Mathematical models and analysis of the space tether systems motion

Theoretical mechanics department
Theoretical mechanics departmentAssociate Professor at Samara State Aerospace University
Vladimir S. Aslanov, Aleksandr S. Ledkov
        aslanov_vs@mail.ru, ledkov@inbox.ru



Mathematical models and analysis
of the space tether systems motion

       Theoretical mechanics department
                  www.termech.ru

       Samara State Aerospace Univercity
                   www.ssau.ru




                       2012
1.1. Area of application of space tether systems




Dynamics of space tether systems has been studied by: Beletsky V. V., Levin E. M., Cartmell M.P., Cosmo M.L. , Lorenzini
E.C., Misra A.K., Modi. V.J., Williams P., Fujii H. A., Edwards B. C., Kumar K. D., Kumar R., McCoy J. E., Sorensen K.,
Zimmermann F.                                                                                                              2
1.1.1. Creation of certain conditions onboard the
                    spacecraft
         Artificial gravity                  Generation of electricity




 Creating artificial gravity through   Generation of electricity by the interaction of
    centrifugal force of inertia       tether with an electromagnetic field of the Earth.

                                                                                            3
1.1.2. Creation of certain conditions onboard the
                    spacecraft
             Gravitational stabilisation of the spacecraft




        Between the spacecraft and the spherical hinge dissipation force acts.

                                                                                 4
1.1.3. The research and national economy

                   Studying of an upper atmosphere




 Due to the influence of the atmosphere the probe can not survive for long at a high
              of 80-100 km. These heights are not available for aircraft.
                                                                                       5
1.1.4. The research and national economy

                Sounding of a surface of the Earth




   By reducing the height of the probe can be got a higher resolution scan.

                                                                              6
1.1.5. The research and national economy


Interferometer with a long base   Installation of radio-repeaters




                                                                    7
1.1.6 Transport operations in space
             Space Elevator




                                      8
1.1.7. Transport operations in space

Delivery of payload        Space Escalator




                                             9
1.1.7. Transport operations in space

Braking of the spacecraft by electrodynamics tether




                                                      10
1.2. Experiment with space tethers
                   There are currently executed more than 20 experiments using the STS
       Mission        Orbit        Year of    Full tether       Deployed
                                 implementa    length            tether
                                     tion                        length
Gemini-11             LEO          1966       36 m          36 m
Gemini-12             LEO          1966       36 m          36 m
TPE-1               Suborbital     1980       400 m         38 m
TPE-2               Suborbital     1981       400 m         103 m
Charge-1 (TPE-3)    Suborbital     1983       418 m         418 m
Charge-2 (TPE-4)    Suborbital     1984       426 m         426 m
                                                                                             T-REX
Oedipus-A           Suborbital     1989       958 m         958 m
Charge-2B           Suborbital     1992       426 m         426 m
TSS-1                 LEO          1992       20 km         268 m           TiPS   PICOSAT
SEDS-1                LEO          1993       20 km         20 km
PMG                   LEO                     500 m         500 m
SEDS-2                LEO          1994       20 km         20 km          YES-2   SEDS
Oedipus-C           Suborbital     1995       1174 m        1174 m
TSS-1R                LEO          1996       19.7 km       19.7 km
TiPS                  LEO          1996       4 km          4 km
YES                   GTO          1997       35 km         -
ATEx                  LEO          1998       6.05 km       22 m
PICOSAT 1.0           LEO          2000       30 m          30 m
PICOSAT 1.1           LEO          2000       30 m          30 m
YES2                  LEO          2007       31.7 km       29 km
T-REX               Suborbital     2010       300 m         300 m


                                                                                                     3
1.3. Modern materials and tethers

Material           Density ,   Tensile         Elastic                  Carbon nanotubes
                   g/cm3       strength, GPa   modulus, GPa



Aluminum              2.7           0.6                  70

Diamond               3.5            54              1050

Dyneema               0.99           3               172

Graphite              2.2            20              690      1977 – M.U. Kornilov
Kevlar 29             1.44          3.6                  83
                                                              1952 – L.V. Radushkevich and V.M. Lukyanivich
                                                              1991 - S.Iijima
Kevlar 49             1.44          3.6              124      1993 – N. Pungo
Silica                2.19           6                   74            Existing technologies
Spectra-2000          0.97          3.34             124

Stainless steel       7.9            2               200

Tungsten              19.3           4               410

Zylon AS              1.54          5.8              180

Zylon HM              1.56          5.8              270

Carbone Nanotube      1.3           150              630
                                                                                                          4
1.4. Problem formulation




•   Development of a mathematical model describing the motion of the space
    tether system.

