Rigidity, gap theorems and maximum     principles for Ricci solitons           Manuel Fernández López   Consellería de Edu...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Definition (Petersen and Wylie, 2007)A Ricci soliton is said to be rigid if it is of the form N ×Γ Rk ,where N is an Einste...
Definition (Petersen and Wylie, 2007)A Ricci soliton is said to be rigid if it is of the form N ×Γ Rk ,where N is an Einste...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (M n , g) be an n-dimensional compact Ricci soliton. If (M, g)is locall...
Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (M n , g) be an n-dimensional compact Ricci soliton. If (M, g)is locall...
Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (M n , g) be an n-dimensional compact Ricci soliton. If (M, g)is locall...
RThe Schouten tensor S = Rc −                          g is a Codazzi tensor                                             2...
RThe Schouten tensor S = Rc −                          g is a Codazzi tensor                                             2...
RThe Schouten tensor S = Rc −                          g is a Codazzi tensor                                             2...
RThe Schouten tensor S = Rc −                          g is a Codazzi tensor                                             2...
RThe Schouten tensor S = Rc −                          g is a Codazzi tensor                                             2...
RThe Schouten tensor S = Rc −                          g is a Codazzi tensor                                             2...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
|div Rm|2 e−f =       | Ric|2 e−f                 M                     M    X. Cao, B. Wang and Z. Zhang; On Locally Conf...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvatur...
Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvatur...
Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvatur...
Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvatur...
Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvatur...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Lemma (E. García Río and MFL, 2010)Let (M n , g) be a locally conformally flat gradient Ricci soliton.Then it is locally (w...
Lemma (E. García Río and MFL, 2010)Let (M n , g) be a locally conformally flat gradient Ricci soliton.Then it is locally (w...
1               Rc(Ei , Ei ) =        (R − Rc(V , V ))                                 n−1                                ...
1               Rc(Ei , Ei ) =        (R − Rc(V , V ))                                 n−1                                ...
1               Rc(Ei , Ei ) =        (R − Rc(V , V ))                                 n−1                                ...
1               Rc(Ei , Ei ) =        (R − Rc(V , V ))                                 n−1                                ...
1               Rc(Ei , Ei ) =        (R − Rc(V , V ))                                 n−1                                ...
1               Rc(Ei , Ei ) =        (R − Rc(V , V ))                                 n−1                                ...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinkin...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinkin...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinkin...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinkin...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinkin...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinkin...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (E. García Río and MFL, 2008)Let (M n , g) be a compact gradient Ricci soliton. Then                         fmax ...
Theorem (E. García Río and MFL, 2008)Let (M n , g) be a compact gradient Ricci soliton. Then                         fmax ...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (A. Futaki and Y. Sano, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then                  ...
Theorem (A. Futaki and Y. Sano, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then                  ...
Assume (i) holds                              (n − 1)λ2 π 2                  c=                       (n − 1)λπ 2 + Rmax −...
Assume (i) holds                              (n − 1)λ2 π 2                  c=                       (n − 1)λπ 2 + Rmax −...
Assume (i) holds                              (n − 1)λ2 π 2                  c=                       (n − 1)λπ 2 + Rmax −...
Assume (i) holds                              (n − 1)λ2 π 2                  c=                       (n − 1)λπ 2 + Rmax −...
Assume (i) holds                              (n − 1)λ2 π 2                  c=                       (n − 1)λπ 2 + Rmax −...
Assume (i) holds                              (n − 1)λ2 π 2                  c=                       (n − 1)λπ 2 + Rmax −...
Theorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstei...
Theorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstei...
(i)        (∆f )2 =       ((n + 2)λ − R) | f |2               M              M        (ii) | f |2 ≤ Rmax − R    (∆f )2 = (...
(i)        (∆f )2 =       ((n + 2)λ − R) | f |2               M              M        (ii) | f |2 ≤ Rmax − R    (∆f )2 = (...
(i)        (∆f )2 =       ((n + 2)λ − R) | f |2               M              M        (ii) | f |2 ≤ Rmax − R    (∆f )2 = (...
(i)        (∆f )2 =       ((n + 2)λ − R) | f |2               M              M        (ii) | f |2 ≤ Rmax − R    (∆f )2 = (...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded scalar curvatur...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded scalar curvatur...
Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r...
Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r...
Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r...
Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r...
For r ≥ r1                                                     2       (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥          |...
For r ≥ r1                                                     2       (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥          |...
For r ≥ r1                                                     2       (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥          |...
For r ≥ r1                                                     2       (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥          |...
We have that          (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ                        t                 ...
We have that          (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ                        t                 ...
We have that          (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ                        t                 ...
We have that          (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ                        t                 ...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
A Riemannian manifold (M, g) is said to satisfy the Omori-Yaumaximum principle if given any function u ∈ C 2 (M) withu ∗ =...
A Riemannian manifold (M, g) is said to satisfy the Omori-Yaumaximum principle if given any function u ∈ C 2 (M) withu ∗ =...
In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature...
In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature...
In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton...
S. Pigola, M. Rigoli and A. Setti; Maximum principles on    Riemannian manifolds and applications(M, g) satisfies the Omori...
S. Pigola, M. Rigoli and A. Setti; Maximum principles on    Riemannian manifolds and applications(M, g) satisfies the Omori...
Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci ...
Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci ...
Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci ...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete gradient shrinkingRicci soliton. Then: (i)...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ric...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ric...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ric...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ric...
Under our assumption one has                              4|Ric|2     4 R ii Rijji R jj ≤                    (R 2 − |Ric|2...
Under our assumption one has                              4|Ric|2     4 R ii Rijji R jj ≤                    (R 2 − |Ric|2...
Under our assumption one has                              4|Ric|2     4 R ii Rijji R jj ≤                    (R 2 − |Ric|2...
Under our assumption one has                              4|Ric|2     4 R ii Rijji R jj ≤                    (R 2 − |Ric|2...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.         ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.         ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.         ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.         ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0.         ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R ∗ = supM ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R ∗ = supM ...
Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R ∗ = supM ...
Outline   Rigidity of Ricci solitons      Rigidity: compact case      Rigidity: non-compact case      Locally conformally ...
TheoremLet (M n , g, f ) be a complete noncompact nonflat shrinkinggradient Ricci soliton. Then for any given point O ∈ M t...
TheoremLet (M n , g, f ) be a complete noncompact nonflat shrinkinggradient Ricci soliton. Then for any given point O ∈ M t...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying          2|Ric|2 ≤ ...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying          2|Ric|2 ≤ ...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying          2|Ric|2 ≤ ...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying          2|Ric|2 ≤ ...
−(R◦γ)Integrating    √              R 1−R                         along a minimizing geodesic γ(s)         √     t       l...
−(R◦γ)Integrating    √              R 1−R                         along a minimizing geodesic γ(s)         √     t       l...
−(R◦γ)Integrating    √              R 1−R                         along a minimizing geodesic γ(s)         √     t       l...
−(R◦γ)Integrating    √              R 1−R                         along a minimizing geodesic γ(s)         √     t       l...
The scalar curvature of Hamilton’s cigar soliton                                dx 2 + dy 2                        R2 ,   ...
The scalar curvature of Hamilton’s cigar soliton                                dx 2 + dy 2                        R2 ,   ...
The scalar curvature of Hamilton’s cigar soliton                                dx 2 + dy 2                        R2 ,   ...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvatur...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvatur...
Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvatur...
