SlideShare a Scribd company logo
1 of 86
Stability Margins of
Multivariable Feedback Systems
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
   - Frequency Domain Method
• Loop Phase Margins
   - Time Domain Method
   - Frequency Domain Method
• Conclusions


2011年2月8日星期二                         2
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
  - Frequency Domain Method
• Loop Phase Margins
  - Time Domain Method
  - Frequency Domain Method
• Conclusions



2011年2月8日星期二                        3
HISTORICAL REMARKS
• Uncertain systems
• Robust control: dominant approach
• Margin based approach




2011年2月8日星期二                          4
SISO STABILITY MARGINS
The unity output feedback configuration.
G(s)is the process

C (s)is the compensator.



SISO stability margins
- Gain margin:     GM  1/ G( j ) .
                                p

- Phase margin:   PM  180  G( jc ).




2011年2月8日星期二                                  5
MIMO MOTIVATION EXAMPLE
Consider a 2 × 2 system
                               1        2 
                               s 1   s  1
                     G ( s)               
                               3        4 
                               s 1
                                      s  1
                                            
under a decentralized proportional control      K (s)  diag k1 , k2 




2011年2月8日星期二                                                              6
MIMO MOTIVATION EXAMPLE
The characteristic equation of the closed-loop system is
            Pc (s)  P (s) PK (s) det  I  G(s)K (s)
                      G


                   s  (k1  4k2  2)s  (k1  4k2  1  2k1k2 )  0

The closed-loop system is stable if and only if
                       k1  4k2  2  0,
                       
                       k1  4k2  1  2k1k2  0.
or.,                         1       1
                       k1   k1  ,
                             4       2
                              k1  1
                       k2             , if , k1  2,
                            2(k1  2)
                              k 1
                        k2  1         , if , k1  2.
                       
                            2(k1  2)
2011年2月8日星期二                                                            7
MIMO MOTIVATION EXAMPLE
The stabilizing range is drawn as the share region.
                                      • Stabilizing range of k depends    2


                                        on the value of k and vice versa.
                                                                  1


                                        (e.g. k  1 yields k  3/ 4 )
                                                  1                   2


                                      • More useful to prescribe a range
                                        for k when finding stabilizing
                                              1

                                        range for k .(e.g. k [1, 2]
                                                            2         1


                                          yeilds k    2   [3/ 4, ).

                                      • Graphically a rectangle. (e.g. ABCD)
                                      • Not Unique.
2011年2月8日星期二                                                                  8
MIMO RESEARCH STATUS
• Doyle (1982) developed the u-analysis, and treats system
  uncertainties as complex valued.
  Thus, it is inevitable to bring the conservativeness because the gain
  change in each loop is of real number.


• Baron and Jonckheere (1991) viewed the gain margin for a
  multivariable system as the minimal complex matrix perturbation.
  Such a definition allows the gain perturbation to be a full matrix, not
  necessarily to be diagonal.

2011年2月8日星期二                                                                9
MIMO RESEARCH STATUS
• Gershgorin band method is also used to calculate the gain margin of
  multivariable system (Hong, Yang, 2005; Ho, Lee and Gan. 1997).
   It gives conservative results because it requires the diagonal
   dominance of the system, which brings some limitations to its
   applications.


• Li and Lee (1993) showed that H norm of a sensitivity function
                                    

  matrix for a stable multivariable closed-loop system is related to
  some common gain and phase margins for all the loops.

2011年2月8日星期二                                                            10
MIMO RESEARCH STATUS

• A similar problem in concept is phase margin but different for
  computation
• Our goal is to define meaningful margins and compute them




2011年2月8日星期二                                                       11
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
  - Frequency Domain Method
• Loop Phase Margins
  - Time Domain Method
  - Frequency Domain Method
• Conclusions



2011年2月8日星期二                            12
PROBLEM FORMULATION
Consider an m m square plant with dimensional state-space
realization:
                       x(t )  Ax (t )  Bu (t ),
                       
                       y (t )  Cx(t ),

x    , y  m B and C are real constant matrices with appropriate
      n


dimensions. The PID control
                                K2
                     K ( s)  K1    K3 s
                                 s
                                     
                           diag k11I11 , , k1r1 I1r1       
                           1
                                         
                           diag k21I 21 ,
                           s
                                                    , k2 r2 I 2 r2   
                                     
                           sdiag k31I31 ,      , k3r3 I3r3     
2011年2月8日星期二                                                             13
PROBLEM FORMULATION
k1i , k2 jand k3l are scalars to be determined, I1i, I 2 jand I 3l are
identity matrices with dimensions m , m and                                  1i        2j          m3l, respectively,      and
  m   m   m  m.
   r1                  r2                   r3
   i 1   1i            j 1     2j         l 1     3l


Then,
                                                     t
         u (t )   K y(t )  K  y ( )d  K y (t )
                                    1              2 0                            3
                               r1                         r2                                r3
                      :  k1i I1i y (t )   k2i I 2i  y ( )d   k3i I 3i y (t )
                                                                         t

                                                                         0
                               i 1                       i 1                              i 1


where I        vi    diag 0,          ,0, I vi ,0,             ,0    mm
                                                                                  ,   v  1, 2,3, i  1, 2,     , rv   .



2011年2月8日星期二                                                                                                                     14
PROBLEM FORMULATION
Problem 1. For a given plant G(s) under the controller u(t ), find the
ranges of scalars k1i , k2 j and k3l , i  1, , r1 , j  1, , r2 , l  1, , r3
such that the closed-loop system is stable for all allowable k1i , k2 j and
k3l in these ranges.

Remark
The controller of the form K (s)   k  ks  k s  I corresponds to the
                                      1
                                                2
                                                   3   m
                                                 
specially chosen r1  r2  r3  1; the controller of the form
                    1
K ( s)  diag k   diag k   sdiag k  corresponds to the specially
              1i           2i              3i
                    s
chosen r1  r2  r3  m (or  m1i  m2 j  m3l  1).
                                                .
2011年2月8日星期二                                                                     15
PROBLEM FORMULATION
For an m m square plant G(s) under the decentralized proportional
control K (s)  kI m, suppose that the solution to Problem 1. is
                            k  k , k  .
                                      
This stabilizing range is called as the common gain margin of the
system. Graphically, such a stabilizing range is the largest line segment
of k1  k2   km available in the stabilizing region for
ki , i  1, 2,   , m.




2011年2月8日星期二                                                                16
PROBLEM FORMULATION
Definition
If K (s)  diag k1 , k1 , , km  with probably different gains for
different loops, suppose that the solution to Problem 1. is
                       ki  k i , k i  , i  1, 2,
                                                     , m.
Then, k i , k i  is called the gain margin for the i-th loop, subject to
                
other loops’ gain margins within k j , k j  , j  1, 2, , m, j  i.
                                             
Remark
The closed-loop remains stable even when the gain for the i-th loop,
 ki varies between ki and ki, provided that other loop gains, k j
 j  1, 2, , m, j  i. are (arbitrary but) also within their respective
ranges.
2011年2月8日星期二                                                                 17
PROPOSED APPROACH
                                                     t
 By introducing augmented state x  [ x (t ), 0 yT ( )d , yT (t )]T and
                                              T
                           t
 output y(t )  [ y (t ), 0 yT ( )d , yT (t )]T, system with PID control is
                   T


 transformed into a descriptor control system
                              Ex (t )  Ax (t )  Bu (t ),
                              y (t )  Cx (t ),
                             u (t )   K y (t ),
   In     0     0        A 0 0                B   C                    
E 0
          Im    0 , A   C 0 0  , B   0  , C  
                                                               Im       
                                                                              
   0
          0     0
                         CA 0  I m 
                                                CB 
                                                      
                                                                          In 
                                                                              
K   K1    K2    K3  .
 2011年2月8日星期二                                                                     18
PROPOSED APPROACH
 The closed-loop system is
             Ex (t )  ( A  BKC ) x (t )
                               r1             r2                 r3
                     ( A   k1i A1i   k2 j A2 j   k3l A3l ) x (t )
                              i 1            j 1               l 1

                   : Acl x (t ),
       BI 1i C     0 0           0 BI 2 j C 0           0 0 BI 3l C 
                                                                     
A1i   0           0 0  , A2 J  0   0       0  , A3l  0 0   0 
      CBI 1i C     0 0           0 CBI 2 j C 0          0 0 CBI 3l C 
                                                                     
 for   i  1, 2,   , r1 , j  1, 2,   , r2   and     l  1, 2,     , r3 .

 2011年2月8日星期二                                                               19
PROPOSED APPROACH
Definition
A descriptor system is called admissible if the system, or say, the pair
 E, Acl  is regular, impulse-free and stable.
So far, Problem 1. has been converted to the following problem.

Problem 2. Find the ranges of scalars           k1i , k2 j and k3l
i  1, 2, , r1 , j  1, 2, , r2 , l  1, 2, , r3 , such that the closed-loop
system is admissible for all allowable k1i , k2 j and k3l in these ranges.


2011年2月8日星期二                                                                   20
PROPOSED APPROACH
                                                          0
Let k0
     vi   , v  1, 2,3, i  1, 2,   be such that ( E, A ) with
                                        , rv              cl

Acl  A  i 1 k10i A1i  i 1 k2i A2i  i 1 k3i A3i , is admissible.
 0         r      1         r     0 2        r  3 0




Set k vi  kvi  kvi and suppose k vi   vi , vi . Then
                  0
                                        
                                           low   upp
                                                     
             Acl  A  A  i11 k10i A1i  i2 1 k2i A2i  i31 k3i A3i ,
                       0                 r         0r           r  0
                       cl
                                              


which is equivalently recast as a matrix polytope with          r  2r0
vertices denoted by A j ( )  ( n2m)( n2m) ,
                           r                r                                  
   Acl   A( ) : A( )    j A j (  );   j  1;  j  0; j  1, 2      ,r
                          j 1             j 1                                
 r0  r1  r2  r3 and    1 , 1 , ,  r0 ,  r0  .
                                low upp          low upp
                                                        
 2011年2月8日星期二                                                                       21
PROPOSED APPROACH
Lemma
The pair  E, A( )  is robustly admissible if and only if there exist
parameter-dependent matrices P( ), F ( ) and H ( ) such that
        P( )T E  EP( )  0,
         F ( ) A( )  A( )T F ( )T                        
                                                               0
         P( )  F ( )  H ( ) A( )       H ( )  H ( ) 
                        T        T      T                     T
                                                               
Here and in the sequel, an ellipsis  denotes a block induced by
symmetry.
Proof: The proof is parallel to that for standard systems in Geromel et
al. (1998) and Peaucelle et al. (2000).