•   Creation of the program complex designed to analyze the dynamics of the
    space tether system.

•   Analysis abnormal situations in the problem of cargo delivery from the
    orbit.




                                                                              5
2. Mathematical models


                       Types of mathematical models


1. Tether is considered as the rod.

2. Tether is considered as the set of point masses connected by weightless
   viscoelastic rod segments.

3. Tether is considered as the heavy thread.




       The choice of the model is due to the specifics of the problem


                                                                             6
2.1 Model with the massless rod

      3 ( A  B)                c
  2
                     sin 2     (l  l0 )sin(   ),
      2        C                C
   c(l  l0 )   2  2 C   2 cos(2  2 )  
l                                                  
          2C               m2                      
3 2 cos  (l cos    cos  )   2 l 
                                   
                                        3 2 sin 2 sin(   )
2l   (  2 )cos(   ) 
                                                              ,
                                                   2C
     2c                             (  2 )sin(   )
                                     

         (l  l0 )sin(2  2 )                          
     2lC                                       l
   3 2 sin  (l cos    cos  ) 2l(   ) 3 2 ( A  B)sin 2
                                            
                                                                 .
                    l                    l                2lC

Here  – angular velocity of the carrying spacecraft in
circular orbit, A, B, C – principal moments of inertia of
the spacecraft, l0 – length of the unstrained tether.


                                                                        7
2.2 Multipoint model of the tether
                         Discrete representation of the tether

                            
         ESi   i  1  Di i ,  i  1,
   Ti                      t              (1)
        0,                       i  1,
        


where Ti - tension of the i-th section of the
tether, E - modulus of elasticity, i -
elongation, ri - length of the i-th part of
strained tether, li - length of the i-th part of
unstrained tether, Si - area of i-th tether part
tether cross-secrion, h - loss factor , mi -
mass of the i-th point, Di - coefficient of
internal friction for the case of longitudinal
vibrations of the tether section. Point i=0 is
correspond to spacecraft, and i=N+1 - to
cargo.

                 Di  ESi mili 1h

                                                                 8
2.2 Multipoint model of the tether
                           The interaction with the atmosphere




                 2                    Approximate formulas for calculating the aerodynamic
c  0, cn ( )  k sin 2  ,
                 3                    coefficients

        raiVi kdT  sin 1,i         sin 2,i                      ni , j  (Vi  ρ j )  ρ j
FAi                        ni ,i           ni ,i 1 
            6      ri                 ri1            
Here ri – density of the atmosphere at an altitude of i-th point, dT – diameter of the
tether, k – adjusted coefficient of Newton.
                                                                                                 9
2.2 Multipoint model of the tether
       Accounting singularities Earth's gravitational field
      G i  gradU       gravitational force acting on the i-th point of tether

The gravitational potential of the Earth, in the form of an expansion in
spherical harmonics:

                                                                                  
                               n                        n
                    
                         rE            n
                                                   rE  ( k )
       U    1   J n   Pn sin      Pn sin  (Cnk cos k l  Snk sin k l ) 
          ri  n2  ri               n  2 k 1  r                              
                                                    i                              



Here  , l – geocentric latitude and longitude,
Pn - Legendre polynomial of the n-th order,
Pn(k) - associated Legendre function,
Jk - zonal harmonic coefficient,
Cnk, Snk - dimensionless coefficients, called for
n≠k tesseral harmonic coefficients, and when
n=k - coefficients of sectoral harmonics.



