SlideShare a Scribd company logo
1 of 6
Download to read offline
Abstract—This paper presents a 5-level three-phase cascaded
hybrid multilevel inverter that consists of a standard 3-leg (one
leg for each phase) and H-bridge in series with each inverter leg
with separate DC voltage sources, 24V and 48V. The control
signals for this hybrid multilevel inverter are implemented by a
FPGA controller using PWM signal modulated technique and
digital technique. A 5-level three-phase cascaded hybrid
multilevel inverter model based on PSCAD/EMTDC is
presented in this paper. The proposed hybrid multilevel
inverter is described in detail that it is verified experimentally
in three types of load; 18W fluorescent lamp-ballast, RL, and
1HP 3-phase induction motor; without filtering. Results of the
experiment; the output waveform of line-line and phase
voltages has 5 levels that percent of THD is between 15.6% and
18.3%, the output waveform of phase current is close to
sinusoidal that percent of THD is between 2.7% and 4.2%.
Index Terms—Hybrid multilevel inverter, PSCAD/EMTDC,
FPGA controller, h-bridge.
I. INTRODUCTION
A multilevel inverter is a power electronic converter built
to synthesize a desired AC voltage from several levels of DC
voltages which the DC levels were considered to be identical
in that all of them were batteries, solar cells, capacitors, etc.
The multilevel inverter has gained much attention in recent
years due to its advantages in lower switching loss better
electromagnetic compatibility, higher voltage capability, and
lower harmonics [1]-[3]. Several topologies for multilevel
inverters have been proposed; the most popular being the
diode-clamped [4], [5], flying capacitor [6], and cascade H-
bridge [7] structures. Besides the three basic multilevel
inverter topologies; other multilevel converter topologies
have been proposed, most of these are hybrid circuits that are
combinations of two of the basic multilevel topologies. The
schemes of multilevel inverters are classified in to two types
the multicarrier sub-harmonic pulse width modulation (MC-
SH PWM) and the multicarrier switching frequency optimal
pulse width modulation (MC-SFO PWM) [8], [9]. The
MC-SH PWM cascaded multilevel inverter strategy reduced
total harmonic distortion and the MC-SFO PWM cascade
multilevel inverter strategy enhances the fundamental output
voltage [10].
The THD will be decreased by increasing the number of
levels. It is obvious that an output voltage with low THD is
Manuscript received August 4, 2011; revised September 31, 2011.This
work was supported by the Department of Electrical Engineering, Faculty of
Engineering at Si Racha, Kasetsart University Si Racha Campus, and
Thailand.
P. Thongprasri is with the Department of Electrical Engineering, Faculty
of Engineering at Si Racha, Kasetsart University Si Racha Campus,
Chonburi, Thailand (e-mail: sfengprt@ src.ku.ac.th).
desirable, but increasing the number of levels needs more
hardware, also the control will be more complicated. It is a
tradeoff between price, weight, complexity and a very good
output voltage with lower THD. Fig. 1 shows single phase
topology of the diode Clamped, flying capacitor, a cascaded
H-bridge, and cascade hybrid multilevel inverter that they
have the number of switches, diodes, and capacitors as shown
in table I (a 5- level multilevel inverter).
dcV
1S
2S
3S
4S
5S
6S
7S
8S
oV
1C
2C
3C
4C
dcV
1S
2S
3S
4S
5S
6S
7S
8S
1C
2C
3C
4C
5C
6C
7C
8C
9C
10C oV
(a) Diode Clamped (b) Flying capacitor
multilevel inverter multilevel inverter
dcV
dcV
1S 2S
3S 4S
5S 6S
7S 8S
oV
2
dcV
dcV
1S 2S
3S 4S
5S
oV
6S
1C
2C
(c) Cascaded H-bridge (d) Cascaded Hybrid
multilevel inverter multilevel inverter