2011年2月8日星期二                                                              22
SPECIAL CASES
Proposition
The pair  E, Acl is robustly admissible if and only if there exist
matrices Pj , F j , H j and X jl with X jj  X T , l  j, j, l  1, 2, , r,
                                                     jj

such that          PjT E  EPj  0,                                    (1)
                    jl  lj  X jl  X T , j  1, 2, , r , l  j ,
                                         jl
                                                                       (2)
                       X 11                     
                      X         X 22                               (3)
                       21                           
                                                    
                                                    
                       X r1
                                X r2           X rr 
                                                     
                Fj Al (  )  Al (  )T Fj T              
         jl                                              .
where           Pj  Fj  H j Al (  )
               
                         T       T          T
                                                H j  H j 
                                                          T
                                                            
2011年2月8日星期二                                                                  23
SPECIAL CASES
In this special case,   K2  0   and   K3  0 . Then,
                              x(t )  Ax(t )  Bu (t ),
                              y (t )  Cx(t ),
                              u (t )   K1 y (t ).
or, rewritten as x(t )   A  ir1 k1i A1i ,  x(t ) : Acl x(t ),
                                       1



where A1i  BI 1iC, i  1, 2, , r1.
Thus
                             r             r                                
     Acl   A( ) : A( )   j Aj (  ); j  1; j  0; j  1, 2,   , r .
                            j 1          j 1                              



2011年2月8日星期二                                                                      24
SPECIAL CASES
Proposition
The polytope A is robustly stable if there exist matrices P  0 , and
F H
        and X with X  X T , l  j, j, l  1, 2, , r, such that
              cl                                           j

  j     j             jl             jj          jj

                               jl  lj  X jl  X T , j  1, 2,
                                                    jl                 , r , l  j,
                               X 11                      
                              X          X 22             
                               21                            
                                                             
                                                             
                               X r1
                                         X r2           X rr 
                                                              
                    Fj Al (  )  Al (  )T Fj T                
where        jl                                                .
                    Pj  Fj  H j Al (  )           H j  H j 
                             T       T          T               T
                                                                 

Similar steps were carried out for PD and PI Control.
2011年2月8日星期二                                                                          25
ALGORITHM
        Algorithm 1.
Step 1. Find a common gain controller, K (s), to stabilize the plant, G(s). If
          K (s)G(s) is stable, take k 0  0 otherwise, use any standard
                                                 ;
        technique (Cao et al., 1998; Zheng et al., 2002; Lin et al., 2004) to
        find the scalar k 0. Let kvi  k 0. If G(s) can not be stabilized by
                                      0


        any common gain controller, find a controller in the general form, i.e.,
        Let k  k  k 0 or k vi  kvi  kvi . Calculate the stabilizing ranges of
                                          0


Step 2. by formula of Barmish (1994) for P/PI control or Lee et al. (1997) for
        PD/PID control.
        Reset kvi , v  1, 2,3, i  1, 2, , rv . and find the maximum 0  0 such
                0


Step 3. that LMIs are feasible for kvi  kvi  (k min  k max ) / 2. Obtain the
                                        0       0


                                       0 , 0 ,   , 0 , 0 
  2011年2月8日星期二                                                                26
ALGORITHM
         mutually independent stabilizing range of         kvi   as
                             kvi  kvi  0 , kkvi  0  .
                                   
                                     0           0
                                                         
Step 4. Arrange kvi in decreasing order of their importance and choose G(s)
                         0                     0
        initial values k vi  kvi  0or k vi  kvi  0   LMIs are still 0
                                 0
                                                      0
                                                            . Thus,
                         01 ,  v1 , ,  vm ,  vm  , where  vi  kvi  0  k vi
                                    0               0                 0
        feasible for  v
                                             0                             0

                                                      
                                                       
        and  vi  kvi  0  k vi .
                0    0            0


Step 5. Relax  as  *   ,  (0,1) with   0.5 by default. If  *  0     vi

         (or    0) , find vi  0 (or  vi  0) such that LMIs are
                *
               vi               low                 upp


        feasible for i  1, 2, , m.
                     (or    0) , find vi    vi ) (or  vi    vi )
                           *                                                  0
                          vi
                                                         0
Step 6. If  vi  0
              *                              low                       upp


        such that LMIs are still feasible for i  1, 2, , m.
                                                    0
Step 7. Calculate the range of kvi by      kvi  k vi   vi , vi 
                                                         
                                                            low   upp
                                                                      
   2011年2月8日星期二                                                                     27
Illustrative Example
Consider a process (Bryant and Yeung, 1996)
                               s 1           4 
                         ( s  1)( s  3)   s 3
               G ( s)                           
                                 1            3 
                        
                              s2           s  2
                                                  
Its state-space minimum realization is
     1.255 0.2006 0.1523                      0.1458 0.03811
A   1.452
              0.465 0.8761  ,
                                             B   0.113 0.06613 ,
                                                                 
     0.5496 4.108
                       4.28 
                                                  0.4033 0.7228 
                                                                 
     0.3773 7.907 4.831
C                      .
     5.273 8.879 3.06 
Suppose the largest available range of parameters is     100.
2011年2月8日星期二                                                            28
Illustrative Example
Case 1: P control
• Consider a common gain controller K (s)  kI 2 , to stabilize the
plant G(s) Since G(s) is stable, take k 0  0 .
           .
• Let k  k  k 0 . By Barmish’s formula, k [0.5522,1.5513] is the
stabilizing range of k . Thus, the stabilizing range of k is obtained as
k  k 0  k [0.5522,1.5513]
• Reset   k10  k2  k10  (0.5522  1.5513) / 2  0.4995 and calculate
                 0


0  1.0518. Then, the stabilizing range with mutually independent
gains of ki is ki [0.5522,1.5513],i  1, 2.
                                                                0
• Suppose that k1 is more important than k2 and choose k1  0.5522
and k 2  1.5513 as initial values. Then, LMIs are still feasible for
      0


  [0, 2.1035, 2.1035,0].
2011年2月8日星期二
                                                                           29
Illustrative Example
• Let   0.5 and relax  as  *  . The sequence of range
shifting is as follows: firstly find the lower bound of k1 , secondly the
upper bound of k2 , thirdly the upper bound of k1 and finally the lower
bound of k2 .
• Fix the stabilizing range of k1 as k1 [1.6556,1.2]and compute
the stabilizing range of k2 as
             k1 [1.6556,1.2], k2 [0.45225,100].
• If the stabilizing range of k2 is fixed to k2 [0.3529, 4.0967] and
the stabilizing range of k1 is calculated as  1low , 1upp    3.2436,1.94905 ,
                                                            
which yields the stabilizing proportional controller gain ranges as
             k1 [3.7958,1.39685], k2 [0.3529, 4.0967].

2011年2月8日星期二
                                                                              30
Illustrative Example
                          k1                            k2
  Ho’s result     k1 [1.6556,1.2]          k2 [0.3529, 4.0967]

  Our result      k1 [1.6556,1.2]          k2 [0.45225,100]
                k1 [3.7958,1.39685]        k2 [0.3529, 4.0967]



Remark
When the stabilizing range for one loop is the same, the range for other
loop is much more conservative by Ho’s method than ours.


2011年2月8日星期二                                                               31
Illustrative Example
                          k1                            k2
  Our result      k1 [1.6556,1.2]          k2 [0.45225,100]

   -analysis k1 [0.4516, 0.0040]        k2 [0.8710,98.6768]
                k1 [1.2494, 0.79638]      k2 [13.8371,85.7107]

Remark --Analysis gives conservative results.
• PID parameters are real, while the -analysis treats systems
uncertainties as complex valued.
• Stabilizing ranges are generally not symmetric with respect to the
nominal value, while the allowable perturbations in the analysis is
always symmetric.
 2011年2月8日星期二                                                          32
Illustrative Example
Case 2: PI control
                             1
Let K (s)  diag k1 , k2   diag k3 , k4 .
                             s
• Choose k1  1, k2  5, k3  1 and k40  5, the stabilizing ranges
             0     0         0


are calculated as
          k1  [15.4516,1.0542], k2 [4.9458,100]
          k3  [1.0545, 0.0001], k4  [4.9451,5.0550]
• Choose k10  1, k20  1, k30  0.1 and   k4  0.1 , the stabilizing
                                             0


ranges are calculated as
            k1  [1.9482, 0.7263], k2  [0.1479,100]
            k3  [0.1, 0.05], k4  [0.1,1.1035].


2011年2月8日星期二
                                                                         33
Illustrative Example
Case 3: PD control
Let K (s)   k1  k2 s  I 2
• Choose k 0  0 , the stabilizing ranges are calculated as
               k1 [0.5522,0.6578], k2 [0.6577, 2.0822].

• Choose k 0  5 , the stabilizing ranges are calculated as
                 k1 [1.5515,100], k2 [4.2389,100].

• Choose k 0  5, the stabilizing ranges are calculated as
               k1 [100, 0.5683], k2 [100, 0.2361].

2011年2月8日星期二
                                                              34
Illustrative Example
Case 4: PID control

Let   K ( s)   k1  k2 / s  k3 s  I 2


• Choose k 0  5 , the stabilizing ranges are calculated as

         k1 [1.5344,100], k2  [5.4603,100],k3  [5.2821,100].




2011年2月8日星期二
                                                                  35
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
  - Frequency Domain Method
• Loop Phase Margins
  - Time Domain Method
  - Frequency Domain Method
• Conclusions



2011年2月8日星期二                            36
The Proposed Approach
Under the nominal stabilization (   I m ), the closed-loop system can
be destabilized if and only if there is a gain perturbation  such that
                        det( I  G( j))  0,
which is equivalent to exist some non-zero unit vectors
z  C such that ( I  G) z  0 .
     m




                       v               z                y
               +

                                             G(s)
               _




                   Figure 1: Diagram of a MIMO control system.

2011年2月8日星期二
                                                                          37
The Proposed Approach
Consider a diagonal real matrix . Let   v  v1 , v2 ,   , vm  , and
                                                             T
                                
 z   z1 , z2 , , zm  .
                       T


It follows from Figure 1 that v  Gz and   z  v, which implies
 zi  ki vi or ki  zi / vi .


Basic Idea
We try to find the solution z through some optimization technique,
and then obtain v and  .



2011年2月8日星期二
                                                                        38
The Proposed Approach
Take the following quadratic function as the cost function for ease of
optimization:
                                      z*G* z
Because v z  k v v  ki vi is a real number, and the unit vectorz
           *
           i i
                          *
                        i i i
                                        2


meets z* z  1 . Then, the constraint conditions are given as
                    z* z  1
                   
                   
                   
                    Im   z*G* H i z   0,   i=1,   ,m.
where   H i   hpq 
                      is given by
                                   1, p  q  i
                           h pq   
                                   0, otherwise

2011年2月8日星期二
                                                                         39
The Proposed Approach
                    min  z *G * z     or   max  z *G * z  ,
                          z* z  1
                         
                    s.t. 
                         
                          Im   z *G * H i z   0,       i=1, .m. z  C m

Convert to an equivalent real
constrained optimization problem by
decomplexification.

                        
                   min Z G Z
                            T   T
                                       or        
                                             max Z G Z
                                                        T   T
                                                                
                         Z T Z  1,
                                                                           (4)
                        
                   s.t.  T T i
                         Z G H W Z  0,
                                                 i=1,2,        ,m. Z  R 2 m
2011年2月8日星期二
                                                                                 40
The Proposed Approach
• To solve the above constrained optimization problem, we use the
Lagrange multiplier:
                                                                   
                                               m
                f ( )  Z G Z  1 Z Z  1   i 1 Z G H W Z
                        T   T          T                  T   T   i

                                               i 1

where     [ Z , 1, 2 , , m1 ]T . The stationery condition for optimality is
               T



                           T                     m
                                                                              
                            (G  G ) Z  21 Z   i 1[(G H W )T  G H W ]Z 
                                                           T i        T i
                          
                                                i 1
                                                                              
                                                     T
                                                    Z Z 1                    
  q( ) : f ( ) /                                                        0.
                                                 T    T
                                                Z G H WZ
                                                         1
                                                                              
                                                                             
                                                                             
                                                T    T  m                    
                                               Z G H WZ                      


2011年2月8日星期二
                                                                                       41
The Proposed Approach
• A numerical solution to is sought by the Newton-Raphson algorithm:
                       n1  n  J 1[q(n )]q(n )
                                   q(n )  2 f (n )
where                J [q( n )] 
                                     n
                                          
                                               n2
                                                       

         ( G T  G )  2 I                    T   1          T   m    
                           1 2m             [(G H W )T    [(G H W )T  
        m                                2Z                             
           i 1[(G H W )  G H W ]
                      T   i     T   T   i      T   1          T   m
                                            G H W ]Z       G H W ]Z 
         i 1                                                           
                         2Z
                              T
                                           0         0              0    
         T                                                              
         Z [(G H W )T  G H W ]                                         
                    T   1         T   1
                                           0         0              0
                                                                        
                                                                        
         T        T    m         T   m                                  
            Z [(G H W )T  G H W ]        0         0              0    

is the Jacobian matrix of    q( n ).
2011年2月8日星期二
                                                                             42
The Proposed Approach
• If J is singular, then a Moore-Penrose inverse is used. To see
whether the iteration routine achieves the maximum or minimum, the
eigenvalues of the Hessian matrix
                  T
           H  (G  G)  21 I 2 m
                                       m


                                       i 1
                                               T i
                                       i 1  G H W
                                               
                                                          G
                                                         T      T     i
                                                                    H W
                                                                        
                                                                        

are calculated and they should be all non-negative for the minimum
case and all non-positive for the maximum case.