THANK YOU VERY MUCH FOR YOUR ATTENTION
Upcoming SlideShare
Loading in …5
×

On gradient Ricci solitons

579 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

On gradient Ricci solitons

  1. 1. Rigidity, gap theorems and maximum principles for Ricci solitons Manuel Fernández López Consellería de Educación e Ordenación Universitaria Xunta de Galicia Galicia SPAIN (joint work with Eduardo García Río) Ricci Solitons Days in Pisa 4-8th April 2011
  2. 2. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  3. 3. Definition (Petersen and Wylie, 2007)A Ricci soliton is said to be rigid if it is of the form N ×Γ Rk ,where N is an Einstein manifold and Γ acts freely on N and byorthogonal transformations on Rk .Theorem (Petersen and Wylie, 2007)The following conditions for a shrinking (expanding) gradientsoliton Ric + Hf = λg all imply that the metric is radially flat andhas constant scalar curvature R is constant and sec(E, f ) ≥ 0 (sec(E, f ) ≤ 0) R is constant and 0 ≤ Ric ≤ λg (λg ≤ Ric ≤ 0) The curvature tensor is harmonic Ric ≥ 0 (Ric ≤ 0) and sec(E, f) = 0
  4. 4. Definition (Petersen and Wylie, 2007)A Ricci soliton is said to be rigid if it is of the form N ×Γ Rk ,where N is an Einstein manifold and Γ acts freely on N and byorthogonal transformations on Rk .Theorem (Petersen and Wylie, 2007)The following conditions for a shrinking (expanding) gradientsoliton Ric + Hf = λg all imply that the metric is radially flat andhas constant scalar curvature R is constant and sec(E, f ) ≥ 0 (sec(E, f ) ≤ 0) R is constant and 0 ≤ Ric ≤ λg (λg ≤ Ric ≤ 0) The curvature tensor is harmonic Ric ≥ 0 (Ric ≤ 0) and sec(E, f) = 0
  5. 5. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  6. 6. Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (M n , g) be an n-dimensional compact Ricci soliton. If (M, g)is locally conformally flat then it is Einstein (in fact, a spaceform).Theorem (E. García Río and MFL, 2009)Let (M n , g) be an n-dimensional compact Ricci soliton. Then(M, g) is rigid if an only if it has harmonic Weyl tensor.A gradient Ricci soliton is a Riemannian manifold such that Ric + Hf = λg
  7. 7. Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (M n , g) be an n-dimensional compact Ricci soliton. If (M, g)is locally conformally flat then it is Einstein (in fact, a spaceform).Theorem (E. García Río and MFL, 2009)Let (M n , g) be an n-dimensional compact Ricci soliton. Then(M, g) is rigid if an only if it has harmonic Weyl tensor.A gradient Ricci soliton is a Riemannian manifold such that Ric + Hf = λg
  8. 8. Theorem (Eminenti, LaNave and Mantegazza, 2008)Let (M n , g) be an n-dimensional compact Ricci soliton. If (M, g)is locally conformally flat then it is Einstein (in fact, a spaceform).Theorem (E. García Río and MFL, 2009)Let (M n , g) be an n-dimensional compact Ricci soliton. Then(M, g) is rigid if an only if it has harmonic Weyl tensor.A gradient Ricci soliton is a Riemannian manifold such that Ric + Hf = λg
  9. 9. RThe Schouten tensor S = Rc − g is a Codazzi tensor 2(n − 1) X (R) Y (R)( X Rc)(Y , Z ) − ( Y Rc)(X , Z ) = g(Y , Z ) − g(X , Z ) 2(n − 1) 2(n − 1) 1 1Rm(X , Y , Z , f ) = Rc(X , f )g(Y , Z ) − Rc(Y , f )g(X , Z ) n−1 n−1 f is an eigenvector of Rc (div Rm)(X , Y , Z ) = Rm(X , Y , Z , f) 1 |div Rm|2 = | R|2 2(n − 1)
  10. 10. RThe Schouten tensor S = Rc − g is a Codazzi tensor 2(n − 1) X (R) Y (R)( X Rc)(Y , Z ) − ( Y Rc)(X , Z ) = g(Y , Z ) − g(X , Z ) 2(n − 1) 2(n − 1) 1 1Rm(X , Y , Z , f ) = Rc(X , f )g(Y , Z ) − Rc(Y , f )g(X , Z ) n−1 n−1 f is an eigenvector of Rc (div Rm)(X , Y , Z ) = Rm(X , Y , Z , f) 1 |div Rm|2 = | R|2 2(n − 1)
  11. 11. RThe Schouten tensor S = Rc − g is a Codazzi tensor 2(n − 1) X (R) Y (R)( X Rc)(Y , Z ) − ( Y Rc)(X , Z ) = g(Y , Z ) − g(X , Z ) 2(n − 1) 2(n − 1) 1 1Rm(X , Y , Z , f ) = Rc(X , f )g(Y , Z ) − Rc(Y , f )g(X , Z ) n−1 n−1 f is an eigenvector of Rc (div Rm)(X , Y , Z ) = Rm(X , Y , Z , f) 1 |div Rm|2 = | R|2 2(n − 1)
  12. 12. RThe Schouten tensor S = Rc − g is a Codazzi tensor 2(n − 1) X (R) Y (R)( X Rc)(Y , Z ) − ( Y Rc)(X , Z ) = g(Y , Z ) − g(X , Z ) 2(n − 1) 2(n − 1) 1 1Rm(X , Y , Z , f ) = Rc(X , f )g(Y , Z ) − Rc(Y , f )g(X , Z ) n−1 n−1 f is an eigenvector of Rc (div Rm)(X , Y , Z ) = Rm(X , Y , Z , f) 1 |div Rm|2 = | R|2 2(n − 1)
  13. 13. RThe Schouten tensor S = Rc − g is a Codazzi tensor 2(n − 1) X (R) Y (R)( X Rc)(Y , Z ) − ( Y Rc)(X , Z ) = g(Y , Z ) − g(X , Z ) 2(n − 1) 2(n − 1) 1 1Rm(X , Y , Z , f ) = Rc(X , f )g(Y , Z ) − Rc(Y , f )g(X , Z ) n−1 n−1 f is an eigenvector of Rc (div Rm)(X , Y , Z ) = Rm(X , Y , Z , f) 1 |div Rm|2 = | R|2 2(n − 1)
  14. 14. RThe Schouten tensor S = Rc − g is a Codazzi tensor 2(n − 1) X (R) Y (R)( X Rc)(Y , Z ) − ( Y Rc)(X , Z ) = g(Y , Z ) − g(X , Z ) 2(n − 1) 2(n − 1) 1 1Rm(X , Y , Z , f ) = Rc(X , f )g(Y , Z ) − Rc(Y , f )g(X , Z ) n−1 n−1 f is an eigenvector of Rc (div Rm)(X , Y , Z ) = Rm(X , Y , Z , f) 1 |div Rm|2 = | R|2 2(n − 1)
  15. 15. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  16. 16. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  17. 17. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  18. 18. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  19. 19. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  20. 20. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  21. 21. |div Rm|2 e−f = | Ric|2 e−f M M X. Cao, B. Wang and Z. Zhang; On Locally Conformally Flat Gradient Shrinking Ricci Solitons 1 1 | R|2 e−f ≥ | R|2 e−f 2(n − 1) M n MFor n ≤ 3 compact shrinking Ricci solitons are Einstein (n = 2Hamilton, n = 3 Ivey)Since n ≥ 4 one has that R is constant(M, g) is EinsteinWhat about the noncompact case?
  22. 22. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  23. 23. Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M, g) isrigid if an only if it has harmonic Weyl tensor. |div Rm|2 e−f = | Ric|2 e−f M MR is constant and Rm( f , X , X , f) = 0 P. Petersen and W. Wilye; Rigidity of gradient Ricci solitonsTheorem (Munteanu and Sesum, 2009)Let (M, g) be a complete noncompact gradient shrinking Riccisoliton. Then (M, g) is rigid if an only if it has harmonic Weyltensor.