                                                                                        10
2.2 Multipoint model of the tether
                The equations of motion of the tether's points



 The general equation of dynamics for
noninertial Greenwich geocentric coordinate
system


 mii  Gi  FAi  Ti  Ti 1  Фi Ц  Фi К
   r


 Inertial forces


           Фi Ц  miω3  (ω3  ri )

              Фi К  2miω3  Vi




                                                                 11
2.2 The equations of motion of the end-bodies
           Dynamic equations
dK i
      ωi  K i  M Ai  MGi  Δi  Ti ,   i  A, B
 dt
Ki   –    angular    momentum       vector,
i – angular velocity of i-th body, MAi –
moment of aerodynamic forces, MGi –
moment of gravitational forces, Ti –
vector of the tension force of tether's part
adjacent to the body.



          Kinematic equation
       l ω , m  m ω , n  l m .
     li i       i
             i       i  i   i   i  i



Here li, mi, ni – unit vectors of the
coordinate system OXYZ, specified as
projections on the axis associated with
the i-th body coordinate system.
                                                      12
3. Software implementation (TetherCalc)
     The model is implemented in MatLab package




                                                  13
4 Analysis of abnormal situations




                                    14
4 Analysis of abnormal situations
   Wrong orientation at the cargo separation




                                               15
4 Analysis of abnormal situations
     Breakage of attitude control system




                                           16
3 Analysis of abnormal situations

The consequences of jamming                 Diadram of the consequences of jamming




 a - tether break
 b - winding the tether on the spacecraft
 c - impact tethered cargo and spacecraft




                                                                                17
The main results were published in the following
                        articles
•   Aslanov V.S. and Ledkov A.S. Dynamics of the Tethered Satellite Systems, Woodhead Publishing
    Limited, Cambridge, UK, (2012) 275 pages. ISBN-10: 0857091565 | ISBN-13: 978-0857091567)
•   Aslanov V.S. and Ledkov A.S. Chaotic oscillations of spacecraft by elastic radial oriented tether -
    Cosmic Research ISSN 0010-9525, No. 2, 2012, , Vol. 50, No. 2, 2012, 188-198.
•   Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol.
    46, Number5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013.
•   Aslanov V.S. Oscillations of a Spacecraft with a Vertical Elastic Tether - AIP Conference Proceedings
    1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World
    Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, Vol. 1, 1-16.
•   Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite -
    Journal of Applied Mathematics and Mechanics 74 (2010) 416–424.
•   Aslanov V.S. The Oscillations of a Spacecraft under the Action of the Tether Tension Moment and
    the Gravitational Moment - American Institute of Physics (AIP) conference proceedings 1048,
    ICNAAM, Melville, New York, pp.56-59, 2008
•   Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied
    Mathematics and Mechanics 71 (2007) 926–932.
•   V.S. Aslanov, A.V. Pirozhenko, B.V. Ivanov, A.S. Ledkov. Chaotic Motion of the Elastic Tether System
    - Vestnik SSAU, ISSN 1998-6629, 2009, No. 4(20), 9-15.
•   V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. The Influence of the Cable System Dedicated to Deliver
    Freights to the Earth of the Rotary Motion of Spacecraft -Scientific and technical journal "Polyot"
    ("Flight"), ISSN 1684-1301, 2009, No. 1, 54-60.
•   V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. Spatial Motion of Space Rope Cago Transport System -
    Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2007, No. 2, 28-33.
                                                                                                           18
1 of 26

Recommended

Poster Layout by
Poster LayoutPoster Layout
Poster LayoutColton Mosser
81 views1 slide
GPS Experiment on BOV by
GPS Experiment on BOVGPS Experiment on BOV
GPS Experiment on BOVPJBuist
298 views3 slides
1093 gilchrist[2] by
1093 gilchrist[2]1093 gilchrist[2]
1093 gilchrist[2]Clifford Stone
516 views32 slides
Chaotic motions of tethered satellites with low thrust by
Chaotic motions of tethered satellites with low thrust Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust Theoretical mechanics department
1.6K views22 slides
Dynamics of Satellite With a Tether System by
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemTheoretical mechanics department
1.7K views23 slides
The Removal of Large Space Debris Using Tethered Space Tug by
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugTheoretical mechanics department
13.5K views28 slides