• To find, say, the maximum from the minimum, a new search is
carried out with the initial search direction set as opposite to the
eigenvector of H corresponding to the largest positive eigenvalue.
2011年2月8日星期二
                                                                            43
The Proposed Approach

        Algorithm 2.
Step 1. Run the Newton-Raphson iteration. If the iteration is convergent,
        obtain z , v and the gains.
Step 2. Calculate the eigenvalues of H and decide if the solution is for the
        minimum (or maximum) case. Set the new initial vector 0 as
        opposite to the eigenvector of H corresponding to the largest
        positive (or smallest negative) eigenvalue.
Step 3. Go to Step 1 once more for the maximization (or minimization)



  2011年2月8日星期二                                                             44
The Proposed Approach
We look for the relevant frequency range , such that the solution to
(4) may exist while there is no solution in its complement set for which
(4) will not be performed.
                                                                            m
• We know that v z  k v v           k i vi                         v z   k i vi
                                               2
                      *
                      i i
                              *
                            i i i                  is real so that    *               2
                                                                                          is
                                                                           i 1
also real, which leads to
                        v* z  z*v   *  G ( j )  G ( j ) 
                                                            *
             Im(v z ) 
                  *
                                   z                        z  0        .         (5)
                            2i                   2i          
Let
                                G( j )  G( j )*
                      P( j )                     ,
                                        2i

and  ( P( j)) to be an eigenvalue of             P( j ).
2011年2月8日星期二
                                                                                               45
The Proposed Approach
The set ( P)  z Pz : z z  1, z  is commonly called the numerical
                   *     *          m


range of (Ballantine, 1987). Since P( j)is a Hermitian matrix, the
numerical range of P( j) is the segment of the real axis bounded by
the smallest and largest eigenvalue of P( j)(Horn and Johnson, 1991)

• As a result, if the eigenvalues of P( j)spread across zero, that is,
there are opposite-sign eigenvalues or zero eigenvalue, then the
numerical range of P( j)contain the origin and there will exist z
satisfying (5) at the underlying frequency  .


2011年2月8日星期二
                                                                          46
The Proposed Approach
• We first find all the real roots l such that det( P( j ))  0 . Hence, by
                                                           l

calculating all  ( P( j)) for one   ( ,  ) , we know their sign
                                         l   l 1

distribution and can then determine whether or not (5) may have a
solution. If the answer is yes, we assign (l , l 1 )  .

However, the calculation by numerical range method to meet (5) may
not necessarily meet the latter and so-calculated  is overestimated.




2011年2月8日星期二
                                                                                47
The Proposed Approach
• Denote  by   (1, 1 ) (r , r ) in the ascending order of
the frequency. Suppose that we have computed the gain solutions for
 (1 , 1 ) (n , n ) and formed a closed stability region including
   Im .


• Find the maximum ki on the boundaries of this region and denote
it by kmax and enlarge and enclose this region by a hypercube defined
by ki [kmax , kmax ].



2011年2月8日星期二
                                                                        48
The Proposed Approach
Note that for any frequency    , the gain solutions not inside the
                              *
                                   n

hypercube will not affect the stability boundaries will not reduce the
previously determined region.

Otherwise, the stability region may be reduced by the new boundaries
in the hypercube.

The key issue is then to check if the gain solutions of the remaining
frequency intervals (n1, n1 ), , lies inside the hypercube.


2011年2月8日星期二
                                                                         49
The Proposed Approach
It is well known that the spectral radius forms a lower bound on any
compatible matrix norm (Morari and Zafiriou, 1989 ):
                 (G)  max i (G)  G 1  G 1  1
• It follows that
      1   (G* )  max i (G* )  G 1 *  max( k1* ,   , km ) G 1  kmax G 1
                                                              *
                                               1

Hence, for any frequency   ( ,  ), where r  n , if 1  k G( j ) ,
                             *
                                   r   r                           max
                                                                              *
                                                                                   1

the gain solution * would lie inside the hypercube, and the
corresponding frequency interval ( ,  ) will be taken into account
                                           r   r

further. Otherwise, will be removed in .


2011年2月8日星期二
                                                                                       50
The Proposed Approach

        Algorithm 3.
Step 1. Calculate all the real roots l of det( P( j))  0. Divide the entire
        frequency interval of zero to infinity into
        [0, 1 ] (1, 2 ]       (l , l 1 ]   ;
Step 2. Take one   (l , l 1 ] and calculate  ( P( j))for l  1,2, .
        If max ( P( j))min ( P( j))  0 , then (l , l 1 ]   ; Arrange
           ( ,  ]
                1   1      ( ,  ]
                           r   r           which is in the ascending order of the
        frequency. Set r  1 .



  2011年2月8日星期二                                                                 51
The Proposed Approach

Step 3. Run Algorithm 2 for (r , r ]to get gain solution of (4) and plot them.
        If a closed region including   I mis formed, let n  r and find the
        maximum ki on the boundaries of this region, and denote it as kmax .
        Otherwise, re-do this step with r  r  1;
                                                                             1
Step 4. Remove the frequency interval ( ,  ] from , if G( j )  k
                                           r   r                      1

        for all   ( ,  ] and r  n.
                                                                          max
                     r   r

Step 5. Run Algorithm 2 for all the remaining (r , r ]in , r  n, if any, and
        plot them. Determine the refined stabilizing region and loop gain
        margins from it.

  2011年2月8日星期二                                                                  52
Illustrative Example
Consider a time delay process
                                  s 1                0.5s  1        
                            ( s  1)( s  3)   0.5s 3  2.5s 2  s  3 
                    G(s)                                              
                            0.3 0.3s              0.5s  1 0.7 s 
                            s2e
                                                 s 2  2s  5
                                                               e        
                                                                        

• Calculate the real roots of det( P( j))  0 to get 1  2.652,
2  2.876,   6.918,   11.135,   15.757. Check the
                3                  4                      5

condition of  ( P( j))min  ( P( j))max  0 for any one in each interval,
and find   [0, 2.652] (2.876,6.918] (11.135,15.757] .
For   0in [0,2.652], the gain solutions are given by
                                         z1
                            k1 
                                  z1 / 3  z2 / 3
                           
                           k2              z2
2011年2月8日星期二               
                                 0.3z1 / 2  z2 / 5                          53
Illustrative Example
• Running Step 3 of Algorithm 3 for the first two frequency intervals,
[0,2.652] and (2.876,6.918], yields a closed region including   I 2 .
The maximum value of ki on the boundaries of this region is
kmax  6.659.

                       m

•Plot G( j)  max  g ( j) with respect to  and the horizontal
             1    j
                              ij
                       i 1
straight line in Figure 2. One sees that G( j) 1 marked by blue line is
                              1
always below the red line k , where   8.2.
                                   max



•So, (11.135,15.757]           is all removed from   .

2011年2月8日星期二
                                                                           54
Illustrative Example

• The region including   I 2 found above is thus the stabilizing one
and is marked in yellow in Figure 3.

• Fix the range of k1 as k1 [2.0233,1.1502] . The maximum
rectangle is then determined in the stable region and the corresponding
range of k2 is k2 [3.84,3.6852] , which yields the stabilizing
proportional controller gain ranges as
            k1  [2.0233,1.1502] k 2  [3.84,3.6852]




2011年2月8日星期二
                                                                          55
Illustrative Example




                                           1
Figure 2: The curves of   G( j ) 1 and          .   Figure 3: Stabilizing region of   (k1 , k2 )
                                          kmax


      2011年2月8日星期二
                                                                                            56
Illustrative Example
• Comparison with LMI method

                                k1                          k2

   Our method         k1  [2.0233,1.1502]          k2 [3.84,3.6852]

   LMI method         k1  [2.0233,1.1502]          k2 [3.2188,5.0708]


For comparison, the loop 2 has the equivalent transfer function as
follows:
                                    kg g 
                              g 22  1 12 21 k 2
                        g2                                              (6)
                                    1  k1 g11 
                                                


2011年2月8日星期二
                                                                                57
Illustrative Example
The Nyquist curve of (6) for two cases, (k1  2.0233, k2  3.2188)
from the LMI method, and, (k1  2.0233, k2  3.84) from the
proposed method.




2011年2月8日星期二
                                                                       58
Illustrative Example
Nyquist curve of (6) for (k1  1.1502, k2  5.0708)from by LMI method,
and (k1  1.1502, k2  3.6852) from the proposed method.




2011年2月8日星期二
                                                                         59
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
  - Frequency Domain Method
• Loop Phase Margins
  - Time Domain Method
  - Frequency Domain Method
• Conclusions



2011年2月8日星期二                        60
Problem Formulation
Problem 2. For an        m  m square system, G( s) , under the decentralized
phase perturbation,                 
                         K  diag e j1 ,   , e jm    , find the ranges,  ,  ,
                                                                                i   i

   i  i   , i  1,    , m , such that the closed-loop system is stable
when i  i , i  for all i, but marginally stable when         i  i or i   i
for some i .

Definition. The solution to Problem 2, i  i , i  , is called the phase
margin of the i-th loop of G(s) under other loops phases  j  i , i  ,
 j  i, i  1, , m. If i   j   and i   j   , then  ,   is called the
common phase margin.

2011年2月8日星期二
                                                                                         61
Problem Formulation
• Time domain method
                  x(t )  Ax(t )  Bu (t ),
• System:        
                  y (t )  Cx(t ), x  n , y     m



   – Controller:             
                 K  diag e L1s , e L2s ,            
                                              , e Lm s ,
                    y1 (t  L1 )   e1 Cx(t  L1 ) 
                                        T

                    y (t  L )   T                 
                                       e2 Cx(t  L2 )      m
        u (t )     2       2 
                                                        I k Cx(t  Lk ),
                                                       k 1
                                    T              
                    ym (t  Lm )  emCx(t  Lm ) 
                                                     
   – Closed-loop system:
                                      m
                    x(t )  Ax(t )   BI k Cx (t  Lk ).
                                     k 1




2011年2月8日星期二                                                                    62
Problem Formulation
Theorem 1. For given scalars Lk  0, k  1, 2, , m, the closed-loop
system is asymptotically stable if there exists P  PT  0, Qk  QkT  0,
Wk  WkT  0, Zij  Zij  0,
                     T



                  X 00 )
                     (k
                               X 01 )
                                 (k
                                         X 0k ) 
                                            (
                                              m              Mk0 
                  (k )                       k             M 
                  X 10        X 11 )
                                 (k
                                         X 1(m) 
            Xk                                    0, M k   k1  ,
                                                                 
                  (k )                     (k                    
                  X m1        X mk2)    X mm) 
                                 (
                                                            M km 

                     Y00ij ) Y01ij )
                        (       (
                                         Y0(m ) 
                                             ij
                                                                N 0ij ) 
                                                                   (

                      (ij )                 ij                (ij ) 
                      Y10 Y11ij )
                                (
                                         Y1(m )                 N
               Yij                                 0, Nij   1  ,
                                                                      
                      (ij )               ( ij )              (ij ) 
                     Ym1 Ym 2           Ymm                   Nm 
                                ( ij )
                                                                      

2011年2月8日星期二                                                                 63
Problem Formulation
k  1, 2,   , m; i  1, 2,        , m  1; j  i  1, i  2,   , m, such that the following
LMIs hold:
                                               ,
         P A  A P  Q  A  A   M k Gk  Gk K k  Lk X k 
                                                     m
               T              T            T    T   T

                                                    k 1
              m 1

                                                               
                      m
               Nij H ij  H ij Nij  L j  Li Yij  0
                               T   T

               i 1 j i 1

             X     Mk 
       k   k   T        0, k  1, , m,
              M k Wk 
              Yij Nij 
       ij   T         0, i  1, , m  1; j  i  1,             , m,
              Nij Zij 



2011年2月8日星期二                                                                                  64
Problem Formulation
where
               P  P 0 0  0,
               A   A  BI1C      BI 2C   BI mC ,
                        m                                 
               Q  diag  Qk      Q1        Q2     Qm ,
                         k 1                             
                   m 1   m              m
                   L j  Li Z ij   LkWk ,
                   i 1 j i 1          k 1

                                       
           Gk   I 0 0  I 0 0,
                                   
                      k 1         mk 

                                              
           H ij  0 0 I 0 0  I 0 0.
                                        
                   i       j i 1       m j 

2011年2月8日星期二                                                    65
Problem Formulation
Proof. Choose the cadidate Lyapunov-Krasovskii functional to be
                                                 m
         V  xt  : xk (t ) Px(t )   
                                                       t
                          T
                                                                xT ( s )Qk x( s ) s
                                                       t  Lk
                                                k 1
                    m
                 
                              0       t

                   k 1
                                  
                           Lk t 
                                          xT ( s )Wk x( s ) s ,
                                                    
                   m1        m                             Li t
                   sgn( L j  Li )                                 xT ( s ) Z ij x( s ) s ,
                                                                                     
                                                            L j t 
                   i 1 j i 1


and show V ( xt )  0 .
          