  24. 24. Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M, g) isrigid if an only if it has harmonic Weyl tensor. |div Rm|2 e−f = | Ric|2 e−f M MR is constant and Rm( f , X , X , f) = 0 P. Petersen and W. Wilye; Rigidity of gradient Ricci solitonsTheorem (Munteanu and Sesum, 2009)Let (M, g) be a complete noncompact gradient shrinking Riccisoliton. Then (M, g) is rigid if an only if it has harmonic Weyltensor.
  25. 25. Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M, g) isrigid if an only if it has harmonic Weyl tensor. |div Rm|2 e−f = | Ric|2 e−f M MR is constant and Rm( f , X , X , f) = 0 P. Petersen and W. Wilye; Rigidity of gradient Ricci solitonsTheorem (Munteanu and Sesum, 2009)Let (M, g) be a complete noncompact gradient shrinking Riccisoliton. Then (M, g) is rigid if an only if it has harmonic Weyltensor.
  26. 26. Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M, g) isrigid if an only if it has harmonic Weyl tensor. |div Rm|2 e−f = | Ric|2 e−f M MR is constant and Rm( f , X , X , f) = 0 P. Petersen and W. Wilye; Rigidity of gradient Ricci solitonsTheorem (Munteanu and Sesum, 2009)Let (M, g) be a complete noncompact gradient shrinking Riccisoliton. Then (M, g) is rigid if an only if it has harmonic Weyltensor.
  27. 27. Theorem (E. García Río and MFL, 2009)Let (M n , g) be a complete noncompact gradient shrinking Riccisoliton whose curvature tensor has at most exponential growthand having Ricci tensor bounded from below. Then (M, g) isrigid if an only if it has harmonic Weyl tensor. |div Rm|2 e−f = | Ric|2 e−f M MR is constant and Rm( f , X , X , f) = 0 P. Petersen and W. Wilye; Rigidity of gradient Ricci solitonsTheorem (Munteanu and Sesum, 2009)Let (M, g) be a complete noncompact gradient shrinking Riccisoliton. Then (M, g) is rigid if an only if it has harmonic Weyltensor.
  28. 28. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  29. 29. Lemma (E. García Río and MFL, 2010)Let (M n , g) be a locally conformally flat gradient Ricci soliton.Then it is locally (where f = 0) isometric to a warped product (M, g) = ((a, b) × N, dt 2 + ψ(t)2 gN ),where (N, gN ) is a space form. Rc(V , V ) Rc(Ei , Ei ) R W (V , Ei , Ei , V ) = − − + (n − 1)(n − 2) n−2 (n − 1)(n − 2)where 1 V = f | f|
  30. 30. Lemma (E. García Río and MFL, 2010)Let (M n , g) be a locally conformally flat gradient Ricci soliton.Then it is locally (where f = 0) isometric to a warped product (M, g) = ((a, b) × N, dt 2 + ψ(t)2 gN ),where (N, gN ) is a space form. Rc(V , V ) Rc(Ei , Ei ) R W (V , Ei , Ei , V ) = − − + (n − 1)(n − 2) n−2 (n − 1)(n − 2)where 1 V = f | f|
  31. 31. 1 Rc(Ei , Ei ) = (R − Rc(V , V )) n−1 1 Hf (Ei , Ei ) = (∆f − Hf (V , V )) n−1N = f −1 (c) is a totally umbilical submanifold of (M, g) f is an eigenvector of Hf ↔ the integral curves of V aregeodesics(M, g) is locally a warped productN is a space form Brozos-Vázquez, García-Río and Vázquez-Lorenzo; Complete locally conformally flat manifolds of negative curvature
  32. 32. 1 Rc(Ei , Ei ) = (R − Rc(V , V )) n−1 1 Hf (Ei , Ei ) = (∆f − Hf (V , V )) n−1N = f −1 (c) is a totally umbilical submanifold of (M, g) f is an eigenvector of Hf ↔ the integral curves of V aregeodesics(M, g) is locally a warped productN is a space form Brozos-Vázquez, García-Río and Vázquez-Lorenzo; Complete locally conformally flat manifolds of negative curvature
  33. 33. 1 Rc(Ei , Ei ) = (R − Rc(V , V )) n−1 1 Hf (Ei , Ei ) = (∆f − Hf (V , V )) n−1N = f −1 (c) is a totally umbilical submanifold of (M, g) f is an eigenvector of Hf ↔ the integral curves of V aregeodesics(M, g) is locally a warped productN is a space form Brozos-Vázquez, García-Río and Vázquez-Lorenzo; Complete locally conformally flat manifolds of negative curvature
  34. 34. 1 Rc(Ei , Ei ) = (R − Rc(V , V )) n−1 1 Hf (Ei , Ei ) = (∆f − Hf (V , V )) n−1N = f −1 (c) is a totally umbilical submanifold of (M, g) f is an eigenvector of Hf ↔ the integral curves of V aregeodesics(M, g) is locally a warped productN is a space form Brozos-Vázquez, García-Río and Vázquez-Lorenzo; Complete locally conformally flat manifolds of negative curvature
  35. 35. 1 Rc(Ei , Ei ) = (R − Rc(V , V )) n−1 1 Hf (Ei , Ei ) = (∆f − Hf (V , V )) n−1N = f −1 (c) is a totally umbilical submanifold of (M, g) f is an eigenvector of Hf ↔ the integral curves of V aregeodesics(M, g) is locally a warped productN is a space form Brozos-Vázquez, García-Río and Vázquez-Lorenzo; Complete locally conformally flat manifolds of negative curvature
  36. 36. 1 Rc(Ei , Ei ) = (R − Rc(V , V )) n−1 1 Hf (Ei , Ei ) = (∆f − Hf (V , V )) n−1N = f −1 (c) is a totally umbilical submanifold of (M, g) f is an eigenvector of Hf ↔ the integral curves of V aregeodesics(M, g) is locally a warped productN is a space form Brozos-Vázquez, García-Río and Vázquez-Lorenzo; Complete locally conformally flat manifolds of negative curvature
  37. 37. Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)RmN (X , Y , Y , X ) = RmM (X , Y , Y , X )+II(X , X )II(Y , Y )−II(X , Y )2N is a standard sphere(M n , g) is rotationally symmetric B. Kotschwar; On rotationally invariant shrinking gradient Ricci solitons H.-D. Cao and Q. Chen; On Locally Conformally Flat Gradient Steady Ricci Solitons
  38. 38. Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)RmN (X , Y , Y , X ) = RmM (X , Y , Y , X )+II(X , X )II(Y , Y )−II(X , Y )2N is a standard sphere(M n , g) is rotationally symmetric B. Kotschwar; On rotationally invariant shrinking gradient Ricci solitons H.-D. Cao and Q. Chen; On Locally Conformally Flat Gradient Steady Ricci Solitons
  39. 39. Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)RmN (X , Y , Y , X ) = RmM (X , Y , Y , X )+II(X , X )II(Y , Y )−II(X , Y )2N is a standard sphere(M n , g) is rotationally symmetric B. Kotschwar; On rotationally invariant shrinking gradient Ricci solitons H.-D. Cao and Q. Chen; On Locally Conformally Flat Gradient Steady Ricci Solitons
  40. 40. Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)RmN (X , Y , Y , X ) = RmM (X , Y , Y , X )+II(X , X )II(Y , Y )−II(X , Y )2N is a standard sphere(M n , g) is rotationally symmetric B. Kotschwar; On rotationally invariant shrinking gradient Ricci solitons H.-D. Cao and Q. Chen; On Locally Conformally Flat Gradient Steady Ricci Solitons
  41. 41. Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)RmN (X , Y , Y , X ) = RmM (X , Y , Y , X )+II(X , X )II(Y , Y )−II(X , Y )2N is a standard sphere(M n , g) is rotationally symmetric B. Kotschwar; On rotationally invariant shrinking gradient Ricci solitons H.-D. Cao and Q. Chen; On Locally Conformally Flat Gradient Steady Ricci Solitons
  42. 42. Theorem (E. García Río and MFL, 2010)Let (M n , g) be a simply connected complete locally conformallyflat gradient shrinking or steady Ricci soliton. Then it isrotationally symmetric.Any complete ancient solution to the Ricci flow has nonnegativecurvature operator (n = 3 Chen, n ≥ 4 Zhang)RmN (X , Y , Y , X ) = RmM (X , Y , Y , X )+II(X , X )II(Y , Y )−II(X , Y )2N is a standard sphere(M n , g) is rotationally symmetric B. Kotschwar; On rotationally invariant shrinking gradient Ricci solitons H.-D. Cao and Q. Chen; On Locally Conformally Flat Gradient Steady Ricci Solitons
  43. 43. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  44. 44. Theorem (E. García Río and MFL, 2008)Let (M n , g) be a compact gradient Ricci soliton. Then fmax − fmin fmax − fmin fmax − fmin diam2 (M, g) ≥ 2max , ,4 λ−c C−λ C−cwhere c ≤ Ric ≤ C.Theorem (E. García Río and MFL, 2008)Let (M n , g) be a compact gradient Ricci soliton with Ric > 0.Then Rmax − Rmin Rmax − Rmin Rmax − Rmindiam2 (M, g) ≥ max , ,4 λ(λ − c) λ(C − λ) λ(C − c)where c ≤ Ric ≤ C.
