Mathematical models and analysis of the space tether systems motion

1,592 views

Published on

Development of a mathematical model describing the motion of the space tether system.
Creation of the program complex designed to analyze the dynamics of the space tether system.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,592
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Mathematical models and analysis of the space tether systems motion

  1. 1. Vladimir S. Aslanov, Aleksandr S. Ledkov aslanov_vs@mail.ru, ledkov@inbox.ruMathematical models and analysisof the space tether systems motion Theoretical mechanics department www.termech.ru Samara State Aerospace Univercity www.ssau.ru 2012
  2. 2. 1.1. Area of application of space tether systemsDynamics of space tether systems has been studied by: Beletsky V. V., Levin E. M., Cartmell M.P., Cosmo M.L. , LorenziniE.C., Misra A.K., Modi. V.J., Williams P., Fujii H. A., Edwards B. C., Kumar K. D., Kumar R., McCoy J. E., Sorensen K.,Zimmermann F. 2
  3. 3. 1.1.1. Creation of certain conditions onboard the spacecraft Artificial gravity Generation of electricity Creating artificial gravity through Generation of electricity by the interaction of centrifugal force of inertia tether with an electromagnetic field of the Earth. 3
  4. 4. 1.1.2. Creation of certain conditions onboard the spacecraft Gravitational stabilisation of the spacecraft Between the spacecraft and the spherical hinge dissipation force acts. 4
  5. 5. 1.1.3. The research and national economy Studying of an upper atmosphere Due to the influence of the atmosphere the probe can not survive for long at a high of 80-100 km. These heights are not available for aircraft. 5
  6. 6. 1.1.4. The research and national economy Sounding of a surface of the Earth By reducing the height of the probe can be got a higher resolution scan. 6
  7. 7. 1.1.5. The research and national economyInterferometer with a long base Installation of radio-repeaters 7
  8. 8. 1.1.6 Transport operations in space Space Elevator 8
  9. 9. 1.1.7. Transport operations in spaceDelivery of payload Space Escalator 9
  10. 10. 1.1.7. Transport operations in spaceBraking of the spacecraft by electrodynamics tether 10
  11. 11. 1.2. Experiment with space tethers There are currently executed more than 20 experiments using the STS Mission Orbit Year of Full tether Deployed implementa length tether tion lengthGemini-11 LEO 1966 36 m 36 mGemini-12 LEO 1966 36 m 36 mTPE-1 Suborbital 1980 400 m 38 mTPE-2 Suborbital 1981 400 m 103 mCharge-1 (TPE-3) Suborbital 1983 418 m 418 mCharge-2 (TPE-4) Suborbital 1984 426 m 426 m T-REXOedipus-A Suborbital 1989 958 m 958 mCharge-2B Suborbital 1992 426 m 426 mTSS-1 LEO 1992 20 km 268 m TiPS PICOSATSEDS-1 LEO 1993 20 km 20 kmPMG LEO 500 m 500 mSEDS-2 LEO 1994 20 km 20 km YES-2 SEDSOedipus-C Suborbital 1995 1174 m 1174 mTSS-1R LEO 1996 19.7 km 19.7 kmTiPS LEO 1996 4 km 4 kmYES GTO 1997 35 km -ATEx LEO 1998 6.05 km 22 mPICOSAT 1.0 LEO 2000 30 m 30 mPICOSAT 1.1 LEO 2000 30 m 30 mYES2 LEO 2007 31.7 km 29 kmT-REX Suborbital 2010 300 m 300 m 3
  12. 12. 1.3. Modern materials and tethersMaterial Density , Tensile Elastic Carbon nanotubes g/cm3 strength, GPa modulus, GPaAluminum 2.7 0.6 70Diamond 3.5 54 1050Dyneema 0.99 3 172Graphite 2.2 20 690 1977 – M.U. KornilovKevlar 29 1.44 3.6 83 1952 – L.V. Radushkevich and V.M. Lukyanivich 1991 - S.IijimaKevlar 49 1.44 3.6 124 1993 – N. PungoSilica 2.19 6 74 Existing technologiesSpectra-2000 0.97 3.34 124Stainless steel 7.9 2 200Tungsten 19.3 4 410Zylon AS 1.54 5.8 180Zylon HM 1.56 5.8 270Carbone Nanotube 1.3 150 630 4
  13. 13. 1.4. Problem formulation• Development of a mathematical model describing the motion of the space tether system.• Creation of the program complex designed to analyze the dynamics of the space tether system.• Analysis abnormal situations in the problem of cargo delivery from the orbit. 5
  14. 14. 2. Mathematical models Types of mathematical models1. Tether is considered as the rod.2. Tether is considered as the set of point masses connected by weightless viscoelastic rod segments.3. Tether is considered as the heavy thread. The choice of the model is due to the specifics of the problem 6
  15. 15. 2.1 Model with the massless rod 3 ( A  B) c  2 sin 2  (l  l0 )sin(   ), 2 C C   c(l  l0 )   2  2 C   2 cos(2  2 )  l   2C  m2 3 2 cos  (l cos    cos  )   2 l   3 2 sin 2 sin(   )2l   (  2 )cos(   )     , 2C 2c  (  2 )sin(   )   (l  l0 )sin(2  2 )   2lC l 3 2 sin  (l cos    cos  ) 2l(   ) 3 2 ( A  B)sin 2    . l l 2lCHere  – angular velocity of the carrying spacecraft incircular orbit, A, B, C – principal moments of inertia ofthe spacecraft, l0 – length of the unstrained tether. 7