2011年2月8日星期二                                                                                        66
Problem Formulation
 To find the range of delays, let Lk = Lk + ¢Lk ; k = 1; 2; ¢ ¢ ¢ ; m, where
                                       ^
  j¢Lk j · dkwith dk ¸ 0are given large scalars. The first LMI in Theorem
 1 becomes
                           Xn
                           m                              o
^   ¹ T ¹ ¹T ¹  ¹   ¹T^ ¹
© = P A + A P + Q + A ¦A +            T  T    ^
                             Mk Gk + Gk Mk + (Lk + dk )Xk
                                      k=1
           m¡1
           X     X n
                 m                     ³¯        ¯          ´ o
                               T T      ¯^    ^  ¯
       +            Nij Hij + Hij Nij + ¯Lj ¡ Li ¯ + dj + di Yij < 0;
           i=1 j=i+1


 where
              m¡1
              X     X ³¯
                    m
                       ¯^
                                ¯
                                ¯
                                           ´      m
                                                  X
         ^
         ¦=                  ^
                       ¯Lj ¡ Li ¯ + dj + di Zij +    ^
                                                    (Lk + dk )Wk :
              i=1 j=i+1                              k=1



 2011年2月8日星期二                                                              67
Problem Formulation
          Algorithm 4.
Step 1.   Choose the initial Lk , k  1, 2, , m, such that LMIs in Theorem 3 are
          feasible and set L  L , k  1, 2, , m.
                            k    k


Step 2.   For Lk , find a maximum d  0 such that new LMIs are feasible
          when dk  d . Let dk  d , k  1, 2, , m and i  1.
Step 3.   For fixed dk  d , k  i, find a maximum di  d such that new LMIs are
          feasible.
Step 4.   If d  L , let Li  Li  di , then go to Procedure A. Else, let
              i   i

           Li  0 , then go to Procedure B.




  2011年2月8日星期二                                                               68
Problem Formulation

Step 5. Let   Li  ( Li  Li ) / 2 and di  ( Li  Li ) / 2 . If i  m,
              ˆ                                                           let
          i  i  1 go to Step 3.
Step 6. The ranges of Lk [ Lk , Lk ], k  1, 2,       , m, are those for guaranteeing
        the stability of closed-loop system.

        Procedure A.
Step 1. Let rlow = Li ¡ di; rupp = Li + di; min = 0; max = rlow; and
                   ^               ^
         ^
         Li = rupp=2; di = rupp=2:
Step 2. If new LMIs are feasible, let       rlow = 0, then go to Step 6.


   2011年2月8日星期二                                                                    69
Problem Formulation

                                                       ˆ
Step 3. Else, let mid  (min  max) / 2, rlow  mid , Li  (rupp  rlow ) / 2
        and di = (rupp ¡ rlow)=2:
Step 4. If new LMIs are feasible, let max = mid, else, let min = mid:
Step 5. Step 5. If jmax ¡ minj < ,² let rlow = max Else, go to Step 3.
                                                     .
Step 6. Step 6. Let Li = rlow then return to Step 5 of Algorithm 2.
                             ,

        Procedure B.
                             ^                             ^
Step 1. Let rlow = 0; rupp = Li + di; min = rupp; max = ±; Li = max=2
        and di = max=2:

   2011年2月8日星期二                                                                 70
Problem Formulation

Step 2. If new LMIs are feasible, let   rupp = max, then go to Step 6.
Step 3. Else, let
                                          ^
         mid = (min + max)=2; rlow = mid; Li = (rupp + rlow)=2
Step 4. and di = (rupp ¡ rlow)=2:
Step 5. If new LMIs are feasible, let max = mid , else, let min = mid:
Step 6. If jmax ¡ minj < ² , let rlow = max . Else, go to Step 3.
       Let Li = rlow, then return to Step 5 of Algorithm 2.


 2011年2月8日星期二                                                            71
Problem Formulation
Proposition 2. (Bar-on and Jonckheere 1998). There exists a unitary¢
in the feedback path which destabilizes the system, G(s), if and only if
there exists an ! such that ¾(G(j!)) ¸ 1 and 0 · ¾(G(j!)) · 1 .
                            ¹

Let Ð = f! j 0 · ¾(G(j!)) · 1 · ¾(G(j!))g and
    ^                                                                    ^
                                                        !g = minf! j ! 2 Ðg:
The closed-loop system remains stable for all
                 Ák 2 (!g Lk ; !g Lk ) := (Ák ; Ák ):

Solution of Ð
            ^
             q
   ¾(G(j!)) = GH (s)G(s);         G(s) = C(sI ¡ A)¡1 B;
   GH (s) = GT (¡s) = [C(¡sI ¡ A)¡1 B]T = ¡B T (sI + AT )¡1 C T :


2011年2月8日星期二                                                               72
Problem Formulation
               G : x1 = Ax1 + Bu; y1 = Cx1 ;
                    _
             GH : x2 = ¡AT x2 + C T y1 ; y2 = ¡B T x2 :
                    _
                · ¸     ·           ¸· ¸ · ¸
                 x_        A      0     x1    B
          GH G : 1    =                    +      u;
                 x2
                  _       C T C ¡AT x2        0
                        |      {z   }        |{z}
                                ~
                                A              ~
                                               B
                                 · ¸
                        £       ¤ x1
                   y = 0 ¡B T         :
                        | {z }     x2
      £             ¤      h~
                           C                   i
            H                   ~       ~
   det I ¡ G (s)G(s) = det I ¡ C(sI ¡ A) B¡1 ~

                           h                   i
                                ~~        ~
                      = det I ¡ B C(sI ¡ A) ¡1

                           h               i.
                                   ~ ~~             ~
                      = det sI ¡ (A + B C) det(sI ¡ A):



2011年2月8日星期二                                              73
Problem Formulation
        Algorithm 5.
Step 1. Calculate the purely imaginary eigenvalues, !i; i = 1; 2; ¢ ¢ ,¢ of
           the matrix A + BC.
                        ~ ~~
Step 2. Choose any ! 2 (!i; !i+1); ! > 0, and calculate ¾(G(j!)) and
                                                         ¹
         ¾(G(j!)). If ¾(G(j!)) ¸ 1 and ¾(G(j!)) · 1 , then
                       ¹
             [
          ^
          Ð = (!i ; !i+1):
Step 3. Let    !g = minf! j ! 2 Ðg then the stabilizing range of Ák
                                ^,                                    is
              calculated as   Ák 2 (!g Lk ; !g Lk ) := (Ák ; Ák ):

        Remarks: Conservativeness comes from both the LMI
          conditions and the determination of crossover frequency .

  2011年2月8日星期二                                                                74
Illustrative Example
    Example (Bar-on and Jonckheere ,1998)
       2                               3           2               3
       0   1   0 0             0                                 0        ·         ¸
    6 ¡3 0:75 1 0:25 7      6                                      7
    6
  A=4                7; B = 6 0                                  1 7
                                                                     ; C=
                                                                            1 0 0 0
                                                                                      :
       0   0   0 1 5        4 0                                  0 5        0 0 1 0
       4   1  ¡4 ¡1           0:25                               0

G(s) = C(sI ¡ A)¡1 B
                                   ·                         2
                                                                   ¸
                    1                   0:0625s + 0:25      s +s+4
     =  4 + 1:75s3 + 7:5s2 + 4s + 8 0:25s2 + 0:1875s + 0:75
                                                                     :
       s                                                       s+4


      L0     L0       L1             L2            ^
                                                   Ð             !g         Á1            Á2
       1      2

       0     0     [0, 0,1979]    [0, 0.1967]                            [0. 0.1272]   [0, 0.1265]
                                                [0.643, 1.613]   0.643
       0.1   0     [0, 0.2920]    [0, 0.1914]                            [0, 0.1878]   [0, 0.1231]

    2011年2月8日星期二                                                                                     75
Illustrative Example
Example (cont’d)




2011年2月8日星期二                              76
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
  - Frequency Domain Method
• Loop Phase Margins
  - Time Domain Method
  - Frequency Domain Method
• Conclusions



2011年2月8日星期二                        77
The Proposed Approach
• Frequency domain method




¢(s) = diagfejÁi g; i = 1; 2; ¢ ¢ ¢ ; m:

     det(I + G(j!)¢) = 0 ( 9z 2 Cm; s.t. z = ¢v = ¡¢Gz:
                          )

Solution of z (constrained optimization)
          object:      z¤ (G¤ + G)z
                       ½ ¤
                           z z = 1;
               s.t.
                           z¤ (Hk ¡ G¤ Hk G)z = 0; k = 1; 2; ¢ ¢ ¢ ; m:

2011年2月8日星期二                                                              78
The Proposed Approach
Lagrange multiplier                           m
                                              X
  F (·) = z¤(G¤ + G)z + ¸1 (z¤ z ¡ 1) +             ¸k+1 z¤(Hk ¡ G¤ Hk G)z;
                                              k=1

with · = [z1 ; ¢ ¢ ¢ ; zm; ¸1 ; ¸2 ; ¢ ¢ ¢ ; ¸m+1 ]T :
                        2                             m                      3
                                                    X
                            ¤
                        6(G + G)z + ¸1 z +               ¸k+1 (Hk ¡ G¤ Hk G)z7
                        6                                                    7
                        6                           k=1                      7
         @F (·) 6       6                            ¤
                                                   z z¡1                     7
 f (·) =             =6                                                      7;
           @·
                                               ¤         ¤
                                              z (H1 ¡ G H1 G)z               7
                        6                                                    7
                        6                              .
                                                       .                     7
                        4                              .                     5
                                             z¤ (Hm ¡ G¤ Hm G)z

Newton-Raphson:     ·n+1 = ·n ¡ J ¡1[f(·n)]f(·n):


2011年2月8日星期二                                                                      79
The Proposed Approach
           @f (·)    @ 2 F (·)
J[f(·)] =          =           =
2           @·         @·2                                                      3
       (G¤ + G) + ¸1 Im
6 X  m                                                                        7
6 +                                z (H1 ¡ G¤ H1 G)z ¢ ¢ ¢     (Hm ¡ G¤ Hm G)z7
6       ¸k+1 (Hk ¡ G¤ Hk G)                                                   7
6 k=1                                                                         7
6                                                                             7
6              2z¤                 0         0          ¢¢¢           0       7
6                                                                             7
6     2z¤ (H1 ¡ G¤ H1 G)           0         0          ¢¢¢           0       7
6                                                                             7
6               .
                .                  .
                                   .         .
                                             .          ..            .
                                                                      .       7
4               .                  .         .             .          .       5
     2z¤ (Hm ¡ G¤ Hm G)            0         0          ¢¢¢           0

    is the Jacobian matrix of f(·)
                                                 ½
                                                     1; i = j = k;
               Hk = [hi;j ] 2 Rm£m; and hi;j =
                                                     0; otherswise.