  45. 45. Theorem (E. García Río and MFL, 2008)Let (M n , g) be a compact gradient Ricci soliton. Then fmax − fmin fmax − fmin fmax − fmin diam2 (M, g) ≥ 2max , ,4 λ−c C−λ C−cwhere c ≤ Ric ≤ C.Theorem (E. García Río and MFL, 2008)Let (M n , g) be a compact gradient Ricci soliton with Ric > 0.Then Rmax − Rmin Rmax − Rmin Rmax − Rmindiam2 (M, g) ≥ max , ,4 λ(λ − c) λ(C − λ) λ(C − c)where c ≤ Ric ≤ C.
  46. 46. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  47. 47. Theorem (A. Futaki and Y. Sano, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then 10π diam(M, g) ≥ √ . 13 λTheorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstein if and only if one of the followingconditions holds: Rmax − Rmin(i) Ric ≥ 1 − λg, (n − 1)λπ 2 + Rmax − Rmin c(Rmax − Rmin )(ii) cg ≤ Ric ≤ λ + g, for some c > 0 (n − 1)λπ 2 4(Rmax − Rmin )(iii) cg ≤ Ric ≤ 1 + cg, for some c > 0. (n − 1)λπ 2
  48. 48. Theorem (A. Futaki and Y. Sano, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then 10π diam(M, g) ≥ √ . 13 λTheorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstein if and only if one of the followingconditions holds: Rmax − Rmin(i) Ric ≥ 1 − λg, (n − 1)λπ 2 + Rmax − Rmin c(Rmax − Rmin )(ii) cg ≤ Ric ≤ λ + g, for some c > 0 (n − 1)λπ 2 4(Rmax − Rmin )(iii) cg ≤ Ric ≤ 1 + cg, for some c > 0. (n − 1)λπ 2
  49. 49. Assume (i) holds (n − 1)λ2 π 2 c= (n − 1)λπ 2 + Rmax − Rmin Rmax − Rmin (n − 1)π 2 diam2 (M, g) ≥ ≥ λ(λ − c) cMyers’ theorem: n−1 Ric ≥ cg > 0 =⇒ diam(M, g) ≤ π cBy Cheng M must be the standard sphereCONTRADICTION!
  50. 50. Assume (i) holds (n − 1)λ2 π 2 c= (n − 1)λπ 2 + Rmax − Rmin Rmax − Rmin (n − 1)π 2 diam2 (M, g) ≥ ≥ λ(λ − c) cMyers’ theorem: n−1 Ric ≥ cg > 0 =⇒ diam(M, g) ≤ π cBy Cheng M must be the standard sphereCONTRADICTION!
  51. 51. Assume (i) holds (n − 1)λ2 π 2 c= (n − 1)λπ 2 + Rmax − Rmin Rmax − Rmin (n − 1)π 2 diam2 (M, g) ≥ ≥ λ(λ − c) cMyers’ theorem: n−1 Ric ≥ cg > 0 =⇒ diam(M, g) ≤ π cBy Cheng M must be the standard sphereCONTRADICTION!
  52. 52. Assume (i) holds (n − 1)λ2 π 2 c= (n − 1)λπ 2 + Rmax − Rmin Rmax − Rmin (n − 1)π 2 diam2 (M, g) ≥ ≥ λ(λ − c) cMyers’ theorem: n−1 Ric ≥ cg > 0 =⇒ diam(M, g) ≤ π cBy Cheng M must be the standard sphereCONTRADICTION!
  53. 53. Assume (i) holds (n − 1)λ2 π 2 c= (n − 1)λπ 2 + Rmax − Rmin Rmax − Rmin (n − 1)π 2 diam2 (M, g) ≥ ≥ λ(λ − c) cMyers’ theorem: n−1 Ric ≥ cg > 0 =⇒ diam(M, g) ≤ π cBy Cheng M must be the standard sphereCONTRADICTION!
  54. 54. Assume (i) holds (n − 1)λ2 π 2 c= (n − 1)λπ 2 + Rmax − Rmin Rmax − Rmin (n − 1)π 2 diam2 (M, g) ≥ ≥ λ(λ − c) cMyers’ theorem: n−1 Ric ≥ cg > 0 =⇒ diam(M, g) ≤ π cBy Cheng M must be the standard sphereCONTRADICTION!
  55. 55. Theorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstein if and only if 2 1 Rmax − nλ ≤ 1+ | f |2 . n vol (M, g) MTheorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstein if and only if −Λ + Λ2 + 8(n − 1)λΛ |Ric − λg| ≤ c ≤ , 4(n − 1) 1where Λ = vol(M,g) M | f |2 denotes the average of the L2 -normof | f |.
  56. 56. Theorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstein if and only if 2 1 Rmax − nλ ≤ 1+ | f |2 . n vol (M, g) MTheorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional compact shrinking Ricci soliton.Then (M, g) is Einstein if and only if −Λ + Λ2 + 8(n − 1)λΛ |Ric − λg| ≤ c ≤ , 4(n − 1) 1where Λ = vol(M,g) M | f |2 denotes the average of the L2 -normof | f |.
