in terms of the S-A variables dl 1 1 L ha L a b (b a ) cos 2l , dt IP 2 dL 1 (b a) G 2 L2 sin 2l , (3) dt 2I P dha ga dt IP IP where a , b . (4) I2 I3 Assume that I2 I3 , b a (5) Fig. 1 The axial gyrostat 5
  • 6. The motion equations The transformation of the Equations (3) to a dimensionless form is obtained by using four parameters: L ha G  ga I p s , d , t , ga 2 abs s 1 (6) G G Ip G The change of variables (6) leads to the equivalent set of dimensionless equations dl s s d a b (b a) cos 2l , d 2 ds 1 (b a) 1 s 2 sin 2l , (7) d 2 d d ga d Let us assume the inertia moments of the axisymmetric rotor R about e1, e2, e3 are continuous functions of the dimensionless time (8) IS I S ( ), I R IR ( ) A separate study is showed that the form of the motion Equations (7) doesn’t change in this case. We assume the derivative of the rotor inertia moments and the internal torque by small dI S dI R , , ga O (9) d d where is a small parameter. 6
  • 7. The undisturbed motion At ε=0 the disturbed Equations are reduced to an undisturbed canonical system H s l s d a b (b a ) cos 2l , s 2 (10) H 1 s (b a ) 1 s 2 sin 2l l 2 a, b, d const where H is Hamiltonian by 1 s2 s2 H l, s a b (b a) cos 2l sd h const. (11) 4 2 Solving the Eq. (11) with respect to cos2l, we get an equation of the phase trajectory: a b 2 s 2 4ds 4h a b (12) cos 2l 1 s2 b a 7
  • 8. The undisturbed motion Canonical Eq. (10) have four stationary solutions: cos 2l* 1, s* d/ 1 b , (13) cos 2l* 1, s* d/ 1 a , (14) cos 2l* 2 a b 2d / b a , s* 1, (15) cos 2l* 2 a b 2d / b a , s* 1 (16) Determined by the stability of the solutions. It’s proved12 that the stationary solution (14) is stable if b 1 IP I3 and unstable if b 1 IP I3 (17) the stationary solution (15) is stable if a 1 IP I2 and unstable if a 1 IP I2 the stationary solutions (16) and (17) are unstable always. 8
  • 9. The undisturbed motion Let us give complete classification of all types gyrostats depending on the ratio of the inertia moments: 1. Oblate Gyrostat: Ip I2 I3 b a 1 2. Oblate-Intermediate Gyrostat: Ip I2 I3 b a 1 3. Intermediate Gyrostat: I2 Ip I3 b 1 a 4. Prolate-Intermediate Gyrostat: I2 Ip I3 b 1 a 5. Prolate Gyrostat: I2 I3 Ip 1 b a Gyrostats 1, 3 and 5 correspond to areas with the same numbers in Figure 2. Gyrostat 2 corresponds to the border between areas 1 and 3 and Gyrostat 4 – to the border between areas 3 and 5. FIGURE 2. Partition of the parameter plane a 1, b 1 9
  • 10. The undisturbed motion Five gyrostat types determined by ratio of the inertia moments for different kinematic conditions # Type Subtype Conditions Kinematic conditions a IP>I2>I3 |d/(1-a)|<1 1 Oblate b (b>a>1) |d/(1-a)|≥1 Oblate- IP=I2>I3 (b>a=1) |d/(1-a)| 2 intermediate a |d/(1-a)|≥1 I2>IP>I3 3 Intermediate b |d/(1-a)|<1, |d/(1-b)|<1 (b>1>a) c |d/(1-b)|≥1 Intermediate- I2>IP=I3 (b=1>a) |d/(1-b)| 4 prolate a I2>I3 >IP |d/(1-b)|≥1 5 Prolate b (1>b>a) |d/(1-b)|<1 10
  • 11. Phase space: Oblate gyrostat There are two types of the phase space when I p I2 I3 b a 1 d d If 1 (1a case) the critical points are defined as If 1 (1b case) 1 a 1 a saddles: saddles: ls k , ss d / (1 a) 2 a b 2d 2 cos 2ls , ss sgn d b a centers: centers: lc k , sc d/ 1 b lc k , sc d/ 1 b 11
  • 12. Phase space: Oblate-intermediate (2), Intermediate (3.a) There is the same phase space for the oblate-intermediate and intermediate gyrostats abs s 1 Oblate-intermediate (case 2) Intermediate (case 3.a) IP I2 I3 (b a 1) I2 IP I3 (b a 1), d / (1 a) 1 Critical points Critical points saddles saddles 2 a b 2d 2 a b 2d cos 2ls , ss sgn d cos 2ls , ss sgn d b a b a centers centers lc k , sc d/ 1 b lc k , sc d/ 1 b 12