    2011年2月8日星期二                                                           80
The Proposed Approach

          Algorithm 6.
Step 1.   Determine Ð = f! j 0 · ¾(G(j!)) · 1 · ¾(G(j!))gfrom
                       ^

             Proposition 2 and Algorithm 3.
Step 2.   Construct the framework of constrained optimization.
Step 3.   For each ! 2 Ð, solve the optimization problem with Lagrange
                         ^

             multiplier and find z with Newton-Raphson method.
Step 4.   Stabilizing boundary of phase perturbation is given by
             Ái = argfzi=vig;   i = 1; 2; ¢ ¢ ¢ ; m:


2011年2月8日星期二                                                             81
Illustrative Example
Example (Bar-on and Jonckheere, 1998)




                    ^
                    Ð = (0:643; 1:613)
                    Ð = (0:764; 0:884) [ (1:533; 1:572)




2011年2月8日星期二                                              82
Illustrative Example




                                    Loop Phase Margin
       Method                                                  Common Phase Margin
                             ������₁                        ������₂
   Frequency domian       (−������, ������)          (−0.2423, 0.2423) (−0.3108, 0.3108)
 Bar-on and Jonckheere       N.A.                       N.A.   (−0.2701, 0.2701)
     Time domain         [0, 0.1878]             [0, 0.1231]      [0, 0.1265]
2011年2月8日星期二                                                                    83
OUTLINE
• Introduction
• Loop Gain Margins
  - Time Domain Method
  - Frequency Domain Method
• Loop Phase Margins
  - Time Domain Method
  - Frequency Domain Method
• Conclusions



2011年2月8日星期二                        84
Conclusions
1.  The Loop gain and phase margins of MIMO feedback systems has
   been defined
2. The algorithms presented for computations of such margins in
   both time and frequency domains
3. The computations involved are substantial, and further
   improvement is under consideration
4. Use of these margins for controller tuning is under progress




2011年2月8日星期二
                                                                   85
2011年2月8日星期二   86

More Related Content

What's hot

Fuzzy logic control of washing m achines
Fuzzy logic control of washing m achinesFuzzy logic control of washing m achines
Fuzzy logic control of washing m achinespradnya patil
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graphKaushal Surti
 
Applications Of Laplace Transforms
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace TransformsKetaki_Pattani
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space AnalysisHussain K
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...Waqas Afzal
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
Nyquist stability criterion
Nyquist stability criterionNyquist stability criterion
Nyquist stability criterionjawaharramaya
 
Sliding Mode Controller
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller Ramaiahsubasri
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Fourier series example
Fourier series exampleFourier series example
Fourier series exampleAbi finni
 
Lyapunov stability analysis
Lyapunov stability analysisLyapunov stability analysis
Lyapunov stability analysisVanshVarshney
 
Lecture 17 me 176 (4th) 9 - design via root locus
Lecture 17   me 176 (4th)   9 - design via root locusLecture 17   me 176 (4th)   9 - design via root locus
Lecture 17 me 176 (4th) 9 - design via root locusLeonides De Ocampo
 
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and SystemsDSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and SystemsAmr E. Mohamed
 

What's hot (20)

Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 
Fuzzy logic control of washing m achines
Fuzzy logic control of washing m achinesFuzzy logic control of washing m achines
Fuzzy logic control of washing m achines
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Jacobi method
Jacobi methodJacobi method
Jacobi method
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graph
 
Applications Of Laplace Transforms
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace Transforms
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Nyquist stability criterion
Nyquist stability criterionNyquist stability criterion
Nyquist stability criterion
 
Sliding Mode Controller
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Lyapunov stability analysis
Lyapunov stability analysisLyapunov stability analysis
Lyapunov stability analysis
 
Lecture 17 me 176 (4th) 9 - design via root locus
Lecture 17   me 176 (4th)   9 - design via root locusLecture 17   me 176 (4th)   9 - design via root locus
Lecture 17 me 176 (4th) 9 - design via root locus
 
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and SystemsDSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
 
Control Systems
Control SystemsControl Systems
Control Systems
 

Similar to MIMO Stability Margins

Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntuaIEEE NTUA SB
 
New Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorNew Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorSSA KPI
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
extreme times in finance heston model.ppt
extreme times in finance heston model.pptextreme times in finance heston model.ppt
extreme times in finance heston model.pptArounaGanou2
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Alessandro Palmeri
 
3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plant3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plantVSG - Visualization Sciences Group
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006SNS
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Colm Connaughton
 
Statics and dynamics of nanoscale structures
Statics and dynamics of nanoscale structures Statics and dynamics of nanoscale structures
Statics and dynamics of nanoscale structures University of Glasgow
 
Av2419341939
Av2419341939Av2419341939
Av2419341939IJMER
 
Dynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticityDynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticitySoumen Mandal
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 

Similar to MIMO Stability Margins (20)

Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntua
 
MSc Presentation
MSc PresentationMSc Presentation
MSc Presentation
 
New Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorNew Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial Sector
 
1568973267 effect of multi-tone
1568973267 effect of multi-tone1568973267 effect of multi-tone
1568973267 effect of multi-tone
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
Dynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether System
 
extreme times in finance heston model.ppt
extreme times in finance heston model.pptextreme times in finance heston model.ppt
extreme times in finance heston model.ppt
 
Ef24836841
Ef24836841Ef24836841
Ef24836841
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
 
3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plant3D cell lineage reconstruction of early embryogenesis in plant
3D cell lineage reconstruction of early embryogenesis in plant
 
Da32633636
Da32633636Da32633636
Da32633636
 
Da32633636
Da32633636Da32633636
Da32633636
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
 
Statics and dynamics of nanoscale structures
Statics and dynamics of nanoscale structures Statics and dynamics of nanoscale structures
Statics and dynamics of nanoscale structures
 
Av2419341939
Av2419341939Av2419341939
Av2419341939
 
Dynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticityDynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticity
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 