Fig. 1. One phase of a 5-level multilevel inverter.
TABLE I: COMPONENTS OF ONE PHASE OF A-5 LEVEL
MULTILEVEL INVERTER
Types of multilevel
inverter
Number of
switches
Number of
diodes
Number of
capacitors
Diode Clamped 8 12 4
Flying capacitor 8 - 10
Cascaded H-bridge 8 - -
Cascade hybrid 6 - 2
In this paper, the proposed a 5-level three-phase cascaded
hybrid multilevel inverter includes a standard 3-leg inverter
(one leg for each phase) and H-bridge in series with each
inverter leg as shown in Fig. 2. To develop the model of a
5-level cascaded hybrid multilevel inverter, a simulation is
done based on PSCAD/EMTDC. All signals for controlling
the hybrid multilevel inverter are created by a FPGA
controller using PWM signal modulated technique and digital
technique. The prototype is tested with 3 types of load; a 18W
fluorescent lamp-ballast, RL (R is 265 Ω , L is 0.125 H ),
and a 1HP 3-phase induction motor (no load); without
filtering.
A 5-Level Three-Phase Cascaded Hybrid
Multilevel Inverter
P. Thongprasri
International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011
789
II. OPERATION PRINCIPLE OF
THE HYBRID MULTILEVEL INVERTER
1aS
2aS
3aS
4aS
1bS
2bS
3bS
4bS
1cS
2cS
3cS
4cS
LOAD
aV
bV
cV
dcV 1S
2S
3S
4S
5S
6S
2
dcV
2
dcV
2
dcV
Fig. 2. Topology of a 5-level three-phase cascaded hybrid
multilevel inverter.
Fig. 2 shows the topology of the proposed a 5-level
3-phase cascaded hybrid multilevel inverter. Single phase
topology of the hybrid multilevel inverter is shown in Fig. 3;
the bottom is one leg of a standard 3-leg inverter with a dc
power source ( dcV ), the top is a hybrid in series with each
standard inverter leg that the H-bridge inverter can use a
separate dc power source ( 2/dcV ). Considering the output
voltage 1v of this leg is either 2/dcV+ when 1S closed or
2/dcV− when 2S closed. This leg is connected in series with
a full H-bridge inverter, then the output voltage 2v of the
H-bridge inverter is either 2/dcV+ when 41, aa SS closed, 0
when 31, aa SS or 42, aa SS closed, or 2/dcV− when 32, aa SS
closed. An example output waveform that this topology can
achieve as shown in the Fig. 4, when the output voltage
21 vvv += is required to be zero, one can either set
2/1 dcvv += and 2/2 dcvv −= or 2/1 dcvv −= , and 2/2 dcvv += .
In [11], several different two-level multilevel carrier-based
PWM techniques have been extend for controlling the active
devices in a multilevel converter, the most popular and
easiest technique to implement uses several triangle carrier
signals and one reference, or modulation, signal per phase. In
order to achieve better dc link utilization at high modulation
indices, the sinusoidal reference signal can be injected by a
third harmonic with a magnitude equal to 25% of
fundamental.
Fig. 5 shows MC-SH PWM of a 5-level inverter, m-1
carriers with the same frequency cf and the same amplitude
cA are dispose such that the bands they occupy are
contiguous, The reference waveform has peak-to-peak
amplitude mA , a frequency mf , and its zero centered in the
middle of the carrier set, The reference is continuously
compared with each of the carrier signals. If the reference is
greater than a carrier signal, then the active device
corresponding to that carrier is switched on, and if the
reference is less than a carrier signal, then the active device
corresponding to that carrier is switched off.
2
dcV
1aS
2aS
3aS
4aS
dcV
1S
2S
1v
2v
i
v
Fig. 3. Single phase topology of the hybrid multilevel inverter.
21 vvv +=
i
dcv+
dcv−
2/dcv+
π π2
2/dcv−
Fig. 4. Output waveform of the hybrid multilevel inverter.
Fig. 6 shows the relationship between the sinusoidal
reference signal and the triangular signal which used to create
the PWM signal; the output of the PWM signal is either 1,