  16. 16. 2.2 Multipoint model of the tether Discrete representation of the tether    ESi   i  1  Di i ,  i  1, Ti   t (1) 0,  i  1, where Ti - tension of the i-th section of thetether, E - modulus of elasticity, i -elongation, ri - length of the i-th part ofstrained tether, li - length of the i-th part ofunstrained tether, Si - area of i-th tether parttether cross-secrion, h - loss factor , mi -mass of the i-th point, Di - coefficient ofinternal friction for the case of longitudinalvibrations of the tether section. Point i=0 iscorrespond to spacecraft, and i=N+1 - tocargo. Di  ESi mili 1h 8
  17. 17. 2.2 Multipoint model of the tether The interaction with the atmosphere 2 Approximate formulas for calculating the aerodynamicc  0, cn ( )  k sin 2  , 3 coefficients raiVi kdT  sin 1,i sin 2,i  ni , j  (Vi  ρ j )  ρ jFAi   ni ,i  ni ,i 1  6  ri ri1 Here ri – density of the atmosphere at an altitude of i-th point, dT – diameter of thetether, k – adjusted coefficient of Newton. 9
  18. 18. 2.2 Multipoint model of the tether Accounting singularities Earths gravitational field G i  gradU gravitational force acting on the i-th point of tetherThe gravitational potential of the Earth, in the form of an expansion inspherical harmonics:   n n   rE   n  rE  ( k ) U 1   J n   Pn sin      Pn sin  (Cnk cos k l  Snk sin k l )  ri  n2  ri  n  2 k 1  r    i Here  , l – geocentric latitude and longitude,Pn - Legendre polynomial of the n-th order,Pn(k) - associated Legendre function,Jk - zonal harmonic coefficient,Cnk, Snk - dimensionless coefficients, called forn≠k tesseral harmonic coefficients, and whenn=k - coefficients of sectoral harmonics. 10
  19. 19. 2.2 Multipoint model of the tether The equations of motion of the tethers points The general equation of dynamics fornoninertial Greenwich geocentric coordinatesystem mii  Gi  FAi  Ti  Ti 1  Фi Ц  Фi К r Inertial forces Фi Ц  miω3  (ω3  ri ) Фi К  2miω3  Vi 11
  20. 20. 2.2 The equations of motion of the end-bodies Dynamic equationsdK i  ωi  K i  M Ai  MGi  Δi  Ti , i  A, B dtKi – angular momentum vector,i – angular velocity of i-th body, MAi –moment of aerodynamic forces, MGi –moment of gravitational forces, Ti –vector of the tension force of tethers partadjacent to the body. Kinematic equation   l ω , m  m ω , n  l m . li i i i i i i i iHere li, mi, ni – unit vectors of thecoordinate system OXYZ, specified asprojections on the axis associated withthe i-th body coordinate system. 12
  21. 21. 3. Software implementation (TetherCalc) The model is implemented in MatLab package 13
  22. 22. 4 Analysis of abnormal situations 14
  23. 23. 4 Analysis of abnormal situations Wrong orientation at the cargo separation 15
  24. 24. 4 Analysis of abnormal situations Breakage of attitude control system 16
  25. 25. 3 Analysis of abnormal situationsThe consequences of jamming Diadram of the consequences of jamming a - tether break b - winding the tether on the spacecraft c - impact tethered cargo and spacecraft 17
  26. 26. The main results were published in the following articles• Aslanov V.S. and Ledkov A.S. Dynamics of the Tethered Satellite Systems, Woodhead Publishing Limited, Cambridge, UK, (2012) 275 pages. ISBN-10: 0857091565 | ISBN-13: 978-0857091567)• Aslanov V.S. and Ledkov A.S. Chaotic oscillations of spacecraft by elastic radial oriented tether - Cosmic Research ISSN 0010-9525, No. 2, 2012, , Vol. 50, No. 2, 2012, 188-198.• Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol. 46, Number5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013.• Aslanov V.S. Oscillations of a Spacecraft with a Vertical Elastic Tether - AIP Conference Proceedings 1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, Vol. 1, 1-16.• Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite - Journal of Applied Mathematics and Mechanics 74 (2010) 416–424.• Aslanov V.S. The Oscillations of a Spacecraft under the Action of the Tether Tension Moment and the Gravitational Moment - American Institute of Physics (AIP) conference proceedings 1048, ICNAAM, Melville, New York, pp.56-59, 2008• Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied Mathematics and Mechanics 71 (2007) 926–932.• V.S. Aslanov, A.V. Pirozhenko, B.V. Ivanov, A.S. Ledkov. Chaotic Motion of the Elastic Tether System - Vestnik SSAU, ISSN 1998-6629, 2009, No. 4(20), 9-15.• V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. The Influence of the Cable System Dedicated to Deliver Freights to the Earth of the Rotary Motion of Spacecraft -Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2009, No. 1, 54-60.• V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. Spatial Motion of Space Rope Cago Transport System - Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2007, No. 2, 28-33. 18

×