More Related Content

Similar to Mathematical models and analysis of the space tether systems motion

Zubrin nov99 by
Zubrin nov99Zubrin nov99
Zubrin nov99Clifford Stone
2.6K views31 slides
Space transportusingorbitaldebris by
Space transportusingorbitaldebrisSpace transportusingorbitaldebris
Space transportusingorbitaldebrisClifford Stone
157 views26 slides
Spieth nov99 by
Spieth nov99Spieth nov99
Spieth nov99Clifford Stone
333 views17 slides
42 h08nw0011 (copy) by
42 h08nw0011 (copy)42 h08nw0011 (copy)
42 h08nw0011 (copy)RyanPaul Mandel
404 views57 slides
Advanced solarandlaserconcepts by
Advanced solarandlaserconceptsAdvanced solarandlaserconcepts
Advanced solarandlaserconceptsClifford Stone
350 views34 slides
Indian Space Transportation Systems : Present and Future Scenarios by
Indian Space Transportation Systems : Present and Future ScenariosIndian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future ScenariosKurup Kurup
1.6K views35 slides

Similar to Mathematical models and analysis of the space tether systems motion (20)

Space transportusingorbitaldebris by Clifford Stone
Space transportusingorbitaldebrisSpace transportusingorbitaldebris
Space transportusingorbitaldebris
Clifford Stone157 views
Advanced solarandlaserconcepts by Clifford Stone
Advanced solarandlaserconceptsAdvanced solarandlaserconcepts
Advanced solarandlaserconcepts
Clifford Stone350 views
Indian Space Transportation Systems : Present and Future Scenarios by Kurup Kurup
Indian Space Transportation Systems : Present and Future ScenariosIndian Space Transportation Systems : Present and Future Scenarios
Indian Space Transportation Systems : Present and Future Scenarios
Kurup Kurup1.6K views
The space elevator by Nahid Anjum
The space elevatorThe space elevator
The space elevator
Nahid Anjum2.7K views
Payloads Presentation for Project A.D.I.O.S. by Sung (Stephen) Kim
Payloads Presentation for Project A.D.I.O.S.Payloads Presentation for Project A.D.I.O.S.
Payloads Presentation for Project A.D.I.O.S.
Sung (Stephen) Kim266 views
Az32752758 by IJMER
Az32752758Az32752758
Az32752758
IJMER408 views
solar sail by kanav mansotra by Kanav Mansotra
solar sail by kanav mansotrasolar sail by kanav mansotra
solar sail by kanav mansotra
Kanav Mansotra543 views
Statistical Quality Control, Lower Tier Suppliers, Automotive Components by AM Publications
Statistical Quality Control, Lower Tier Suppliers, Automotive ComponentsStatistical Quality Control, Lower Tier Suppliers, Automotive Components
Statistical Quality Control, Lower Tier Suppliers, Automotive Components
AM Publications97 views
Dw31595598 by IJMER
Dw31595598Dw31595598
Dw31595598
IJMER256 views
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB by Global Risk Forum GRFDavos
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIBSeismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB
Seminar on solar sail by Kvin Vishnu
Seminar on solar sailSeminar on solar sail
Seminar on solar sail
Kvin Vishnu7.8K views

More from Theoretical mechanics department

Космический мусор by
Космический мусорКосмический мусор
Космический мусорTheoretical mechanics department
816 views50 slides
Основы SciPy by
Основы SciPyОсновы SciPy
Основы SciPyTheoretical mechanics department
807 views57 slides
Основы NumPy by
Основы NumPyОсновы NumPy
Основы NumPyTheoretical mechanics department
859 views49 slides
Модификация механизма Йо-Йо by
Модификация механизма Йо-ЙоМодификация механизма Йо-Йо
Модификация механизма Йо-ЙоTheoretical mechanics department
1.3K views47 slides
Python. Объектно-ориентированное программирование by
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Theoretical mechanics department
1.5K views39 slides
Python. Обработка ошибок by
Python. Обработка ошибокPython. Обработка ошибок
Python. Обработка ошибокTheoretical mechanics department
775 views18 slides

More from Theoretical mechanics department(20)

Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+ by Theoretical mechanics department
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+