MIMO Stability Margins

  • 2. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 2
  • 3. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 3
  • 4. HISTORICAL REMARKS • Uncertain systems • Robust control: dominant approach • Margin based approach 2011年2月8日星期二 4
  • 5. SISO STABILITY MARGINS The unity output feedback configuration. G(s)is the process C (s)is the compensator. SISO stability margins - Gain margin: GM  1/ G( j ) . p - Phase margin: PM  180  G( jc ). 2011年2月8日星期二 5
  • 6. MIMO MOTIVATION EXAMPLE Consider a 2 × 2 system  1 2   s 1 s  1 G ( s)     3 4   s 1  s  1  under a decentralized proportional control K (s)  diag k1 , k2  2011年2月8日星期二 6
  • 7. MIMO MOTIVATION EXAMPLE The characteristic equation of the closed-loop system is Pc (s)  P (s) PK (s) det  I  G(s)K (s) G  s  (k1  4k2  2)s  (k1  4k2  1  2k1k2 )  0 The closed-loop system is stable if and only if k1  4k2  2  0,  k1  4k2  1  2k1k2  0. or.,  1 1 k1   k1  ,  4 2  k1  1 k2  , if , k1  2,  2(k1  2)  k 1  k2  1 , if , k1  2.   2(k1  2) 2011年2月8日星期二 7
  • 8. MIMO MOTIVATION EXAMPLE The stabilizing range is drawn as the share region. • Stabilizing range of k depends 2 on the value of k and vice versa. 1 (e.g. k  1 yields k  3/ 4 ) 1 2 • More useful to prescribe a range for k when finding stabilizing 1 range for k .(e.g. k [1, 2] 2 1 yeilds k 2 [3/ 4, ). • Graphically a rectangle. (e.g. ABCD) • Not Unique. 2011年2月8日星期二 8
  • 9. MIMO RESEARCH STATUS • Doyle (1982) developed the u-analysis, and treats system uncertainties as complex valued. Thus, it is inevitable to bring the conservativeness because the gain change in each loop is of real number. • Baron and Jonckheere (1991) viewed the gain margin for a multivariable system as the minimal complex matrix perturbation. Such a definition allows the gain perturbation to be a full matrix, not necessarily to be diagonal. 2011年2月8日星期二 9
  • 10. MIMO RESEARCH STATUS • Gershgorin band method is also used to calculate the gain margin of multivariable system (Hong, Yang, 2005; Ho, Lee and Gan. 1997). It gives conservative results because it requires the diagonal dominance of the system, which brings some limitations to its applications. • Li and Lee (1993) showed that H norm of a sensitivity function  matrix for a stable multivariable closed-loop system is related to some common gain and phase margins for all the loops. 2011年2月8日星期二 10
  • 11. MIMO RESEARCH STATUS • A similar problem in concept is phase margin but different for computation • Our goal is to define meaningful margins and compute them 2011年2月8日星期二 11
  • 12. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 12
  • 13. PROBLEM FORMULATION Consider an m m square plant with dimensional state-space realization: x(t )  Ax (t )  Bu (t ),  y (t )  Cx(t ), x , y  m B and C are real constant matrices with appropriate n dimensions. The PID control K2 K ( s)  K1   K3 s s   diag k11I11 , , k1r1 I1r1  1   diag k21I 21 , s , k2 r2 I 2 r2    sdiag k31I31 , , k3r3 I3r3  2011年2月8日星期二 13
  • 14. PROBLEM FORMULATION k1i , k2 jand k3l are scalars to be determined, I1i, I 2 jand I 3l are identity matrices with dimensions m , m and 1i 2j m3l, respectively, and  m   m   m  m. r1 r2 r3 i 1 1i j 1 2j l 1 3l Then, t u (t )   K y(t )  K  y ( )d  K y (t ) 1 2 0 3 r1 r2 r3 :  k1i I1i y (t )   k2i I 2i  y ( )d   k3i I 3i y (t ) t 0 i 1 i 1 i 1 where I vi  diag 0, ,0, I vi ,0, ,0  mm , v  1, 2,3, i  1, 2, , rv . 2011年2月8日星期二 14
  • 15. PROBLEM FORMULATION Problem 1. For a given plant G(s) under the controller u(t ), find the ranges of scalars k1i , k2 j and k3l , i  1, , r1 , j  1, , r2 , l  1, , r3 such that the closed-loop system is stable for all allowable k1i , k2 j and k3l in these ranges. Remark The controller of the form K (s)   k  ks  k s  I corresponds to the 1 2  3 m   specially chosen r1  r2  r3  1; the controller of the form 1 K ( s)  diag k   diag k   sdiag k  corresponds to the specially 1i 2i 3i s chosen r1  r2  r3  m (or  m1i  m2 j  m3l  1). . 2011年2月8日星期二 15
  • 16. PROBLEM FORMULATION For an m m square plant G(s) under the decentralized proportional control K (s)  kI m, suppose that the solution to Problem 1. is k  k , k  .   This stabilizing range is called as the common gain margin of the system. Graphically, such a stabilizing range is the largest line segment of k1  k2   km available in the stabilizing region for ki , i  1, 2, , m. 2011年2月8日星期二 16
  • 17. PROBLEM FORMULATION Definition If K (s)  diag k1 , k1 , , km  with probably different gains for different loops, suppose that the solution to Problem 1. is ki  k i , k i  , i  1, 2,   , m. Then, k i , k i  is called the gain margin for the i-th loop, subject to   other loops’ gain margins within k j , k j  , j  1, 2, , m, j  i.   Remark The closed-loop remains stable even when the gain for the i-th loop, ki varies between ki and ki, provided that other loop gains, k j j  1, 2, , m, j  i. are (arbitrary but) also within their respective ranges. 2011年2月8日星期二 17
  • 18. PROPOSED APPROACH t By introducing augmented state x  [ x (t ), 0 yT ( )d , yT (t )]T and T t output y(t )  [ y (t ), 0 yT ( )d , yT (t )]T, system with PID control is T transformed into a descriptor control system Ex (t )  Ax (t )  Bu (t ), y (t )  Cx (t ), u (t )   K y (t ), In 0 0  A 0 0  B C  E 0  Im 0 , A   C 0 0  , B   0  , C         Im   0  0 0  CA 0  I m    CB      In   K   K1 K2 K3  . 2011年2月8日星期二 18
  • 19. PROPOSED APPROACH The closed-loop system is Ex (t )  ( A  BKC ) x (t ) r1 r2 r3  ( A   k1i A1i   k2 j A2 j   k3l A3l ) x (t ) i 1 j 1 l 1 : Acl x (t ),  BI 1i C 0 0 0 BI 2 j C 0  0 0 BI 3l C        A1i   0 0 0  , A2 J  0 0 0  , A3l  0 0 0  CBI 1i C 0 0 0 CBI 2 j C 0  0 0 CBI 3l C        for i  1, 2, , r1 , j  1, 2, , r2 and l  1, 2, , r3 . 2011年2月8日星期二 19
  • 20. PROPOSED APPROACH Definition A descriptor system is called admissible if the system, or say, the pair  E, Acl  is regular, impulse-free and stable. So far, Problem 1. has been converted to the following problem. Problem 2. Find the ranges of scalars k1i , k2 j and k3l i  1, 2, , r1 , j  1, 2, , r2 , l  1, 2, , r3 , such that the closed-loop system is admissible for all allowable k1i , k2 j and k3l in these ranges. 2011年2月8日星期二 20
  • 21. PROPOSED APPROACH 0 Let k0 vi , v  1, 2,3, i  1, 2, be such that ( E, A ) with , rv cl Acl  A  i 1 k10i A1i  i 1 k2i A2i  i 1 k3i A3i , is admissible. 0 r 1 r 0 2 r 3 0 Set k vi  kvi  kvi and suppose k vi   vi , vi . Then 0  low upp  Acl  A  A  i11 k10i A1i  i2 1 k2i A2i  i31 k3i A3i , 0 r 0r r 0 cl  which is equivalently recast as a matrix polytope with r  2r0 vertices denoted by A j ( )  ( n2m)( n2m) ,  r r  Acl   A( ) : A( )    j A j (  );   j  1;  j  0; j  1, 2 ,r  j 1 j 1  r0  r1  r2  r3 and    1 , 1 , ,  r0 ,  r0  . low upp low upp   2011年2月8日星期二 21
  • 22. PROPOSED APPROACH Lemma The pair  E, A( )  is robustly admissible if and only if there exist parameter-dependent matrices P( ), F ( ) and H ( ) such that P( )T E  EP( )  0,  F ( ) A( )  A( )T F ( )T    0  P( )  F ( )  H ( ) A( )  H ( )  H ( )  T T T T   Here and in the sequel, an ellipsis  denotes a block induced by symmetry. Proof: The proof is parallel to that for standard systems in Geromel et al. (1998) and Peaucelle et al. (2000). 2011年2月8日星期二 22
  • 23. SPECIAL CASES Proposition The pair  E, Acl is robustly admissible if and only if there exist matrices Pj , F j , H j and X jl with X jj  X T , l  j, j, l  1, 2, , r, jj such that PjT E  EPj  0, (1)  jl  lj  X jl  X T , j  1, 2, , r , l  j , jl (2)  X 11    X X 22   (3)  21       X r1  X r2 X rr    Fj Al (  )  Al (  )T Fj T    jl   . where  Pj  Fj  H j Al (  )  T T T H j  H j  T  2011年2月8日星期二 23
  • 24. SPECIAL CASES In this special case, K2  0 and K3  0 . Then, x(t )  Ax(t )  Bu (t ), y (t )  Cx(t ), u (t )   K1 y (t ). or, rewritten as x(t )   A  ir1 k1i A1i ,  x(t ) : Acl x(t ), 1 where A1i  BI 1iC, i  1, 2, , r1. Thus  r r  Acl   A( ) : A( )   j Aj (  ); j  1; j  0; j  1, 2, , r .  j 1 j 1  2011年2月8日星期二 24
  • 25. SPECIAL CASES Proposition The polytope A is robustly stable if there exist matrices P  0 , and F H and X with X  X T , l  j, j, l  1, 2, , r, such that cl j j j jl jj jj  jl  lj  X jl  X T , j  1, 2, jl , r , l  j,  X 11    X X 22    21       X r1  X r2 X rr    Fj Al (  )  Al (  )T Fj T   where  jl   .  Pj  Fj  H j Al (  ) H j  H j  T T T T   Similar steps were carried out for PD and PI Control. 2011年2月8日星期二 25
  • 26. ALGORITHM Algorithm 1. Step 1. Find a common gain controller, K (s), to stabilize the plant, G(s). If K (s)G(s) is stable, take k 0  0 otherwise, use any standard ; technique (Cao et al., 1998; Zheng et al., 2002; Lin et al., 2004) to find the scalar k 0. Let kvi  k 0. If G(s) can not be stabilized by 0 any common gain controller, find a controller in the general form, i.e., Let k  k  k 0 or k vi  kvi  kvi . Calculate the stabilizing ranges of 0 Step 2. by formula of Barmish (1994) for P/PI control or Lee et al. (1997) for PD/PID control. Reset kvi , v  1, 2,3, i  1, 2, , rv . and find the maximum 0  0 such 0 Step 3. that LMIs are feasible for kvi  kvi  (k min  k max ) / 2. Obtain the 0 0    0 , 0 , , 0 , 0  2011年2月8日星期二 26
  • 27. ALGORITHM mutually independent stabilizing range of kvi as kvi  kvi  0 , kkvi  0  .  0 0  Step 4. Arrange kvi in decreasing order of their importance and choose G(s) 0 0 initial values k vi  kvi  0or k vi  kvi  0   LMIs are still 0 0   0 . Thus,     01 ,  v1 , ,  vm ,  vm  , where  vi  kvi  0  k vi 0 0 0 feasible for  v 0 0    and  vi  kvi  0  k vi . 0 0 0 Step 5. Relax  as  *   ,  (0,1) with   0.5 by default. If  *  0 vi (or    0) , find vi  0 (or  vi  0) such that LMIs are *  vi low upp feasible for i  1, 2, , m. (or    0) , find vi    vi ) (or  vi    vi ) * 0  vi 0 Step 6. If  vi  0 * low upp such that LMIs are still feasible for i  1, 2, , m. 0 Step 7. Calculate the range of kvi by kvi  k vi   vi , vi   low upp  2011年2月8日星期二 27
  • 28. Illustrative Example Consider a process (Bryant and Yeung, 1996)  s 1 4   ( s  1)( s  3) s 3 G ( s)     1 3    s2 s  2  Its state-space minimum realization is  1.255 0.2006 0.1523  0.1458 0.03811 A   1.452  0.465 0.8761  ,  B   0.113 0.06613 ,    0.5496 4.108   4.28    0.4033 0.7228     0.3773 7.907 4.831 C .  5.273 8.879 3.06  Suppose the largest available range of parameters is 100. 2011年2月8日星期二 28
  • 29. Illustrative Example Case 1: P control • Consider a common gain controller K (s)  kI 2 , to stabilize the plant G(s) Since G(s) is stable, take k 0  0 . . • Let k  k  k 0 . By Barmish’s formula, k [0.5522,1.5513] is the stabilizing range of k . Thus, the stabilizing range of k is obtained as k  k 0  k [0.5522,1.5513] • Reset k10  k2  k10  (0.5522  1.5513) / 2  0.4995 and calculate 0 0  1.0518. Then, the stabilizing range with mutually independent gains of ki is ki [0.5522,1.5513],i  1, 2. 0 • Suppose that k1 is more important than k2 and choose k1  0.5522 and k 2  1.5513 as initial values. Then, LMIs are still feasible for 0   [0, 2.1035, 2.1035,0]. 2011年2月8日星期二 29