when trictrl VV > or 0 when, trictrl VV < , and the PWM signal
width can be written as equation (1).
10; ≤≤⋅= ctrltrictrlPWM ATAT (1)
Nomenclature:
PWMT Width of the PWM signal.
ctrlA Height of the control signal.
triT Period of the triangular signal.
ctrlV Output voltage of the control signal.
triV Output voltage of the triangular signal.
0
1
2
2−
1−
Fig. 5. MC-SH PWM of a 5-level inverter.
Fig. 6. The relationship between the sinusoidal referencesignal and the
triangular signal.
0
controlV triV
trictrl VV >
PWM
rA
triT
ctrlT
0
1
International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011
790
2/dcV+
2/dcV−
0
0 6/π 6/5π π
2/dcV+
2/dcV−
0
π26/7π 6/10π
2/dcV+
2/dcV−
0
dcV+
dcV−
inverterbridgeHforSignals −
inverterphaseforSignals −3
inverterhybridofwaveformOutput
Fig. 7. Output waveform of the 5-level hybrid multilevel inverter.
0
6
π
6
5π π
6
7π
6
10π π2
PWM
0
0
1
1v
2v
dcV−
dcV
0
1
0
1
0
1
.Mod
Output
)( 3v
Fig. 8. Signals for controlling the hybrid multilevel inverter.
Fig. 7 shows output waveform of the 5-level cascaded
hybrid multilevel inverter that it is used to be the pattern to
create the control signal for hybrid multilevel inverter. PWM
),( 3v ,1v and 2v signals shown in Fig. 8 are the parameters
in digital process to create all control signals that they are
shown in table II. Modulated signal is created as equation (2)
and (3), amplitude modulation index am can be found at the
following equation (4); am in this paper is 0.8.
⎪
⎩
⎪
⎨
⎧
≤<
<≤
−=
πω
π
π
ω
ω
t
t
tTmT triaPWM
6
5
6
0
;))sin(21( (2)
6
5
6
;)1)sin(2(
π
ω
π
ω ≤≤−= ttTmT triaPWM (3)
tri
ctrl
a
V
V
m = (4)
TABLE II: DIGITAL PROCESS OF THE CONTROL SIGNALS.
Electronic switch devices Digital process
1s 1v
2s 1v
1as ))()(( 21213 vvvvv ⋅+⋅⋅
2as ))()(( 21213 vvvvv ⋅+⋅⋅
3as ))()(( 21213 vvvvv ⋅+⋅⋅
4as ))()(( 21213 vvvvv ⋅+⋅⋅
III. SIMULATION RESULTS
The simulation model based on PSCAD/EMTDC is shown
in appendix; dcV are 24V and 48V, RL load (R is 265 Ω , L
is 0.125 H ), sinusoidal reference signal frequency is 50Hz,
carrier signal frequency is 2,500Hz, and am is 0.8.
.Mod
PWM
2v
1v
)( 3v
Fig. 9. Simulation result of ,1v ,2v ,3v and modulated signal.
Results of the simulation; Fig. 9 shows modulated signal, ,1v
2v , and PWM )( 3v signals. Fig. 10 shows all control signals
for the power electronic switches. Fig. 11 shows the output
waveform of phase voltage and phase current.
1S
2S
1aS
2aS
3aS
4aS
Fig. 10. Simulation result of all control signals for electronic switch
devices (IGBTs).
aV
bV
cV
ai bi ci
Fig. 11. Simulation result of phase voltage and phase current when load is
RL (R is 265 Ω , L is 0.125 H ).
IV. EXPERIMENTAL RESULTS
Fig. 12 shows the topology of the hybrid multilevel
inverter with separate DC voltage sources ;24V and 48V; that
the IGBTs (GT60M303) are used to be power electronic
switches in the H-bridge inverter, and the IGBT modules
(CM75DU-12H) are used to be power electronic switches in
the 3-phase inverter. The output voltage of the hybrid
International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011
791
multilevel inverter is connected to a 3-phase step up
transformer (55/380V/50Hz, Y-Y) rated 1.5kW. Prototype of
the 1kW 5-level three-phase cascaded hybrid multilevel
inverter as shown in Fig. 13 has been built in order to verify
the proposed hybrid multilevel inverter. The control signals
in this paper are created by the field programmable gate array
(FPGA, discovery–III XC3S200 model) controller. Fig. 14
shows three signals; PWM )( 3v , 1v , and 2v ; for the hybrid
multilevel inverter, modulation index is 0.8.
1aS
2aS
3aS
4aS
1bS
2bS
3bS
4bS
1cS
2cS
3cS
4cS
V
YY
380/55
−
aV
bV
cV
1S
2S
3S
4S
5S
6S
V24 V12 V12
V48
inverterphase−3
inverterbridgeH −