Recently uploaded

The Power of Heat Decarbonisation Plans in the Built Environment by
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built EnvironmentIES VE
84 views20 slides
Qualifying SaaS, IaaS.pptx by
Qualifying SaaS, IaaS.pptxQualifying SaaS, IaaS.pptx
Qualifying SaaS, IaaS.pptxSachin Bhandari
1.1K views8 slides
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...Jasper Oosterveld
35 views49 slides
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...ShapeBlue
178 views15 slides
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... by
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...ShapeBlue
196 views62 slides
Generative AI: Shifting the AI Landscape by
Generative AI: Shifting the AI LandscapeGenerative AI: Shifting the AI Landscape
Generative AI: Shifting the AI LandscapeDeakin University
67 views55 slides

Recently uploaded(20)

The Power of Heat Decarbonisation Plans in the Built Environment by IES VE
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built Environment
IES VE84 views
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue178 views
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... by ShapeBlue
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
ShapeBlue196 views
The Role of Patterns in the Era of Large Language Models by Yunyao Li
The Role of Patterns in the Era of Large Language ModelsThe Role of Patterns in the Era of Large Language Models
The Role of Patterns in the Era of Large Language Models
Yunyao Li91 views
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... by ShapeBlue
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
ShapeBlue171 views
Elevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlue by ShapeBlue
Elevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlueElevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlue
Elevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlue
ShapeBlue224 views
Transcript: Redefining the book supply chain: A glimpse into the future - Tec... by BookNet Canada
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
BookNet Canada41 views
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue by ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
ShapeBlue152 views
Future of AR - Facebook Presentation by Rob McCarty
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook Presentation
Rob McCarty65 views
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue by ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue137 views
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... by ShapeBlue
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
ShapeBlue129 views
LLMs in Production: Tooling, Process, and Team Structure by Aggregage
LLMs in Production: Tooling, Process, and Team StructureLLMs in Production: Tooling, Process, and Team Structure
LLMs in Production: Tooling, Process, and Team Structure
Aggregage57 views
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti... by ShapeBlue
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
ShapeBlue141 views