  57. 57. (i) (∆f )2 = ((n + 2)λ − R) | f |2 M M (ii) | f |2 ≤ Rmax − R (∆f )2 = (n + 2)λ | f |2 − R| f |2M M M ≥ (n + 2)λ | f |2 − nλRmax vol (M, g) + R2 M M = (n + 2)λ | f |2 − nλRmax vol (M, g) M +n2 λ2 vol (M, g) + M (∆f ) 2 n+2 1 Rmax − nλ ≥ | f |2 n vol (M, g) M 2λf − R = | f |2 = Rmax − R ⇒ f is constant
  58. 58. (i) (∆f )2 = ((n + 2)λ − R) | f |2 M M (ii) | f |2 ≤ Rmax − R (∆f )2 = (n + 2)λ | f |2 − R| f |2M M M ≥ (n + 2)λ | f |2 − nλRmax vol (M, g) + R2 M M = (n + 2)λ | f |2 − nλRmax vol (M, g) M +n2 λ2 vol (M, g) + M (∆f ) 2 n+2 1 Rmax − nλ ≥ | f |2 n vol (M, g) M 2λf − R = | f |2 = Rmax − R ⇒ f is constant
  59. 59. (i) (∆f )2 = ((n + 2)λ − R) | f |2 M M (ii) | f |2 ≤ Rmax − R (∆f )2 = (n + 2)λ | f |2 − R| f |2M M M ≥ (n + 2)λ | f |2 − nλRmax vol (M, g) + R2 M M = (n + 2)λ | f |2 − nλRmax vol (M, g) M +n2 λ2 vol (M, g) + M (∆f ) 2 n+2 1 Rmax − nλ ≥ | f |2 n vol (M, g) M 2λf − R = | f |2 = Rmax − R ⇒ f is constant
  60. 60. (i) (∆f )2 = ((n + 2)λ − R) | f |2 M M (ii) | f |2 ≤ Rmax − R (∆f )2 = (n + 2)λ | f |2 − R| f |2M M M ≥ (n + 2)λ | f |2 − nλRmax vol (M, g) + R2 M M = (n + 2)λ | f |2 − nλRmax vol (M, g) M +n2 λ2 vol (M, g) + M (∆f ) 2 n+2 1 Rmax − nλ ≥ | f |2 n vol (M, g) M 2λf − R = | f |2 = Rmax − R ⇒ f is constant
  61. 61. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  62. 62. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded scalar curvature. Then (M, g) is compact Einstein if Ric( f , f ) ≥ g( f , f ), r (x)2for sufficiently large r (x), where > 0 and r (x) denotes thedistance from a fixed point.Theorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional complete gradient steady Riccisoliton. If Ric( f , f ) ≥ g( f , f ),where is any positive constant, then (M, g) is Ricci flat.
  63. 63. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded scalar curvature. Then (M, g) is compact Einstein if Ric( f , f ) ≥ g( f , f ), r (x)2for sufficiently large r (x), where > 0 and r (x) denotes thedistance from a fixed point.Theorem (E. García Río and MFL, 2010)Let (M, g) be an n-dimensional complete gradient steady Riccisoliton. If Ric( f , f ) ≥ g( f , f ),where is any positive constant, then (M, g) is Ricci flat.
  64. 64. Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r (x) > 1, then Mmust be compact. 2λf = R + | f |2There exists c such that f (x) ≥ 1 (r (x) − c)2 4 H.-D. Cao and D. Zhou; On complete gradient shrinking solitonsγ : [0, +∞) → M an integral curve of f (note that f is acomplete vector field) Z.-H. Zhang; On the completeness of gradient Ricci solitons
  65. 65. Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r (x) > 1, then Mmust be compact. 2λf = R + | f |2There exists c such that f (x) ≥ 1 (r (x) − c)2 4 H.-D. Cao and D. Zhou; On complete gradient shrinking solitonsγ : [0, +∞) → M an integral curve of f (note that f is acomplete vector field) Z.-H. Zhang; On the completeness of gradient Ricci solitons
  66. 66. Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r (x) > 1, then Mmust be compact. 2λf = R + | f |2There exists c such that f (x) ≥ 1 (r (x) − c)2 4 H.-D. Cao and D. Zhou; On complete gradient shrinking solitonsγ : [0, +∞) → M an integral curve of f (note that f is acomplete vector field) Z.-H. Zhang; On the completeness of gradient Ricci solitons
  67. 67. Theorem (P. Li)If a complete manifold has Ricci curvature bounded from belowby r (x)−2 , for some constant > 1/4 and all r (x) > 1, then Mmust be compact. 2λf = R + | f |2There exists c such that f (x) ≥ 1 (r (x) − c)2 4 H.-D. Cao and D. Zhou; On complete gradient shrinking solitonsγ : [0, +∞) → M an integral curve of f (note that f is acomplete vector field) Z.-H. Zhang; On the completeness of gradient Ricci solitons
  68. 68. For r ≥ r1 2 (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥ | f |2 r (x)2Since R is bounded, for some k1 > 0 and k2 > 0 | f |2 = 2λf − R ≥ λ2 (r (x) − c)2 − R ≥ k1 r (x)2 ≥ k2 R 2 r (x)2for r (x) ≥ r2 ≥ r1p ∈ Ω = {x ∈ M / 2λf (x) ≥ k3 } such that B(x0 , r2 ) ⊂ ΩSince f is increasing along the integral curves of f , if wesuppose that γ(0) = p, then γ(t) ∈ M Ω for all t ≥ 0
  69. 69. For r ≥ r1 2 (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥ | f |2 r (x)2Since R is bounded, for some k1 > 0 and k2 > 0 | f |2 = 2λf − R ≥ λ2 (r (x) − c)2 − R ≥ k1 r (x)2 ≥ k2 R 2 r (x)2for r (x) ≥ r2 ≥ r1p ∈ Ω = {x ∈ M / 2λf (x) ≥ k3 } such that B(x0 , r2 ) ⊂ ΩSince f is increasing along the integral curves of f , if wesuppose that γ(0) = p, then γ(t) ∈ M Ω for all t ≥ 0
  70. 70. For r ≥ r1 2 (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥ | f |2 r (x)2Since R is bounded, for some k1 > 0 and k2 > 0 | f |2 = 2λf − R ≥ λ2 (r (x) − c)2 − R ≥ k1 r (x)2 ≥ k2 R 2 r (x)2for r (x) ≥ r2 ≥ r1p ∈ Ω = {x ∈ M / 2λf (x) ≥ k3 } such that B(x0 , r2 ) ⊂ ΩSince f is increasing along the integral curves of f , if wesuppose that γ(0) = p, then γ(t) ∈ M Ω for all t ≥ 0
  71. 71. For r ≥ r1 2 (R ◦ γ) (t) = 2Ric( f (γ(t)), f (γ(t)) ≥ | f |2 r (x)2Since R is bounded, for some k1 > 0 and k2 > 0 | f |2 = 2λf − R ≥ λ2 (r (x) − c)2 − R ≥ k1 r (x)2 ≥ k2 R 2 r (x)2for r (x) ≥ r2 ≥ r1p ∈ Ω = {x ∈ M / 2λf (x) ≥ k3 } such that B(x0 , r2 ) ⊂ ΩSince f is increasing along the integral curves of f , if wesuppose that γ(0) = p, then γ(t) ∈ M Ω for all t ≥ 0
  72. 72. We have that (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ t t (R ◦ γ) (t) ds ≥ 2 k2 dt 0 (R ◦ γ)2 (t) 0 1 1 − ≥ 2 k2 t R(γ(0)) R(γ(t))Contradiction for t going to infinite.
  73. 73. We have that (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ t t (R ◦ γ) (t) ds ≥ 2 k2 dt 0 (R ◦ γ)2 (t) 0 1 1 − ≥ 2 k2 t R(γ(0)) R(γ(t))Contradiction for t going to infinite.
  74. 74. We have that (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ t t (R ◦ γ) (t) ds ≥ 2 k2 dt 0 (R ◦ γ)2 (t) 0 1 1 − ≥ 2 k2 t R(γ(0)) R(γ(t))Contradiction for t going to infinite.
  75. 75. We have that (R ◦ γ) (t) = g( R(γ(t)), γ (t)) ≥ 2 k2 R 2 (γ(t)),along γ t t (R ◦ γ) (t) ds ≥ 2 k2 dt 0 (R ◦ γ)2 (t) 0 1 1 − ≥ 2 k2 t R(γ(0)) R(γ(t))Contradiction for t going to infinite.