R
s
T
N
rtransformeupstep
Fig. 12. Topology of the hybrid multilevel inverter with separate DC voltage
sources; 24V and 48V.
inverterbridgeH −
inverterphase−3FPGA
dc
rtransformeupstepphase
andsourcesdc
−3
Fig. 13. Prototype of the 5-level 3-phase cascaded hybrid multilevel inverter.
Fig. 15 shows prototype of the 1kW 5-level three-phase
cascaded hybrid multilevel inverter with a 18W fluorescent
lamp-ballast load. Fig. 16 shows the experimental results
including phase voltage and phase current; the output phase
voltage waveform has 5 levels that its rms voltage is 225V,
and the phase current waveform is close to sinusoidal that its
rms current is 360mA. Fig. 17 shows the experimental result
including output waveform of line-line voltage and line-line
that voltage THD is 17.4%, 16.6%, and 18%.
Fig. 18 shows prototype of the 1kW 5-level three-phase
cascaded hybrid multilevel inverter with RL load (R is 265
,Ω L is 0.125 H ). Fig. 19 shows the experimental results
including phase voltage and phase current; the output phase
voltage waveform has 5 levels that its rms voltage is 195V,
and the phase current waveform is close to sinusoidal that its
rms current is 708mA. Fig. 20 shows the experimental result
including the phase voltage THD of 17% and phase current
THD of 2.7%. Fig. 21 shows the experimental result
including output waveform of line-line voltage that line-line
voltage THD is 17.9%, 17.4%, and 18.3%.
1v
2v
3v
Fig. 14. The control signals for hybrid multilevel inverter are created by
FPGA ( am =0.8).
Fig. 15. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel
inverter with 3 fluorescent lamp-ballast loads.
Fig. 22 shows prototype of the 1kW 5-level three-phase
cascaded hybrid multilevel inverter with a 3-phase induction
motor load (no load). Fig. 23 shows the experimental results
including phase voltage and phase current; the output phase
voltage waveform has 5 levels that its rms voltage is 206V,
and the phase current waveform is close to sinusoidal that its
rms current is 786mA, and the output frequency is 50Hz. Fig.
24 shows the experimental result including the phase voltage
THD of 16%, and phase current THD of 4.2%. Fig. 25 shows
the experimental result including output waveform of
line-line voltage that line-line voltage THD is 16.2%, 15.6%,
16.7%, and the output frequency is 50 Hz.
Fig. 16. The output waveform of phase voltage and phase current (The top is
phase voltage that its rms voltage is 225V, the bottom is phase current that its
rms current is 360mA).
International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011
792
Fig. 17. The output waveform of line-line voltage that line-line voltage THD
is 17.4%, 16.6%, and 18%. The output frequency is 50Hz.
Fig. 18. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel
inverter with RL load (R is 265 Ω , L is 0.125 H ).
Fig. 19. The output waveform of phase voltage and phase current (The top is
phase voltage that its rms voltage is 195V, the bottom is phase current that its
rms current is 708mA).
Fig. 20. Phase voltage THD of 17%, phase current THD of 2.7%, the output
frequency is 50 Hz. (RL load, R is 265 Ω , L is 0.125 H ).
Fig. 21. The output waveform of line-line voltage that line-line voltage THD
is 17.9%, 17.4%, and 18.3%. The output frequency is 50Hz.
Fig. 22. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel
inverter with a 3-phase induction motor rated 1HP load (no load).
Fig. 23 . The output waveform of phase voltage and phase current (The top is
phase voltage that its rms voltage is 206V, the bottom is phase current that its
rms current is 786mA).
Fig. 24. The output waveform of phase voltage THD of 16%, phase current
THD of 4.2%. The output frequency is 50 Hz.