Mathematical models and analysis of the space tether systems motion

  • 1. Vladimir S. Aslanov, Aleksandr S. Ledkov aslanov_vs@mail.ru, ledkov@inbox.ru Mathematical models and analysis of the space tether systems motion Theoretical mechanics department www.termech.ru Samara State Aerospace Univercity www.ssau.ru 2012
  • 2. 1.1. Area of application of space tether systems Dynamics of space tether systems has been studied by: Beletsky V. V., Levin E. M., Cartmell M.P., Cosmo M.L. , Lorenzini E.C., Misra A.K., Modi. V.J., Williams P., Fujii H. A., Edwards B. C., Kumar K. D., Kumar R., McCoy J. E., Sorensen K., Zimmermann F. 2
  • 3. 1.1.1. Creation of certain conditions onboard the spacecraft Artificial gravity Generation of electricity Creating artificial gravity through Generation of electricity by the interaction of centrifugal force of inertia tether with an electromagnetic field of the Earth. 3
  • 4. 1.1.2. Creation of certain conditions onboard the spacecraft Gravitational stabilisation of the spacecraft Between the spacecraft and the spherical hinge dissipation force acts. 4
  • 5. 1.1.3. The research and national economy Studying of an upper atmosphere Due to the influence of the atmosphere the probe can not survive for long at a high of 80-100 km. These heights are not available for aircraft. 5
  • 6. 1.1.4. The research and national economy Sounding of a surface of the Earth By reducing the height of the probe can be got a higher resolution scan. 6
  • 7. 1.1.5. The research and national economy Interferometer with a long base Installation of radio-repeaters 7
  • 8. 1.1.6 Transport operations in space Space Elevator 8
  • 9. 1.1.7. Transport operations in space Delivery of payload Space Escalator 9
  • 10. 1.1.7. Transport operations in space Braking of the spacecraft by electrodynamics tether 10
  • 11. 1.2. Experiment with space tethers There are currently executed more than 20 experiments using the STS Mission Orbit Year of Full tether Deployed implementa length tether tion length Gemini-11 LEO 1966 36 m 36 m Gemini-12 LEO 1966 36 m 36 m TPE-1 Suborbital 1980 400 m 38 m TPE-2 Suborbital 1981 400 m 103 m Charge-1 (TPE-3) Suborbital 1983 418 m 418 m Charge-2 (TPE-4) Suborbital 1984 426 m 426 m T-REX Oedipus-A Suborbital 1989 958 m 958 m Charge-2B Suborbital 1992 426 m 426 m TSS-1 LEO 1992 20 km 268 m TiPS PICOSAT SEDS-1 LEO 1993 20 km 20 km PMG LEO 500 m 500 m SEDS-2 LEO 1994 20 km 20 km YES-2 SEDS Oedipus-C Suborbital 1995 1174 m 1174 m TSS-1R LEO 1996 19.7 km 19.7 km TiPS LEO 1996 4 km 4 km YES GTO 1997 35 km - ATEx LEO 1998 6.05 km 22 m PICOSAT 1.0 LEO 2000 30 m 30 m PICOSAT 1.1 LEO 2000 30 m 30 m YES2 LEO 2007 31.7 km 29 km T-REX Suborbital 2010 300 m 300 m 3
  • 12. 1.3. Modern materials and tethers Material Density , Tensile Elastic Carbon nanotubes g/cm3 strength, GPa modulus, GPa Aluminum 2.7 0.6 70 Diamond 3.5 54 1050 Dyneema 0.99 3 172 Graphite 2.2 20 690 1977 – M.U. Kornilov Kevlar 29 1.44 3.6 83 1952 – L.V. Radushkevich and V.M. Lukyanivich 1991 - S.Iijima Kevlar 49 1.44 3.6 124 1993 – N. Pungo Silica 2.19 6 74 Existing technologies Spectra-2000 0.97 3.34 124 Stainless steel 7.9 2 200 Tungsten 19.3 4 410 Zylon AS 1.54 5.8 180 Zylon HM 1.56 5.8 270 Carbone Nanotube 1.3 150 630 4
  • 13. 1.4. Problem formulation • Development of a mathematical model describing the motion of the space tether system. • Creation of the program complex designed to analyze the dynamics of the space tether system. • Analysis abnormal situations in the problem of cargo delivery from the orbit. 5
  • 14. 2. Mathematical models Types of mathematical models 1. Tether is considered as the rod. 2. Tether is considered as the set of point masses connected by weightless viscoelastic rod segments. 3. Tether is considered as the heavy thread. The choice of the model is due to the specifics of the problem 6
  • 15. 2.1 Model with the massless rod 3 ( A  B) c   2  sin 2  (l  l0 )sin(   ), 2 C C    c(l  l0 )   2  2 C   2 cos(2  2 )   l   2C  m2  3 2 cos  (l cos    cos  )   2 l   3 2 sin 2 sin(   ) 2l   (  2 )cos(   )     , 2C 2c  (  2 )sin(   )     (l  l0 )sin(2  2 )   2lC l 3 2 sin  (l cos    cos  ) 2l(   ) 3 2 ( A  B)sin 2     . l l 2lC Here  – angular velocity of the carrying spacecraft in circular orbit, A, B, C – principal moments of inertia of the spacecraft, l0 – length of the unstrained tether. 7