  • 30. Illustrative Example • Let   0.5 and relax  as  *  . The sequence of range shifting is as follows: firstly find the lower bound of k1 , secondly the upper bound of k2 , thirdly the upper bound of k1 and finally the lower bound of k2 . • Fix the stabilizing range of k1 as k1 [1.6556,1.2]and compute the stabilizing range of k2 as k1 [1.6556,1.2], k2 [0.45225,100]. • If the stabilizing range of k2 is fixed to k2 [0.3529, 4.0967] and the stabilizing range of k1 is calculated as  1low , 1upp    3.2436,1.94905 ,   which yields the stabilizing proportional controller gain ranges as k1 [3.7958,1.39685], k2 [0.3529, 4.0967]. 2011年2月8日星期二 30
  • 31. Illustrative Example k1 k2 Ho’s result k1 [1.6556,1.2] k2 [0.3529, 4.0967] Our result k1 [1.6556,1.2] k2 [0.45225,100] k1 [3.7958,1.39685] k2 [0.3529, 4.0967] Remark When the stabilizing range for one loop is the same, the range for other loop is much more conservative by Ho’s method than ours. 2011年2月8日星期二 31
  • 32. Illustrative Example k1 k2 Our result k1 [1.6556,1.2] k2 [0.45225,100]  -analysis k1 [0.4516, 0.0040] k2 [0.8710,98.6768] k1 [1.2494, 0.79638] k2 [13.8371,85.7107] Remark --Analysis gives conservative results. • PID parameters are real, while the -analysis treats systems uncertainties as complex valued. • Stabilizing ranges are generally not symmetric with respect to the nominal value, while the allowable perturbations in the analysis is always symmetric. 2011年2月8日星期二 32
  • 33. Illustrative Example Case 2: PI control 1 Let K (s)  diag k1 , k2   diag k3 , k4 . s • Choose k1  1, k2  5, k3  1 and k40  5, the stabilizing ranges 0 0 0 are calculated as k1  [15.4516,1.0542], k2 [4.9458,100] k3  [1.0545, 0.0001], k4  [4.9451,5.0550] • Choose k10  1, k20  1, k30  0.1 and k4  0.1 , the stabilizing 0 ranges are calculated as k1  [1.9482, 0.7263], k2  [0.1479,100] k3  [0.1, 0.05], k4  [0.1,1.1035]. 2011年2月8日星期二 33
  • 34. Illustrative Example Case 3: PD control Let K (s)   k1  k2 s  I 2 • Choose k 0  0 , the stabilizing ranges are calculated as k1 [0.5522,0.6578], k2 [0.6577, 2.0822]. • Choose k 0  5 , the stabilizing ranges are calculated as k1 [1.5515,100], k2 [4.2389,100]. • Choose k 0  5, the stabilizing ranges are calculated as k1 [100, 0.5683], k2 [100, 0.2361]. 2011年2月8日星期二 34
  • 35. Illustrative Example Case 4: PID control Let K ( s)   k1  k2 / s  k3 s  I 2 • Choose k 0  5 , the stabilizing ranges are calculated as k1 [1.5344,100], k2  [5.4603,100],k3  [5.2821,100]. 2011年2月8日星期二 35
  • 36. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 36
  • 37. The Proposed Approach Under the nominal stabilization (   I m ), the closed-loop system can be destabilized if and only if there is a gain perturbation  such that det( I  G( j))  0, which is equivalent to exist some non-zero unit vectors z  C such that ( I  G) z  0 . m v z y +  G(s) _ Figure 1: Diagram of a MIMO control system. 2011年2月8日星期二 37
  • 38. The Proposed Approach Consider a diagonal real matrix . Let v  v1 , v2 , , vm  , and T  z   z1 , z2 , , zm  . T It follows from Figure 1 that v  Gz and z  v, which implies zi  ki vi or ki  zi / vi . Basic Idea We try to find the solution z through some optimization technique, and then obtain v and  . 2011年2月8日星期二 38
  • 39. The Proposed Approach Take the following quadratic function as the cost function for ease of optimization: z*G* z Because v z  k v v  ki vi is a real number, and the unit vectorz * i i * i i i 2 meets z* z  1 . Then, the constraint conditions are given as  z* z  1     Im   z*G* H i z   0, i=1, ,m. where H i   hpq    is given by 1, p  q  i h pq  0, otherwise 2011年2月8日星期二 39
  • 40. The Proposed Approach min  z *G * z  or max  z *G * z  ,  z* z  1  s.t.    Im   z *G * H i z   0, i=1, .m. z  C m Convert to an equivalent real constrained optimization problem by decomplexification.  min Z G Z T T  or  max Z G Z T T   Z T Z  1, (4)  s.t.  T T i  Z G H W Z  0,  i=1,2, ,m. Z  R 2 m 2011年2月8日星期二 40
  • 41. The Proposed Approach • To solve the above constrained optimization problem, we use the Lagrange multiplier:     m f ( )  Z G Z  1 Z Z  1   i 1 Z G H W Z T T T T T i i 1 where   [ Z , 1, 2 , , m1 ]T . The stationery condition for optimality is T  T m  (G  G ) Z  21 Z   i 1[(G H W )T  G H W ]Z  T i T i   i 1   T Z Z 1  q( ) : f ( ) /      0.  T T Z G H WZ 1       T T m   Z G H WZ  2011年2月8日星期二 41
  • 42. The Proposed Approach • A numerical solution to is sought by the Newton-Raphson algorithm: n1  n  J 1[q(n )]q(n ) q(n )  2 f (n ) where J [q( n )]   n   n2   ( G T  G )  2 I  T 1 T m   1 2m [(G H W )T  [(G H W )T   m 2Z   i 1[(G H W )  G H W ] T i T T i T 1 T m  G H W ]Z G H W ]Z   i 1   2Z T 0 0 0   T   Z [(G H W )T  G H W ]  T 1 T 1 0 0 0      T T m T m   Z [(G H W )T  G H W ] 0 0 0  is the Jacobian matrix of q( n ). 2011年2月8日星期二 42
  • 43. The Proposed Approach • If J is singular, then a Moore-Penrose inverse is used. To see whether the iteration routine achieves the maximum or minimum, the eigenvalues of the Hessian matrix T H  (G  G)  21 I 2 m m i 1   T i   i 1  G H W   G T T i H W   are calculated and they should be all non-negative for the minimum case and all non-positive for the maximum case. • To find, say, the maximum from the minimum, a new search is carried out with the initial search direction set as opposite to the eigenvector of H corresponding to the largest positive eigenvalue. 2011年2月8日星期二 43
  • 44. The Proposed Approach Algorithm 2. Step 1. Run the Newton-Raphson iteration. If the iteration is convergent, obtain z , v and the gains. Step 2. Calculate the eigenvalues of H and decide if the solution is for the minimum (or maximum) case. Set the new initial vector 0 as opposite to the eigenvector of H corresponding to the largest positive (or smallest negative) eigenvalue. Step 3. Go to Step 1 once more for the maximization (or minimization) 2011年2月8日星期二 44
  • 45. The Proposed Approach We look for the relevant frequency range , such that the solution to (4) may exist while there is no solution in its complement set for which (4) will not be performed. m • We know that v z  k v v  k i vi v z   k i vi 2 * i i * i i i is real so that * 2 is i 1 also real, which leads to v* z  z*v *  G ( j )  G ( j )  * Im(v z )  * z  z  0 . (5) 2i  2i  Let G( j )  G( j )* P( j )  , 2i and  ( P( j)) to be an eigenvalue of P( j ). 2011年2月8日星期二 45
  • 46. The Proposed Approach The set ( P)  z Pz : z z  1, z  is commonly called the numerical * * m range of (Ballantine, 1987). Since P( j)is a Hermitian matrix, the numerical range of P( j) is the segment of the real axis bounded by the smallest and largest eigenvalue of P( j)(Horn and Johnson, 1991) • As a result, if the eigenvalues of P( j)spread across zero, that is, there are opposite-sign eigenvalues or zero eigenvalue, then the numerical range of P( j)contain the origin and there will exist z satisfying (5) at the underlying frequency  . 2011年2月8日星期二 46
  • 47. The Proposed Approach • We first find all the real roots l such that det( P( j ))  0 . Hence, by l calculating all  ( P( j)) for one   ( ,  ) , we know their sign l l 1 distribution and can then determine whether or not (5) may have a solution. If the answer is yes, we assign (l , l 1 )  . However, the calculation by numerical range method to meet (5) may not necessarily meet the latter and so-calculated  is overestimated. 2011年2月8日星期二 47
  • 48. The Proposed Approach • Denote  by   (1, 1 ) (r , r ) in the ascending order of the frequency. Suppose that we have computed the gain solutions for (1 , 1 ) (n , n ) and formed a closed stability region including   Im . • Find the maximum ki on the boundaries of this region and denote it by kmax and enlarge and enclose this region by a hypercube defined by ki [kmax , kmax ]. 2011年2月8日星期二 48
  • 49. The Proposed Approach Note that for any frequency    , the gain solutions not inside the * n hypercube will not affect the stability boundaries will not reduce the previously determined region. Otherwise, the stability region may be reduced by the new boundaries in the hypercube. The key issue is then to check if the gain solutions of the remaining frequency intervals (n1, n1 ), , lies inside the hypercube. 2011年2月8日星期二 49
  • 50. The Proposed Approach It is well known that the spectral radius forms a lower bound on any compatible matrix norm (Morari and Zafiriou, 1989 ):  (G)  max i (G)  G 1  G 1  1 • It follows that 1   (G* )  max i (G* )  G 1 *  max( k1* , , km ) G 1  kmax G 1 * 1 Hence, for any frequency   ( ,  ), where r  n , if 1  k G( j ) , * r r max * 1 the gain solution * would lie inside the hypercube, and the corresponding frequency interval ( ,  ) will be taken into account r r further. Otherwise, will be removed in . 2011年2月8日星期二 50
  • 51. The Proposed Approach Algorithm 3. Step 1. Calculate all the real roots l of det( P( j))  0. Divide the entire frequency interval of zero to infinity into [0, 1 ] (1, 2 ] (l , l 1 ] ; Step 2. Take one   (l , l 1 ] and calculate  ( P( j))for l  1,2, . If max ( P( j))min ( P( j))  0 , then (l , l 1 ]   ; Arrange   ( ,  ] 1 1 ( ,  ] r r which is in the ascending order of the frequency. Set r  1 . 2011年2月8日星期二 51
  • 52. The Proposed Approach Step 3. Run Algorithm 2 for (r , r ]to get gain solution of (4) and plot them. If a closed region including   I mis formed, let n  r and find the maximum ki on the boundaries of this region, and denote it as kmax . Otherwise, re-do this step with r  r  1; 1 Step 4. Remove the frequency interval ( ,  ] from , if G( j )  k r r 1 for all   ( ,  ] and r  n. max r r Step 5. Run Algorithm 2 for all the remaining (r , r ]in , r  n, if any, and plot them. Determine the refined stabilizing region and loop gain margins from it. 2011年2月8日星期二 52
  • 53. Illustrative Example Consider a time delay process  s 1 0.5s  1   ( s  1)( s  3) 0.5s 3  2.5s 2  s  3  G(s)     0.3 0.3s 0.5s  1 0.7 s   s2e  s 2  2s  5 e   • Calculate the real roots of det( P( j))  0 to get 1  2.652, 2  2.876,   6.918,   11.135,   15.757. Check the 3 4 5 condition of  ( P( j))min  ( P( j))max  0 for any one in each interval, and find   [0, 2.652] (2.876,6.918] (11.135,15.757] . For   0in [0,2.652], the gain solutions are given by  z1  k1    z1 / 3  z2 / 3  k2  z2 2011年2月8日星期二   0.3z1 / 2  z2 / 5 53