Fig. 25. The output waveform of line-line voltage that line-line voltage THD
is 16.2%, 15.6%, 16.7%. The output frequency is 50Hz.
V. CONCLUSION
Prototype of the 5-level three-phase cascaded hybrid
multilevel inverter consists of a 3-phase inverter and 3
H-bridge inverters that it uses separate dc power sources;
24V and 48V. The control signals for power electronic
switches are created by FPGA controller using PWM signal
modulated technique and digital technique. The prototype is
tested with three types of load; 18W fluorescent ballast-lamp,
RL, and 3-phase induction motor rated 1HP; without filtering.
Results of the test; the output line-line and phase voltages has
5 levels that its THD voltage is between 15.6% and 18.3%,
the output waveform of phase current is close to sinusoidal
that its THD current is between 2.7% and 4.2%.
International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011
793
APPENDIX
Fig. 26. The simulation model of a 5-level three- phase cascaded
multilevel inverter based on pscad/emtdc (single phase).
ACKNOWLEDGMENT
The author would like to thank the Faculty of
Engineering at Si Racha, Kasetsart University Si Racha
Campus, THAILAND, for instrument support on this
research.
REFERENCES
[1] J. S. Lai and F. Z. Peng, “Multilevel converters – A new breed of
power converters,” IEEE Trans. Ind. Applica, vol. 32, no. 3, pp.
509-517, May/June 1996.
[2] L. M. Tolbert, F. Z. Peng, and T. G. Habetler, “Multilevel
converters for large electric drives,” “IEEE Trans. Ind. Applica.”,
vol.35, no.1, pp. 36-44, Jan./Feb.1999.
[3] K. A. Corzine, M. W. Wielebski, F. Z. Peng, and J. Wang, “Control
of Cascaded Multilevel Inverters,” IEEE Trans. power electron,
vol.19, no.3, pp. 732-738, May 2004.
[4] M. Fracchia, T. Ghiara, M. Marchesoni, and M. Mazzucchelli,
“Optimized modulation techniques for the gemeralized N-level
converter,” in proc. IEEE power electronics specialist conf,
1205-1213, Madrid, Spain, 1992.
[5] K. A. Corzine and J. R. Baker, “Reduced parts-count multilevel
retifiers,” “IEEE Trans. Ind. Electron.” vol.49, no.3, pp. 766-774,
Aug. 2002.
[6] F. Z. Peng, “A generalized multilevel inverter topology with self
voltage balancing,” “IEEE Trans. Ind. Applica,” vol. 37, pp.
611-618, Mar./April 2004.
[7] M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, “Hybrid
multilevel power conversion system: a competitive solution for
high-power applications,” “IEEE Trans. Ind. Applica,” vol. 36, pp.
834-841, May/June 2000.
[8] L. M. Tolber and T. G. Habetler, “Novel Multilevel Inverter
Carrier based PWM Method,” IEEE Trans. Ind. Applic, vol. 35,
pp. 1098-1107, Sep/Oct 1999.
[9] B. P.McGrath and Holmes, “Multicarrier PWM strategies for
multilevel inverter,” IEEE Trans. Ind. Electron, vol. 49, no. 4, pp.
834-841, Aug 2002.
[10] A. M.Hava, R. J.Kerman, and T.A.Lipo “Carrier-based PWM-VSI
Overmodulation Strategies: Analysis, Comparison, and Design,”
IEEE Trans. Power Electron, vol. 13, no. 4, pp. 834-841, Jul.
1998.
[11] S. Khomfoi, L. M. Tolbert, “Multilevel Power Converters,” “2nd ed.
Power Electronics Handbook,” Elsevier, 2007, ch. 31, pp. 1-50.
P. Thongprasri was born in Suphanburi,
Thailand, on June 19, 1971. He received the
B.Eng. degree in electronic engineering and
M.Eng. degree in electrical Engineering from
King Mongkut Institute of Technology
Ladkrabang, Thailand, in 1995 and 2005,
respectively. He is currently lecturer at the
Department of Electrical Engineering, Faculty of Engineering at Si Racha,
Kasetsart University Si Racha Campus, Thailand. His research interests
are Power Converters, Power Electronics, Robotics, Applications of
Microcontroller and FPGA controller.
International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011
794