  • 13. Phase space: Intermediate gyrostat I2 IP I3 (b 1 a) Intermediate gyrostat (3b case) has two sets of the critical points for each type saddles 2 a b 2d 2 a b 2d cos 2ls , ss sgn d cos 2ls , ss sgn d b a b a centers lc k , sc d/ 1 b lc /2 k , sc d/ 1 b 13
  • 14. Phase space: Intermediate (3.c), Intermediate-prolate (4) There is the same phase space for the intermediate (3.c) and intermediate-prolate gyrostats Intermediate (3.c) Intermediate-prolate (4) I2 IP I3 (b a 1), d b 1 I2 IP I3 (b 1 a) Critical points Critical points saddles saddles 2 a b 2d 2 a b 2d cos 2ls , ss sgn d cos 2ls , ss sgn d b a b a centers centers lc k , sc d/ 1 b lc k , sc d/ 1 b 14
  • 15. Phase space: Prolate gyrostat There are two types of the phase space when I 2 I3 I P (1 b a) d d Critical points for 5a case 1 Critical points for 5b case 1 1 b 1 b saddles saddles 2 a b 2d cos 2ls , ss sgn d ls 0, ss d / (1 b) b a centers centers lc k , sc d/ 1 a lc k , sc d/ 1 a 2 2 15
  • 16. Variable moments of inertia We study the stabilization of the gyrostat with the axisymmetric rotor. Rotor has a variable inertia moments: I R = I R (t ), I S = I S (t ) (18) For example we can see deployment a solar sail IP IP Equations (10) for time-varying a ( ) , b( ) have the same form: I2 ( ) I3 ( ) H s l s d a b b a cos 2l s 2 H 1 s b a 1 s 2 sin 2l (19) l 2 d ' = ga where ga is internal torque (control) 16
  • 17. Phase space deformation of gyrostat with variable moments of inertia Here you can see phase space deformation when gyrostat changes it’s type from oblate to prolate due to change (increase) in the inertia moments of the rotor. IS ( ) a( ) IR ( ) b( ) 17
  • 18. Gyrostat stabilization We claim that s s* while I R = I R (t ) I S = I S (t ) • To keep stable point for I P I 2 (Oblate gyrostat) d s* const (20) 1 b • After differentiating d (1 b) s* we get a control law for the internal torque : IP IR ¢ d ' = g a = s* (1- b) ' = s* (21) I 32 • To keep stable point for I 2 I P (Prolate gyrostat) d s* const (22) 1 a • After differentiating d (1 b) s* we get a control law for the internal torque : IPIR¢ d ' = g a = s* (1- a ) ' = 2 s* (23) I2
  • 19. Numerical example To confirm control efficiency we consider a numeric example. Suppose that the rotor has deployable construction (solar array or solar sail). This leads to time-dependent inertia moments of the rotor: I R (t ) = I R 0 - k2t , I S (t ) = kS I R (t ) - gyrostat changes its type from prolate to oblate. Uncontrolled gyrostat with variable moments of inertia s0=0.5, s0 = 0.2 s Relative angular velocity s • In this case gyrostat lose its orientation: the angle between e1 axis and angular momentum vector changes sufficiently. • Changes in inertia moments affect the angular velocities of R about e1 . 19
  • 20. Numerical example Controlled gyrostat with variable inertia moments (s0=0.5, s0 = 0.2) IPIR¢ d ' = g a = s* (1- a ) ' = 2 s* I2 s remains practically constant: s=s0=0.5 (|s-s0|<2 10-7) Control torque ga( ) Relative angular velocity s • Angular velocities of R about e1 relative to P is decreased. • System preserves its state in phase space, despite to changes in the inertia moments of the rotor. 20
  • 21. Numerical example • Here we can see how internal torque affects to the angular velocities of the gyrostat with variable inertia moments. Uncontrolled gyrostat has oscillations in angular velocities that can cause unwanted high accelerations of the gyrostat. • The angular velocities of the controlled gyrostat are monotonic functions of and we can expect that small accelerations. Platform angular velocities Case 1: Uncontrolled gyrostat Case 2: Controlled gyrostat 2 2 1 1 3 3 21