  76. 76. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  77. 77. A Riemannian manifold (M, g) is said to satisfy the Omori-Yaumaximum principle if given any function u ∈ C 2 (M) withu ∗ = supM u < +∞, there exists a sequence (xk ) of points onM satisfying 1 1 1 i) u(xk ) > u ∗ − , ii) |( u)(xk )| < , iii) (∆u)(xk ) < , k k kfor each k ∈ N. If, instead of iii) we assume that 1 Hu (xk ) < g, kin the sense of quadratic forms, then it is said that theRiemannian manifold satisfies the Omori-Yau maximumprinciple for the Hessian.The f -Laplacian is ∆f = ef div (e−f ) = ∆ − g( f , ·)
  78. 78. A Riemannian manifold (M, g) is said to satisfy the Omori-Yaumaximum principle if given any function u ∈ C 2 (M) withu ∗ = supM u < +∞, there exists a sequence (xk ) of points onM satisfying 1 1 1 i) u(xk ) > u ∗ − , ii) |( u)(xk )| < , iii) (∆u)(xk ) < , k k kfor each k ∈ N. If, instead of iii) we assume that 1 Hu (xk ) < g, kin the sense of quadratic forms, then it is said that theRiemannian manifold satisfies the Omori-Yau maximumprinciple for the Hessian.The f -Laplacian is ∆f = ef div (e−f ) = ∆ − g( f , ·)
  79. 79. In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature bounded from below. H. Omori; Isometric immersions of Riemannian manifoldsIn 1975 Yau proved that the Omori-Yau maximum principle issatisfied by Riemannian manifolds with Ricci curvaturebounded from below. S. T. Yau; Harmonic functions on complete Riemannian manifoldsFrom now on we will work with Ricci solitons normalized in thesense 1 Rc + Hf = ± g 2
  80. 80. In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature bounded from below. H. Omori; Isometric immersions of Riemannian manifoldsIn 1975 Yau proved that the Omori-Yau maximum principle issatisfied by Riemannian manifolds with Ricci curvaturebounded from below. S. T. Yau; Harmonic functions on complete Riemannian manifoldsFrom now on we will work with Ricci solitons normalized in thesense 1 Rc + Hf = ± g 2
  81. 81. In 1967 Omori showed that the Omori-Yau maximum principlefor the Hessian is satisfied by Riemannian manifolds withcurvature bounded from below. H. Omori; Isometric immersions of Riemannian manifoldsIn 1975 Yau proved that the Omori-Yau maximum principle issatisfied by Riemannian manifolds with Ricci curvaturebounded from below. S. T. Yau; Harmonic functions on complete Riemannian manifoldsFrom now on we will work with Ricci solitons normalized in thesense 1 Rc + Hf = ± g 2
  82. 82. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  83. 83. Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M, g) satisfies the Omori-Yaumaximum principle.Moreover, if there exists C > 0 such that Ric ≥ −Cr (x)2 , wherer (x) denotes the distance to a fixed point, then the Omori-Yaumaximum principle for the Hessian holds on (M, g).Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M, g) satisfies the Omori-Yaumaximum principle for the f -Laplacian.
  84. 84. Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M, g) satisfies the Omori-Yaumaximum principle.Moreover, if there exists C > 0 such that Ric ≥ −Cr (x)2 , wherer (x) denotes the distance to a fixed point, then the Omori-Yaumaximum principle for the Hessian holds on (M, g).Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete noncompact gradientshrinking Ricci soliton. Then (M, g) satisfies the Omori-Yaumaximum principle for the f -Laplacian.
  85. 85. S. Pigola, M. Rigoli and A. Setti; Maximum principles on Riemannian manifolds and applications(M, g) satisfies the Omori-Yau maximum principle if ∃0 ≤ ϕ ∈ C 2 , s. t. ϕ(x) −→ +∞ as x −→ ∞, (1) √ ∃A < 0 such that | ϕ| ≤ A ϕ off a compact set, and (2) √ √ ∃B > 0 s. t. ∆ϕ ≤ B ϕ G( ϕ), off a compact set, (3)where G is a smooth function on [0, +∞) satisfying i) G(0) > 0, ii) G (t) ≥ 0, on [0, +∞), √ ∞ dt tG( t) (4) iii) = ∞, iv ) lim sup < ∞. 0 G(t) t→∞ G(t) √ √ ∃B > 0 s. t. Hϕ ≤ B ϕ G( ϕ), off a compact set (5)(M, g) satisfies the Omori-Yau maximum principle for Hessian.
  86. 86. S. Pigola, M. Rigoli and A. Setti; Maximum principles on Riemannian manifolds and applications(M, g) satisfies the Omori-Yau maximum principle if ∃0 ≤ ϕ ∈ C 2 , s. t. ϕ(x) −→ +∞ as x −→ ∞, (1) √ ∃A < 0 such that | ϕ| ≤ A ϕ off a compact set, and (2) √ √ ∃B > 0 s. t. ∆ϕ ≤ B ϕ G( ϕ), off a compact set, (3)where G is a smooth function on [0, +∞) satisfying i) G(0) > 0, ii) G (t) ≥ 0, on [0, +∞), √ ∞ dt tG( t) (4) iii) = ∞, iv ) lim sup < ∞. 0 G(t) t→∞ G(t) √ √ ∃B > 0 s. t. Hϕ ≤ B ϕ G( ϕ), off a compact set (5)(M, g) satisfies the Omori-Yau maximum principle for Hessian.
  87. 87. Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then, the weak maximum principleat infinity for the f -Laplacian holds.Given any function u ∈ C 2 (M) with u ∗ = supM u < +∞, thereexists a sequence (xk ) of points on M satisfying 1 1 i) u(xk ) > u ∗ − , ii) (∆f u)(xk ) < , k kfor each k ∈ N.Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then it is stochastically complete.
  88. 88. Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then, the weak maximum principleat infinity for the f -Laplacian holds.Given any function u ∈ C 2 (M) with u ∗ = supM u < +∞, thereexists a sequence (xk ) of points on M satisfying 1 1 i) u(xk ) > u ∗ − , ii) (∆f u)(xk ) < , k kfor each k ∈ N.Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then it is stochastically complete.
  89. 89. Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then, the weak maximum principleat infinity for the f -Laplacian holds.Given any function u ∈ C 2 (M) with u ∗ = supM u < +∞, thereexists a sequence (xk ) of points on M satisfying 1 1 i) u(xk ) > u ∗ − , ii) (∆f u)(xk ) < , k kfor each k ∈ N.Theorem (S. Pigola, M. Rimoldi and A. Setti, 2009)Let (M, g) be a complete gradient (shrinking, steady orexpanding) Ricci solitons. Then it is stochastically complete.
  90. 90. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  91. 91. Theorem (E. García Río and MFL, 2010)Let (M n , g) be an n-dimensional complete gradient shrinkingRicci soliton. Then: (i) (M, g) has constant scalar curvature if and only if | R|2 2|Ric|2 ≤ R + c , for some c ≥ 0. R+1(ii) (M, g) is isometric to (Rn , geuc ) if and only if | R|2 2|Ric|2 ≤ (1 − )R + c , for some c ≥ 0 and > 0. R+1
  92. 92. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M, g) is rigid if andonly if the sectional curvature is bounded from above by |Ric|22(R 2 −|Ric|2 ) .We consider an orthonormal frame {E1 , . . . , En } formed byeigenvectors of the Ricci operator. ∆Rii = g( Rii , f ) + Rii − 2Rijji R jj ,where Rii = Ric(Ei , Ei ), Rijji = R(Ei , Ej , Ej , Ei )∆f |Ric|2 = 2|Ric|2 −4R ii Rijji R jj +2 Rii R ii ≥ 2|Ric|2 −4R ii Rijji R jj .