More Related Content

What's hot

IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...
IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...
IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...IRJET Journal
 
APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...
APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...
APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...elelijjournal
 
SINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADS
SINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADSSINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADS
SINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADSelelijjournal
 
Space Vector Modulation Strategy for NPC Converter
Space Vector Modulation Strategy for NPC ConverterSpace Vector Modulation Strategy for NPC Converter
Space Vector Modulation Strategy for NPC ConverterIRJET Journal
 
PWM Switched Voltage Source Inverter with Zero Neutral Point Potential
PWM Switched Voltage Source Inverter with Zero Neutral Point PotentialPWM Switched Voltage Source Inverter with Zero Neutral Point Potential
PWM Switched Voltage Source Inverter with Zero Neutral Point Potentialijsrd.com
 
Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...
Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...
Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...IJERA Editor
 
Common Mode Voltage reduction in Diode Clamped MLI using SPWM Techniques
Common Mode Voltage reduction in Diode Clamped MLI using SPWM TechniquesCommon Mode Voltage reduction in Diode Clamped MLI using SPWM Techniques
Common Mode Voltage reduction in Diode Clamped MLI using SPWM TechniquesMOHD ABDUL MUQEEM NAWAZ
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...Scientific Review
 
THD analysis of SPWM & THPWM Controlled Three phase Voltage Source Inverter
THD analysis of SPWM & THPWM Controlled Three phase Voltage Source InverterTHD analysis of SPWM & THPWM Controlled Three phase Voltage Source Inverter
THD analysis of SPWM & THPWM Controlled Three phase Voltage Source InverterIRJET Journal
 
A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...
A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...
A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...IJPEDS-IAES
 
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...ijsrd.com
 
A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...
A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...
A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...IAES-IJPEDS
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierYayah Zakaria
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
power factor control
power factor controlpower factor control
power factor controlusic123
 

What's hot (17)

IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...
IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...
IRJET - Comparative Investigation of 7-level Cascaded Multilevel Inverter usi...
 
APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...
APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...
APPLICATIONS OF FLOATING-GATE MOSFET IN THE DESIGN OF INVERTER AND RING OSCIL...
 
SINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADS
SINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADSSINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADS
SINGLE PHASE SYMMETRICAL MULTILEVEL INVERTER DESIGN FOR VARIOUS LOADS
 
Space Vector Modulation Strategy for NPC Converter
Space Vector Modulation Strategy for NPC ConverterSpace Vector Modulation Strategy for NPC Converter
Space Vector Modulation Strategy for NPC Converter
 
PWM Switched Voltage Source Inverter with Zero Neutral Point Potential
PWM Switched Voltage Source Inverter with Zero Neutral Point PotentialPWM Switched Voltage Source Inverter with Zero Neutral Point Potential
PWM Switched Voltage Source Inverter with Zero Neutral Point Potential
 
E010243540
E010243540E010243540
E010243540
 
Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...
Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...
Investigation of THD for Cascaded Multi-Level Inverter Using Multicarrier Mod...
 
Common Mode Voltage reduction in Diode Clamped MLI using SPWM Techniques
Common Mode Voltage reduction in Diode Clamped MLI using SPWM TechniquesCommon Mode Voltage reduction in Diode Clamped MLI using SPWM Techniques
Common Mode Voltage reduction in Diode Clamped MLI using SPWM Techniques
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Swit...
 
THD analysis of SPWM & THPWM Controlled Three phase Voltage Source Inverter
THD analysis of SPWM & THPWM Controlled Three phase Voltage Source InverterTHD analysis of SPWM & THPWM Controlled Three phase Voltage Source Inverter
THD analysis of SPWM & THPWM Controlled Three phase Voltage Source Inverter
 
A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...
A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...
A Novel Hybrid Negative Half Cycle Biased Modulation Scheme for Cascaded Mult...
 
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
 
A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...
A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...
A Novel Topology of Multilevel Inverter with Reduced Number of Switches and D...
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Selective Harmonic Elimination Based on Newton-raphson Method for Cascaded H-...
Selective Harmonic Elimination Based on Newton-raphson Method for Cascaded H-...Selective Harmonic Elimination Based on Newton-raphson Method for Cascaded H-...
Selective Harmonic Elimination Based on Newton-raphson Method for Cascaded H-...
 
power factor control
power factor controlpower factor control
power factor control
 

Viewers also liked

Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...Asoka Technologies
 
Comparative analysis of cascade h-bridge multilevel Voltage source inverter
Comparative analysis of cascade h-bridge multilevel  Voltage source inverterComparative analysis of cascade h-bridge multilevel  Voltage source inverter
Comparative analysis of cascade h-bridge multilevel Voltage source inverterPvrtechnologies Nellore
 
2013 14-embedded-project-titles-pantech-me-m tech-project-titles
2013 14-embedded-project-titles-pantech-me-m tech-project-titles2013 14-embedded-project-titles-pantech-me-m tech-project-titles
2013 14-embedded-project-titles-pantech-me-m tech-project-titlesSrinivasan Natarajan
 
Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...
Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...
Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...IJTET Journal
 