  • 22. Conclusion 1. The dynamics of the dual-spin gyrostat spacecraft is described by using ordinary differential equations with Serret-Andoyer canonical variables. 2. The equations of motion have a simple dimensionless form and contain a small parameter. 3. For undisturbed motion the stationary solutions are found, and their stability is studied for the all the types of the gyrostats. 4. For disturbed motion of the gyrostat with variable structure the control law obtained on the basis of the stationary solutions. 5. It’s shown that uncontrolled gyrostat satellite can lose its axis orientation and because of change in moments of inertia of the rotor. 6. The oscillations of the angular velocities and accelerations of the gyrostat accompany changes in moments of inertia of the rotor. 7. Obtained internal torque keeps axis orientation of the gyrostat and get angular velocities and accelerations monotonic functions of time. 22
  • 23. References [1] Cochran, J. E. Shu, P.-H. and Rew, S. D. “Attitude Motion of Asymmetric Dual-Spin Spacecraft” Journal of Guidance, Control, and Dynamics, V. 5, n 1, 1982, pp. 37-42. [2] Hall, C. D. and Rand, R. H.: “Spinup Dynamics of Axial Dual-Spin Spacecraft” Journal of Guidance, Control, and Dynamics. V. 17, n. 1, 1994, pp. 30-37. [3] Hall C.D. “Escape from gyrostat trap states” J. Guidance Control Dyn. V. 21. 1998. pp. 421-426. [4] A. Elipe and Lanchares “Exact solution of a triaxial gyrostat with one rotor” Celestial Mechanics and Dynamical Astronomy V. 101 (1-2). 2008. pp. 49-68. [5] Lanchares, V., Iñarrea, M., Salas, J.P. “Spin rotor stabilization of a dual-spin spacecraft with time dependent moments of inertia” Int. J. Bifurcat. Chaos 8. 1998. pp. 609-617. [6] Hughes, P.C. “Spacecraft Attitude Dynamics” Wiley, New York, 1986. [7] Kinsey K.J., Mingori D.L., Rand R.H. “Non-linear control of dual-spin spacecraft during despin through precession phase lock” J. Guidance Control Dyn. 19, 1996, 60-67. [8] Kane,T.R. “Solution of the Equations of rotational motion for a class of torque-free gyrostats” AIAA Journal. V. 8. n 6. 1970. pp. 1141-1143. [9] El-Gohary, A. I. “On the stability of an equilibrium position and rotational motion of a gyrostat” Mech. Res. Comm. 24. 1997. pp. 457-462. 23
  • 24. References [10] Neishtadt A.I., Pivovarov M.L. “Separatrix crossing in the dynamics of a dual-spin satellite” J. of Applied Mathematics and Mechanics. 64. 2000. pp. 741-746. [11] Aslanov, V. S., Doroshin, A.V. “Chaotic dynamics of an unbalanced gyrostat” J. of Applied Mathematics and Mechanics 74. 2010. pp. 524-535. [12] Aslanov, V. S. “Integrable cases in the dynamics of axial gyrostats and adiabatic invariants” Nonlinear Dynamics, Volume 68, Issue 1 (2012), Page 259-273 (DOI 10.1007/s11071-011-0225-x). [13] Aslanov, V. S. “Dynamics of free dual-spin spacecraft” Engineering Letters (International Association of Engineers). 19. 2011. pp. 271–278. [14] Sarychev, V. A., Guerman, A. D., and Paglione, P. “The Influence of Constant Torque on Equilibria of Satellite in Circular Orbit” Celestial Mechanics and Dynamical Astronomy, Vol. 87, No. 3, 2003. [15] J. Wittenburg Dynamics of Systems of Rigid Bodies. B.G. Teubner Stuttgard, 1977. [16] V. A. Sarychev and S. A. Mirer “Relative equilibria of a gyrostat satellite with internal angular momentum along aprincipal axis” Acta Astronautica, 49(11). 2001. pp. 641–644. [17] Rumyantsev V. V. “On the Lyapunov’s methods in the study of stability of motions of rigid bodies with fluid-filled cavities” Adv. Appl. Mech. 8. 1964. pp. 183-232. [18] Serret, J.A., “Me moiresurl'emploi de la me thode de la variation des arbitrairesdans theorie des mouvementsde rotations”. Memoires de l’Academie des sciences de Paris, Vol. 35, 1866, pp. 585-616. [19] Andoyer H. “Cours de Mechanique Celeste” Vol. 1, Gauthier-Villars. 1923. 24