  93. 93. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M, g) is rigid if andonly if the sectional curvature is bounded from above by |Ric|22(R 2 −|Ric|2 ) .We consider an orthonormal frame {E1 , . . . , En } formed byeigenvectors of the Ricci operator. ∆Rii = g( Rii , f ) + Rii − 2Rijji R jj ,where Rii = Ric(Ei , Ei ), Rijji = R(Ei , Ej , Ej , Ei )∆f |Ric|2 = 2|Ric|2 −4R ii Rijji R jj +2 Rii R ii ≥ 2|Ric|2 −4R ii Rijji R jj .
  94. 94. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M, g) is rigid if andonly if the sectional curvature is bounded from above by |Ric|22(R 2 −|Ric|2 ) .We consider an orthonormal frame {E1 , . . . , En } formed byeigenvectors of the Ricci operator. ∆Rii = g( Rii , f ) + Rii − 2Rijji R jj ,where Rii = Ric(Ei , Ei ), Rijji = R(Ei , Ej , Ej , Ei )∆f |Ric|2 = 2|Ric|2 −4R ii Rijji R jj +2 Rii R ii ≥ 2|Ric|2 −4R ii Rijji R jj .
  95. 95. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient shrinking Ricci soliton withbounded nonnegative Ricci tensor. Then (M, g) is rigid if andonly if the sectional curvature is bounded from above by |Ric|22(R 2 −|Ric|2 ) .We consider an orthonormal frame {E1 , . . . , En } formed byeigenvectors of the Ricci operator. ∆Rii = g( Rii , f ) + Rii − 2Rijji R jj ,where Rii = Ric(Ei , Ei ), Rijji = R(Ei , Ej , Ej , Ei )∆f |Ric|2 = 2|Ric|2 −4R ii Rijji R jj +2 Rii R ii ≥ 2|Ric|2 −4R ii Rijji R jj .
  96. 96. Under our assumption one has 4|Ric|2 4 R ii Rijji R jj ≤ (R 2 − |Ric|2 ) = 2|Ric|2 . 2(R 2 − |Ric|2 )Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant. 0 = ∆f |Ric|2 = 2|Ric|2 − 4R ii Rijji R jj + 2 Rii R ii ≥ 0 n ⇒ | Rii |2 = 0 i=1The Ricci soliton is rigid.
  97. 97. Under our assumption one has 4|Ric|2 4 R ii Rijji R jj ≤ (R 2 − |Ric|2 ) = 2|Ric|2 . 2(R 2 − |Ric|2 )Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant. 0 = ∆f |Ric|2 = 2|Ric|2 − 4R ii Rijji R jj + 2 Rii R ii ≥ 0 n ⇒ | Rii |2 = 0 i=1The Ricci soliton is rigid.
  98. 98. Under our assumption one has 4|Ric|2 4 R ii Rijji R jj ≤ (R 2 − |Ric|2 ) = 2|Ric|2 . 2(R 2 − |Ric|2 )Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant. 0 = ∆f |Ric|2 = 2|Ric|2 − 4R ii Rijji R jj + 2 Rii R ii ≥ 0 n ⇒ | Rii |2 = 0 i=1The Ricci soliton is rigid.
  99. 99. Under our assumption one has 4|Ric|2 4 R ii Rijji R jj ≤ (R 2 − |Ric|2 ) = 2|Ric|2 . 2(R 2 − |Ric|2 )Then ∆f |Ric|2 ≥ 0, and by f -parabolicity it follows that |Ric|2 isconstant. 0 = ∆f |Ric|2 = 2|Ric|2 − 4R ii Rijji R jj + 2 Rii R ii ≥ 0 n ⇒ | Rii |2 = 0 i=1The Ricci soliton is rigid.
  100. 100. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0. ∆f R = −2|Ric|2 .There exists a sequence (xk ) of points of M such that 1 1R(xk ) < R∗ + k and (∆f R)(xk ) > − k . 1 2R(xk )2 ≥ 2|Ric(xk )|2 ≥ . k nTaking the limit when k goes to infinity we get that R∗ = 0.
  101. 101. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0. ∆f R = −2|Ric|2 .There exists a sequence (xk ) of points of M such that 1 1R(xk ) < R∗ + k and (∆f R)(xk ) > − k . 1 2R(xk )2 ≥ 2|Ric(xk )|2 ≥ . k nTaking the limit when k goes to infinity we get that R∗ = 0.
  102. 102. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0. ∆f R = −2|Ric|2 .There exists a sequence (xk ) of points of M such that 1 1R(xk ) < R∗ + k and (∆f R)(xk ) > − k . 1 2R(xk )2 ≥ 2|Ric(xk )|2 ≥ . k nTaking the limit when k goes to infinity we get that R∗ = 0.
  103. 103. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0. ∆f R = −2|Ric|2 .There exists a sequence (xk ) of points of M such that 1 1R(xk ) < R∗ + k and (∆f R)(xk ) > − k . 1 2R(xk )2 ≥ 2|Ric(xk )|2 ≥ . k nTaking the limit when k goes to infinity we get that R∗ = 0.
  104. 104. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient steady Ricci soliton. ThenR∗ = infM R = 0. ∆f R = −2|Ric|2 .There exists a sequence (xk ) of points of M such that 1 1R(xk ) < R∗ + k and (∆f R)(xk ) > − k . 1 2R(xk )2 ≥ 2|Ric(xk )|2 ≥ . k nTaking the limit when k goes to infinity we get that R∗ = 0.