  • 16. 2.2 Multipoint model of the tether Discrete representation of the tether    ESi   i  1  Di i ,  i  1, Ti   t (1) 0,  i  1,  where Ti - tension of the i-th section of the tether, E - modulus of elasticity, i - elongation, ri - length of the i-th part of strained tether, li - length of the i-th part of unstrained tether, Si - area of i-th tether part tether cross-secrion, h - loss factor , mi - mass of the i-th point, Di - coefficient of internal friction for the case of longitudinal vibrations of the tether section. Point i=0 is correspond to spacecraft, and i=N+1 - to cargo. Di  ESi mili 1h 8
  • 17. 2.2 Multipoint model of the tether The interaction with the atmosphere 2 Approximate formulas for calculating the aerodynamic c  0, cn ( )  k sin 2  , 3 coefficients raiVi kdT  sin 1,i sin 2,i  ni , j  (Vi  ρ j )  ρ j FAi   ni ,i  ni ,i 1  6  ri ri1  Here ri – density of the atmosphere at an altitude of i-th point, dT – diameter of the tether, k – adjusted coefficient of Newton. 9
  • 18. 2.2 Multipoint model of the tether Accounting singularities Earth's gravitational field G i  gradU gravitational force acting on the i-th point of tether The gravitational potential of the Earth, in the form of an expansion in spherical harmonics:   n n   rE   n  rE  ( k ) U 1   J n   Pn sin      Pn sin  (Cnk cos k l  Snk sin k l )  ri  n2  ri  n  2 k 1  r    i  Here  , l – geocentric latitude and longitude, Pn - Legendre polynomial of the n-th order, Pn(k) - associated Legendre function, Jk - zonal harmonic coefficient, Cnk, Snk - dimensionless coefficients, called for n≠k tesseral harmonic coefficients, and when n=k - coefficients of sectoral harmonics. 10
  • 19. 2.2 Multipoint model of the tether The equations of motion of the tether's points The general equation of dynamics for noninertial Greenwich geocentric coordinate system mii  Gi  FAi  Ti  Ti 1  Фi Ц  Фi К r Inertial forces Фi Ц  miω3  (ω3  ri ) Фi К  2miω3  Vi 11
  • 20. 2.2 The equations of motion of the end-bodies Dynamic equations dK i  ωi  K i  M Ai  MGi  Δi  Ti , i  A, B dt Ki – angular momentum vector, i – angular velocity of i-th body, MAi – moment of aerodynamic forces, MGi – moment of gravitational forces, Ti – vector of the tension force of tether's part adjacent to the body. Kinematic equation   l ω , m  m ω , n  l m . li i i i i i i i i Here li, mi, ni – unit vectors of the coordinate system OXYZ, specified as projections on the axis associated with the i-th body coordinate system. 12
  • 21. 3. Software implementation (TetherCalc) The model is implemented in MatLab package 13
  • 22. 4 Analysis of abnormal situations 14
  • 23. 4 Analysis of abnormal situations Wrong orientation at the cargo separation 15
  • 24. 4 Analysis of abnormal situations Breakage of attitude control system 16
  • 25. 3 Analysis of abnormal situations The consequences of jamming Diadram of the consequences of jamming a - tether break b - winding the tether on the spacecraft c - impact tethered cargo and spacecraft 17
  • 26. The main results were published in the following articles • Aslanov V.S. and Ledkov A.S. Dynamics of the Tethered Satellite Systems, Woodhead Publishing Limited, Cambridge, UK, (2012) 275 pages. ISBN-10: 0857091565 | ISBN-13: 978-0857091567) • Aslanov V.S. and Ledkov A.S. Chaotic oscillations of spacecraft by elastic radial oriented tether - Cosmic Research ISSN 0010-9525, No. 2, 2012, , Vol. 50, No. 2, 2012, 188-198. • Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol. 46, Number5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013. • Aslanov V.S. Oscillations of a Spacecraft with a Vertical Elastic Tether - AIP Conference Proceedings 1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, Vol. 1, 1-16. • Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite - Journal of Applied Mathematics and Mechanics 74 (2010) 416–424. • Aslanov V.S. The Oscillations of a Spacecraft under the Action of the Tether Tension Moment and the Gravitational Moment - American Institute of Physics (AIP) conference proceedings 1048, ICNAAM, Melville, New York, pp.56-59, 2008 • Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied Mathematics and Mechanics 71 (2007) 926–932. • V.S. Aslanov, A.V. Pirozhenko, B.V. Ivanov, A.S. Ledkov. Chaotic Motion of the Elastic Tether System - Vestnik SSAU, ISSN 1998-6629, 2009, No. 4(20), 9-15. • V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. The Influence of the Cable System Dedicated to Deliver Freights to the Earth of the Rotary Motion of Spacecraft -Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2009, No. 1, 54-60. • V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. Spatial Motion of Space Rope Cago Transport System - Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2007, No. 2, 28-33. 18