  • 54. Illustrative Example • Running Step 3 of Algorithm 3 for the first two frequency intervals, [0,2.652] and (2.876,6.918], yields a closed region including   I 2 . The maximum value of ki on the boundaries of this region is kmax  6.659. m •Plot G( j)  max  g ( j) with respect to  and the horizontal 1 j ij i 1 straight line in Figure 2. One sees that G( j) 1 marked by blue line is 1 always below the red line k , where   8.2. max •So, (11.135,15.757] is all removed from . 2011年2月8日星期二 54
  • 55. Illustrative Example • The region including   I 2 found above is thus the stabilizing one and is marked in yellow in Figure 3. • Fix the range of k1 as k1 [2.0233,1.1502] . The maximum rectangle is then determined in the stable region and the corresponding range of k2 is k2 [3.84,3.6852] , which yields the stabilizing proportional controller gain ranges as k1  [2.0233,1.1502] k 2  [3.84,3.6852] 2011年2月8日星期二 55
  • 56. Illustrative Example 1 Figure 2: The curves of G( j ) 1 and . Figure 3: Stabilizing region of (k1 , k2 ) kmax 2011年2月8日星期二 56
  • 57. Illustrative Example • Comparison with LMI method k1 k2 Our method k1  [2.0233,1.1502] k2 [3.84,3.6852] LMI method k1  [2.0233,1.1502] k2 [3.2188,5.0708] For comparison, the loop 2 has the equivalent transfer function as follows:  kg g   g 22  1 12 21 k 2 g2   (6)  1  k1 g11   2011年2月8日星期二 57
  • 58. Illustrative Example The Nyquist curve of (6) for two cases, (k1  2.0233, k2  3.2188) from the LMI method, and, (k1  2.0233, k2  3.84) from the proposed method. 2011年2月8日星期二 58
  • 59. Illustrative Example Nyquist curve of (6) for (k1  1.1502, k2  5.0708)from by LMI method, and (k1  1.1502, k2  3.6852) from the proposed method. 2011年2月8日星期二 59
  • 60. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 60
  • 61. Problem Formulation Problem 2. For an m  m square system, G( s) , under the decentralized phase perturbation,  K  diag e j1 , , e jm  , find the ranges,  ,  , i i   i  i   , i  1, , m , such that the closed-loop system is stable when i  i , i  for all i, but marginally stable when i  i or i   i for some i . Definition. The solution to Problem 2, i  i , i  , is called the phase margin of the i-th loop of G(s) under other loops phases  j  i , i  , j  i, i  1, , m. If i   j   and i   j   , then  ,   is called the common phase margin. 2011年2月8日星期二 61
  • 62. Problem Formulation • Time domain method  x(t )  Ax(t )  Bu (t ), • System:   y (t )  Cx(t ), x  n , y  m – Controller:  K  diag e L1s , e L2s ,  , e Lm s ,  y1 (t  L1 )   e1 Cx(t  L1 )  T  y (t  L )   T  e2 Cx(t  L2 )  m u (t )    2 2     I k Cx(t  Lk ),     k 1    T   ym (t  Lm )  emCx(t  Lm )    – Closed-loop system: m x(t )  Ax(t )   BI k Cx (t  Lk ). k 1 2011年2月8日星期二 62
  • 63. Problem Formulation Theorem 1. For given scalars Lk  0, k  1, 2, , m, the closed-loop system is asymptotically stable if there exists P  PT  0, Qk  QkT  0, Wk  WkT  0, Zij  Zij  0, T  X 00 ) (k X 01 ) (k X 0k )  ( m Mk0   (k ) k  M   X 10 X 11 ) (k X 1(m)  Xk   0, M k   k1  ,      (k ) (k     X m1 X mk2) X mm)  (    M km  Y00ij ) Y01ij ) ( ( Y0(m )  ij  N 0ij )  (  (ij ) ij   (ij )  Y10 Y11ij ) ( Y1(m )  N Yij    0, Nij   1  ,      (ij ) ( ij )   (ij )  Ym1 Ym 2 Ymm   Nm  ( ij )     2011年2月8日星期二 63
  • 64. Problem Formulation k  1, 2, , m; i  1, 2, , m  1; j  i  1, i  2, , m, such that the following LMIs hold: ,   P A  A P  Q  A  A   M k Gk  Gk K k  Lk X k  m T T T T T k 1 m 1   m   Nij H ij  H ij Nij  L j  Li Yij  0 T T i 1 j i 1 X Mk  k   k T   0, k  1, , m,  M k Wk   Yij Nij  ij   T   0, i  1, , m  1; j  i  1, , m,  Nij Zij  2011年2月8日星期二 64
  • 65. Problem Formulation where P  P 0 0  0, A   A  BI1C  BI 2C   BI mC , m  Q  diag  Qk  Q1  Q2   Qm ,  k 1  m 1 m m     L j  Li Z ij   LkWk , i 1 j i 1 k 1   Gk   I 0 0  I 0 0,    k 1 mk    H ij  0 0 I 0 0  I 0 0.     i j i 1 m j  2011年2月8日星期二 65
  • 66. Problem Formulation Proof. Choose the cadidate Lyapunov-Krasovskii functional to be m V  xt  : xk (t ) Px(t )    t T xT ( s )Qk x( s ) s t  Lk k 1 m   0 t k 1   Lk t  xT ( s )Wk x( s ) s ,   m1 m  Li t    sgn( L j  Li )   xT ( s ) Z ij x( s ) s ,    L j t  i 1 j i 1 and show V ( xt )  0 .  2011年2月8日星期二 66
  • 67. Problem Formulation To find the range of delays, let Lk = Lk + ¢Lk ; k = 1; 2; ¢ ¢ ¢ ; m, where ^ j¢Lk j · dkwith dk ¸ 0are given large scalars. The first LMI in Theorem 1 becomes Xn m o ^ ¹ T ¹ ¹T ¹ ¹ ¹T^ ¹ © = P A + A P + Q + A ¦A + T T ^ Mk Gk + Gk Mk + (Lk + dk )Xk k=1 m¡1 X X n m ³¯ ¯ ´ o T T ¯^ ^ ¯ + Nij Hij + Hij Nij + ¯Lj ¡ Li ¯ + dj + di Yij < 0; i=1 j=i+1 where m¡1 X X ³¯ m ¯^ ¯ ¯ ´ m X ^ ¦= ^ ¯Lj ¡ Li ¯ + dj + di Zij + ^ (Lk + dk )Wk : i=1 j=i+1 k=1 2011年2月8日星期二 67
  • 68. Problem Formulation Algorithm 4. Step 1. Choose the initial Lk , k  1, 2, , m, such that LMIs in Theorem 3 are feasible and set L  L , k  1, 2, , m. k k Step 2. For Lk , find a maximum d  0 such that new LMIs are feasible when dk  d . Let dk  d , k  1, 2, , m and i  1. Step 3. For fixed dk  d , k  i, find a maximum di  d such that new LMIs are feasible. Step 4. If d  L , let Li  Li  di , then go to Procedure A. Else, let i i Li  0 , then go to Procedure B. 2011年2月8日星期二 68
  • 69. Problem Formulation Step 5. Let Li  ( Li  Li ) / 2 and di  ( Li  Li ) / 2 . If i  m, ˆ let i  i  1 go to Step 3. Step 6. The ranges of Lk [ Lk , Lk ], k  1, 2, , m, are those for guaranteeing the stability of closed-loop system. Procedure A. Step 1. Let rlow = Li ¡ di; rupp = Li + di; min = 0; max = rlow; and ^ ^ ^ Li = rupp=2; di = rupp=2: Step 2. If new LMIs are feasible, let rlow = 0, then go to Step 6. 2011年2月8日星期二 69
  • 70. Problem Formulation ˆ Step 3. Else, let mid  (min  max) / 2, rlow  mid , Li  (rupp  rlow ) / 2 and di = (rupp ¡ rlow)=2: Step 4. If new LMIs are feasible, let max = mid, else, let min = mid: Step 5. Step 5. If jmax ¡ minj < ,² let rlow = max Else, go to Step 3. . Step 6. Step 6. Let Li = rlow then return to Step 5 of Algorithm 2. , Procedure B. ^ ^ Step 1. Let rlow = 0; rupp = Li + di; min = rupp; max = ±; Li = max=2 and di = max=2: 2011年2月8日星期二 70
  • 71. Problem Formulation Step 2. If new LMIs are feasible, let rupp = max, then go to Step 6. Step 3. Else, let ^ mid = (min + max)=2; rlow = mid; Li = (rupp + rlow)=2 Step 4. and di = (rupp ¡ rlow)=2: Step 5. If new LMIs are feasible, let max = mid , else, let min = mid: Step 6. If jmax ¡ minj < ² , let rlow = max . Else, go to Step 3. Let Li = rlow, then return to Step 5 of Algorithm 2. 2011年2月8日星期二 71
  • 72. Problem Formulation Proposition 2. (Bar-on and Jonckheere 1998). There exists a unitary¢ in the feedback path which destabilizes the system, G(s), if and only if there exists an ! such that ¾(G(j!)) ¸ 1 and 0 · ¾(G(j!)) · 1 . ¹ Let Ð = f! j 0 · ¾(G(j!)) · 1 · ¾(G(j!))g and ^ ^ !g = minf! j ! 2 Ðg: The closed-loop system remains stable for all Ák 2 (!g Lk ; !g Lk ) := (Ák ; Ák ): Solution of Ð ^ q ¾(G(j!)) = GH (s)G(s); G(s) = C(sI ¡ A)¡1 B; GH (s) = GT (¡s) = [C(¡sI ¡ A)¡1 B]T = ¡B T (sI + AT )¡1 C T : 2011年2月8日星期二 72
  • 73. Problem Formulation G : x1 = Ax1 + Bu; y1 = Cx1 ; _ GH : x2 = ¡AT x2 + C T y1 ; y2 = ¡B T x2 : _ · ¸ · ¸· ¸ · ¸ x_ A 0 x1 B GH G : 1 = + u; x2 _ C T C ¡AT x2 0 | {z } |{z} ~ A ~ B · ¸ £ ¤ x1 y = 0 ¡B T : | {z } x2 £ ¤ h~ C i H ~ ~ det I ¡ G (s)G(s) = det I ¡ C(sI ¡ A) B¡1 ~ h i ~~ ~ = det I ¡ B C(sI ¡ A) ¡1 h i. ~ ~~ ~ = det sI ¡ (A + B C) det(sI ¡ A): 2011年2月8日星期二 73
  • 74. Problem Formulation Algorithm 5. Step 1. Calculate the purely imaginary eigenvalues, !i; i = 1; 2; ¢ ¢ ,¢ of the matrix A + BC. ~ ~~ Step 2. Choose any ! 2 (!i; !i+1); ! > 0, and calculate ¾(G(j!)) and ¹ ¾(G(j!)). If ¾(G(j!)) ¸ 1 and ¾(G(j!)) · 1 , then ¹ [ ^ Ð = (!i ; !i+1): Step 3. Let !g = minf! j ! 2 Ðg then the stabilizing range of Ák ^, is calculated as Ák 2 (!g Lk ; !g Lk ) := (Ák ; Ák ): Remarks: Conservativeness comes from both the LMI conditions and the determination of crossover frequency . 2011年2月8日星期二 74
  • 75. Illustrative Example Example (Bar-on and Jonckheere ,1998) 2 3 2 3 0 1 0 0 0 0 · ¸ 6 ¡3 0:75 1 0:25 7 6 7 6 A=4 7; B = 6 0 1 7 ; C= 1 0 0 0 : 0 0 0 1 5 4 0 0 5 0 0 1 0 4 1 ¡4 ¡1 0:25 0 G(s) = C(sI ¡ A)¡1 B · 2 ¸ 1 0:0625s + 0:25 s +s+4 = 4 + 1:75s3 + 7:5s2 + 4s + 8 0:25s2 + 0:1875s + 0:75 : s s+4 L0 L0 L1 L2 ^ Ð !g Á1 Á2 1 2 0 0 [0, 0,1979] [0, 0.1967] [0. 0.1272] [0, 0.1265] [0.643, 1.613] 0.643 0.1 0 [0, 0.2920] [0, 0.1914] [0, 0.1878] [0, 0.1231] 2011年2月8日星期二 75
  • 77. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 77
  • 78. The Proposed Approach • Frequency domain method ¢(s) = diagfejÁi g; i = 1; 2; ¢ ¢ ¢ ; m: det(I + G(j!)¢) = 0 ( 9z 2 Cm; s.t. z = ¢v = ¡¢Gz: ) Solution of z (constrained optimization) object: z¤ (G¤ + G)z ½ ¤ z z = 1; s.t. z¤ (Hk ¡ G¤ Hk G)z = 0; k = 1; 2; ¢ ¢ ¢ ; m: 2011年2月8日星期二 78
  • 79. The Proposed Approach Lagrange multiplier m X F (·) = z¤(G¤ + G)z + ¸1 (z¤ z ¡ 1) + ¸k+1 z¤(Hk ¡ G¤ Hk G)z; k=1 with · = [z1 ; ¢ ¢ ¢ ; zm; ¸1 ; ¸2 ; ¢ ¢ ¢ ; ¸m+1 ]T : 2 m 3 X ¤ 6(G + G)z + ¸1 z + ¸k+1 (Hk ¡ G¤ Hk G)z7 6 7 6 k=1 7 @F (·) 6 6 ¤ z z¡1 7 f (·) = =6 7; @· ¤ ¤ z (H1 ¡ G H1 G)z 7 6 7 6 . . 7 4 . 5 z¤ (Hm ¡ G¤ Hm G)z Newton-Raphson: ·n+1 = ·n ¡ J ¡1[f(·n)]f(·n): 2011年2月8日星期二 79
  • 80. The Proposed Approach @f (·) @ 2 F (·) J[f(·)] = = = 2 @· @·2 3 (G¤ + G) + ¸1 Im 6 X m 7 6 + z (H1 ¡ G¤ H1 G)z ¢ ¢ ¢ (Hm ¡ G¤ Hm G)z7 6 ¸k+1 (Hk ¡ G¤ Hk G) 7 6 k=1 7 6 7 6 2z¤ 0 0 ¢¢¢ 0 7 6 7 6 2z¤ (H1 ¡ G¤ H1 G) 0 0 ¢¢¢ 0 7 6 7 6 . . . . . . .. . . 7 4 . . . . . 5 2z¤ (Hm ¡ G¤ Hm G) 0 0 ¢¢¢ 0 is the Jacobian matrix of f(·) ½ 1; i = j = k; Hk = [hi;j ] 2 Rm£m; and hi;j = 0; otherswise. 2011年2月8日星期二 80
  • 81. The Proposed Approach Algorithm 6. Step 1. Determine Ð = f! j 0 · ¾(G(j!)) · 1 · ¾(G(j!))gfrom ^ Proposition 2 and Algorithm 3. Step 2. Construct the framework of constrained optimization. Step 3. For each ! 2 Ð, solve the optimization problem with Lagrange ^ multiplier and find z with Newton-Raphson method. Step 4. Stabilizing boundary of phase perturbation is given by Ái = argfzi=vig; i = 1; 2; ¢ ¢ ¢ ; m: 2011年2月8日星期二 81
  • 82. Illustrative Example Example (Bar-on and Jonckheere, 1998) ^ Ð = (0:643; 1:613) Ð = (0:764; 0:884) [ (1:533; 1:572) 2011年2月8日星期二 82
  • 83. Illustrative Example Loop Phase Margin Method Common Phase Margin ������₁ ������₂ Frequency domian (−������, ������) (−0.2423, 0.2423) (−0.3108, 0.3108) Bar-on and Jonckheere N.A. N.A. (−0.2701, 0.2701) Time domain [0, 0.1878] [0, 0.1231] [0, 0.1265] 2011年2月8日星期二 83
  • 84. OUTLINE • Introduction • Loop Gain Margins - Time Domain Method - Frequency Domain Method • Loop Phase Margins - Time Domain Method - Frequency Domain Method • Conclusions 2011年2月8日星期二 84
  • 85. Conclusions 1. The Loop gain and phase margins of MIMO feedback systems has been defined 2. The algorithms presented for computations of such margins in both time and frequency domains 3. The computations involved are substantial, and further improvement is under consideration 4. Use of these margins for controller tuning is under progress 2011年2月8日星期二 85