  105. 105. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R ∗ = supM R < 0 then − n ≤ R ≤ − 1 . 2 2 ∆f R = −R − 2|Ric|2 ≥ −R − 2R 2 = −R(1 + 2R) 1 R ∗ (1 + 2R ∗ ) ≥ 0 ⇒ R ∗ ≤ − 2
  106. 106. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R ∗ = supM R < 0 then − n ≤ R ≤ − 1 . 2 2 ∆f R = −R − 2|Ric|2 ≥ −R − 2R 2 = −R(1 + 2R) 1 R ∗ (1 + 2R ∗ ) ≥ 0 ⇒ R ∗ ≤ − 2
  107. 107. Theorem (E. García Río and MFL, 2010)Let (M, g) be a complete gradient expanding Ricci soliton withRic ≤ 0. If R ∗ = supM R < 0 then − n ≤ R ≤ − 1 . 2 2 ∆f R = −R − 2|Ric|2 ≥ −R − 2R 2 = −R(1 + 2R) 1 R ∗ (1 + 2R ∗ ) ≥ 0 ⇒ R ∗ ≤ − 2
  108. 108. Outline Rigidity of Ricci solitons Rigidity: compact case Rigidity: non-compact case Locally conformally flat case Gap theorems Diameter bounds Gap theorems: compact case Gap theorems: non-compact case Maximum principles Introduction Omori-Yau maximum principle Applications Steady solitons Lower bound for the curvature of a steady soliton
  109. 109. TheoremLet (M n , g, f ) be a complete noncompact nonflat shrinkinggradient Ricci soliton. Then for any given point O ∈ M there −1exists a constant CO > 0 such that R(x)d(x, O)2 ≥ COwherever d(x, O) ≥ CO . B. Chow, P. Lu and B. Yang; A lower bound for the scalar curvature of noncompact nonflat Ricci shrinkersTheoremLet (M n , g, f ) be a complete steady gradient Ricci solitons withRc = −Hf and R + | f |2 = 1. If limx→∞ f (x) = −∞ and f ≤ 0, 1then R ≥ √ n ef . 2 +2 B. Chow, P. Lu and B. Yang; A lower bound for the scalar curvature of certain steady gradient Ricci solitons
  110. 110. TheoremLet (M n , g, f ) be a complete noncompact nonflat shrinkinggradient Ricci soliton. Then for any given point O ∈ M there −1exists a constant CO > 0 such that R(x)d(x, O)2 ≥ COwherever d(x, O) ≥ CO . B. Chow, P. Lu and B. Yang; A lower bound for the scalar curvature of noncompact nonflat Ricci shrinkersTheoremLet (M n , g, f ) be a complete steady gradient Ricci solitons withRc = −Hf and R + | f |2 = 1. If limx→∞ f (x) = −∞ and f ≤ 0, 1then R ≥ √ n ef . 2 +2 B. Chow, P. Lu and B. Yang; A lower bound for the scalar curvature of certain steady gradient Ricci solitons
  111. 111. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying 2|Ric|2 ≤ R . Then 2 r (x) R(x) ≥ k sech2 , 2where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). √ | R|2 |Hf |2 = | f |2 ≥ | | f ||2 = | 1 − R|2 = 4| f |2 | R|2 ≤ 4|Hf |2 | f |2 R2 | R| |Hf |2 = |Rc|2 ≤ ⇒ √ ≤1 2 R 1−R
  112. 112. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying 2|Ric|2 ≤ R . Then 2 r (x) R(x) ≥ k sech2 , 2where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). √ | R|2 |Hf |2 = | f |2 ≥ | | f ||2 = | 1 − R|2 = 4| f |2 | R|2 ≤ 4|Hf |2 | f |2 R2 | R| |Hf |2 = |Rc|2 ≤ ⇒ √ ≤1 2 R 1−R
  113. 113. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying 2|Ric|2 ≤ R . Then 2 r (x) R(x) ≥ k sech2 , 2where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). √ | R|2 |Hf |2 = | f |2 ≥ | | f ||2 = | 1 − R|2 = 4| f |2 | R|2 ≤ 4|Hf |2 | f |2 R2 | R| |Hf |2 = |Rc|2 ≤ ⇒ √ ≤1 2 R 1−R
  114. 114. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton satisfying 2|Ric|2 ≤ R . Then 2 r (x) R(x) ≥ k sech2 , 2where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). √ | R|2 |Hf |2 = | f |2 ≥ | | f ||2 = | 1 − R|2 = 4| f |2 | R|2 ≤ 4|Hf |2 | f |2 R2 | R| |Hf |2 = |Rc|2 ≤ ⇒ √ ≤1 2 R 1−R
  115. 115. −(R◦γ)Integrating √ R 1−R along a minimizing geodesic γ(s) √ t l t 1+ 1−R (R ◦ γ) | R| ln √ =− √ ds ≤ √ ds ≤ t 1− 1−R 0 0 R 1−R 0 R 1−R √ 1+ 1−R(O)Writing c = √ we get that 1− 1−R(O) 1+ 1 − R(γ(t)) ≤ cet (1 − 1 − R(γ(t))) 4c R(γ(t)) ≥ c 2 et + 2c + e−tSince c ≥ 1 we have that 4c 4c 1 t R(γ(t)) ≥ −t ≥ 2 t 2 + c 2 e−t = sech2 c 2 et + 2c + e c e + 2c c 2
  116. 116. −(R◦γ)Integrating √ R 1−R along a minimizing geodesic γ(s) √ t l t 1+ 1−R (R ◦ γ) | R| ln √ =− √ ds ≤ √ ds ≤ t 1− 1−R 0 0 R 1−R 0 R 1−R √ 1+ 1−R(O)Writing c = √ we get that 1− 1−R(O) 1+ 1 − R(γ(t)) ≤ cet (1 − 1 − R(γ(t))) 4c R(γ(t)) ≥ c 2 et + 2c + e−tSince c ≥ 1 we have that 4c 4c 1 t R(γ(t)) ≥ −t ≥ 2 t 2 + c 2 e−t = sech2 c 2 et + 2c + e c e + 2c c 2
  117. 117. −(R◦γ)Integrating √ R 1−R along a minimizing geodesic γ(s) √ t l t 1+ 1−R (R ◦ γ) | R| ln √ =− √ ds ≤ √ ds ≤ t 1− 1−R 0 0 R 1−R 0 R 1−R √ 1+ 1−R(O)Writing c = √ we get that 1− 1−R(O) 1+ 1 − R(γ(t)) ≤ cet (1 − 1 − R(γ(t))) 4c R(γ(t)) ≥ c 2 et + 2c + e−tSince c ≥ 1 we have that 4c 4c 1 t R(γ(t)) ≥ −t ≥ 2 t 2 + c 2 e−t = sech2 c 2 et + 2c + e c e + 2c c 2
  118. 118. −(R◦γ)Integrating √ R 1−R along a minimizing geodesic γ(s) √ t l t 1+ 1−R (R ◦ γ) | R| ln √ =− √ ds ≤ √ ds ≤ t 1− 1−R 0 0 R 1−R 0 R 1−R √ 1+ 1−R(O)Writing c = √ we get that 1− 1−R(O) 1+ 1 − R(γ(t)) ≤ cet (1 − 1 − R(γ(t))) 4c R(γ(t)) ≥ c 2 et + 2c + e−tSince c ≥ 1 we have that 4c 4c 1 t R(γ(t)) ≥ −t ≥ 2 t 2 + c 2 e−t = sech2 c 2 et + 2c + e c e + 2c c 2
  119. 119. The scalar curvature of Hamilton’s cigar soliton dx 2 + dy 2 R2 , 1 + x2 + y2satisfies R(x) = 4sech2 r (x)The scalar curvature of normalized Hamilton’s cigar soliton 4(dx 2 + dy 2 ) R2 , 1 + x2 + y2satisfies r (x) R(x) = sech2 2Our inequality is SHARP
  120. 120. The scalar curvature of Hamilton’s cigar soliton dx 2 + dy 2 R2 , 1 + x2 + y2satisfies R(x) = 4sech2 r (x)The scalar curvature of normalized Hamilton’s cigar soliton 4(dx 2 + dy 2 ) R2 , 1 + x2 + y2satisfies r (x) R(x) = sech2 2Our inequality is SHARP
  121. 121. The scalar curvature of Hamilton’s cigar soliton dx 2 + dy 2 R2 , 1 + x2 + y2satisfies R(x) = 4sech2 r (x)The scalar curvature of normalized Hamilton’s cigar soliton 4(dx 2 + dy 2 ) R2 , 1 + x2 + y2satisfies r (x) R(x) = sech2 2Our inequality is SHARP
  122. 122. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvature normalized as before. Then R(x) ≥ k sech2 r (x),where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). | R|2 ≤ 4|Hf |2 | f |2Since |Hf |2 = |Rc|2 ≤ R 2 one has | R| √ ≤2 R 1−R
  123. 123. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvature normalized as before. Then R(x) ≥ k sech2 r (x),where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). | R|2 ≤ 4|Hf |2 | f |2Since |Hf |2 = |Rc|2 ≤ R 2 one has | R| √ ≤2 R 1−R
  124. 124. Theorem (E. García Río and MFL, 2011)Let (M, g) be a complete gradient steady Ricci soliton withnonnegative Ricci curvature normalized as before. Then R(x) ≥ k sech2 r (x),where r (x) is the distance from a fixed point O ∈ M and k ≤ 1is a constant that only depends on O and R(O). | R|2 ≤ 4|Hf |2 | f |2Since |Hf |2 = |Rc|2 ≤ R 2 one has | R| √ ≤2 R 1−R
  125. 125. THANK YOU VERY MUCH FOR YOUR ATTENTION

×