Inductorless DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/...
Inductorless DC-AC Cascaded H-bridge MultilevelBoost Inverter for Electric/...Inductorless DC-AC Cascaded H-bridge MultilevelBoost Inverter for Electric/...
Inductorless DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/...mkanth
 
Multilevel inverter
Multilevel  inverterMultilevel  inverter
Multilevel inverterSyed Lateef
 
Multilevel inverter technology
Multilevel inverter technologyMultilevel inverter technology
Multilevel inverter technologygmrit
 
cascaded multilevel inverter project
cascaded multilevel inverter projectcascaded multilevel inverter project
cascaded multilevel inverter projectShiva Kumar
 
Final ppt of project
Final ppt of projectFinal ppt of project
Final ppt of projectRuchi Gulati
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterPurushotam Kumar
 

Viewers also liked (10)

Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
Hybrid topology of asymmetric cascaded multilevel inverter with renewable ene...
 
Comparative analysis of cascade h-bridge multilevel Voltage source inverter
Comparative analysis of cascade h-bridge multilevel  Voltage source inverterComparative analysis of cascade h-bridge multilevel  Voltage source inverter
Comparative analysis of cascade h-bridge multilevel Voltage source inverter
 
2013 14-embedded-project-titles-pantech-me-m tech-project-titles
2013 14-embedded-project-titles-pantech-me-m tech-project-titles2013 14-embedded-project-titles-pantech-me-m tech-project-titles
2013 14-embedded-project-titles-pantech-me-m tech-project-titles
 
Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...
Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...
Diode Free T-Type Five Level Neutral Point Clamped Inverter for Low Voltage D...
 
Inductorless DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/...
Inductorless DC-AC Cascaded H-bridge MultilevelBoost Inverter for Electric/...Inductorless DC-AC Cascaded H-bridge MultilevelBoost Inverter for Electric/...
Inductorless DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/...
 
Multilevel inverter
Multilevel  inverterMultilevel  inverter
Multilevel inverter
 
Multilevel inverter technology
Multilevel inverter technologyMultilevel inverter technology
Multilevel inverter technology
 
cascaded multilevel inverter project
cascaded multilevel inverter projectcascaded multilevel inverter project
cascaded multilevel inverter project
 
Final ppt of project
Final ppt of projectFinal ppt of project
Final ppt of project
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM Inverter
 

Similar to 1

Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic DistortionMulti Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic DistortionIJPEDS-IAES
 
HARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTER
HARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTERHARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTER
HARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTERJournal For Research
 
PWM control techniques for three phase three level inverter drives
PWM control techniques for three phase three level inverter drivesPWM control techniques for three phase three level inverter drives
PWM control techniques for three phase three level inverter drivesTELKOMNIKA JOURNAL
 
6.[36 45]seven level modified cascaded inverter for induction motor drive app...
6.[36 45]seven level modified cascaded inverter for induction motor drive app...6.[36 45]seven level modified cascaded inverter for induction motor drive app...
6.[36 45]seven level modified cascaded inverter for induction motor drive app...Alexander Decker
 
11 12 sep17 18aug 8416 9975-1-ed (edit)
11 12 sep17 18aug 8416 9975-1-ed (edit)11 12 sep17 18aug 8416 9975-1-ed (edit)
11 12 sep17 18aug 8416 9975-1-ed (edit)IAESIJEECS
 
Multilevel inverter
Multilevel inverterMultilevel inverter
Multilevel inverterusic123
 
Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...
Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...
Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...IJPEDS-IAES
 
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...IAES-IJPEDS
 
Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...
Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...
Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...IJAAS Team
 
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyApplication of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyIOSR Journals
 
Simulation and study of multilevel inverter (report)
Simulation and study of multilevel inverter (report)Simulation and study of multilevel inverter (report)
Simulation and study of multilevel inverter (report)Arpit Kurel
 
The Operating Improvement of the Supply Source and the Optimization of PWM Co...
The Operating Improvement of the Supply Source and the Optimization of PWM Co...The Operating Improvement of the Supply Source and the Optimization of PWM Co...
The Operating Improvement of the Supply Source and the Optimization of PWM Co...IJPEDS-IAES
 
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...IJMER
 
Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel Inverter
Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel InverterFuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel Inverter
Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel InverterIJPEDS-IAES
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...
Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...Scientific Review SR
 

Similar to 1 (20)

Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic DistortionMulti Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
 
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel In...
 
HARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTER
HARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTERHARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTER
HARMONIC ANALYSIS OF THREE LEVEL DIODE CLAMPED INVERTER
 
PWM control techniques for three phase three level inverter drives
PWM control techniques for three phase three level inverter drivesPWM control techniques for three phase three level inverter drives
PWM control techniques for three phase three level inverter drives
 
N1102018691
N1102018691N1102018691
N1102018691
 
6.[36 45]seven level modified cascaded inverter for induction motor drive app...
6.[36 45]seven level modified cascaded inverter for induction motor drive app...6.[36 45]seven level modified cascaded inverter for induction motor drive app...
6.[36 45]seven level modified cascaded inverter for induction motor drive app...
 
11 12 sep17 18aug 8416 9975-1-ed (edit)
11 12 sep17 18aug 8416 9975-1-ed (edit)11 12 sep17 18aug 8416 9975-1-ed (edit)
11 12 sep17 18aug 8416 9975-1-ed (edit)
 
[IJET-V1I6P3] Authors:Bachwad M.R. , Maske Ashadeep M
[IJET-V1I6P3] Authors:Bachwad M.R. , Maske Ashadeep M[IJET-V1I6P3] Authors:Bachwad M.R. , Maske Ashadeep M
[IJET-V1I6P3] Authors:Bachwad M.R. , Maske Ashadeep M
 
Multilevel inverter
Multilevel inverterMultilevel inverter
Multilevel inverter
 
Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...
Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...
Modelling and Simulation of a Sensorless Control of a True Asymmetric Cascade...
 
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
 
Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...
Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...
Analysis and Implementation of Unipolar PWM Strategies for Three Phase Cascad...
 
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyApplication of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
 
Simulation and study of multilevel inverter (report)
Simulation and study of multilevel inverter (report)Simulation and study of multilevel inverter (report)
Simulation and study of multilevel inverter (report)
 
The Operating Improvement of the Supply Source and the Optimization of PWM Co...
The Operating Improvement of the Supply Source and the Optimization of PWM Co...The Operating Improvement of the Supply Source and the Optimization of PWM Co...
The Operating Improvement of the Supply Source and the Optimization of PWM Co...
 
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
 
Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel Inverter
Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel InverterFuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel Inverter
Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel Inverter
 
I010246467
I010246467I010246467
I010246467
 
X33128132
X33128132X33128132
X33128132
 
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...
Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...Performance  Evaluation of a Three Phase Nine Level Inverter  with Reduced Sw...
Performance Evaluation of a Three Phase Nine Level Inverter with Reduced Sw...
 

Recently uploaded

Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...jabtakhaidam7
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksMagic Marks
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 

Recently uploaded (20)

Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 

1

  • 1. Abstract—This paper presents a 5-level three-phase cascaded hybrid multilevel inverter that consists of a standard 3-leg (one leg for each phase) and H-bridge in series with each inverter leg with separate DC voltage sources, 24V and 48V. The control signals for this hybrid multilevel inverter are implemented by a FPGA controller using PWM signal modulated technique and digital technique. A 5-level three-phase cascaded hybrid multilevel inverter model based on PSCAD/EMTDC is presented in this paper. The proposed hybrid multilevel inverter is described in detail that it is verified experimentally in three types of load; 18W fluorescent lamp-ballast, RL, and 1HP 3-phase induction motor; without filtering. Results of the experiment; the output waveform of line-line and phase voltages has 5 levels that percent of THD is between 15.6% and 18.3%, the output waveform of phase current is close to sinusoidal that percent of THD is between 2.7% and 4.2%. Index Terms—Hybrid multilevel inverter, PSCAD/EMTDC, FPGA controller, h-bridge. I. INTRODUCTION A multilevel inverter is a power electronic converter built to synthesize a desired AC voltage from several levels of DC voltages which the DC levels were considered to be identical in that all of them were batteries, solar cells, capacitors, etc. The multilevel inverter has gained much attention in recent years due to its advantages in lower switching loss better electromagnetic compatibility, higher voltage capability, and lower harmonics [1]-[3]. Several topologies for multilevel inverters have been proposed; the most popular being the diode-clamped [4], [5], flying capacitor [6], and cascade H- bridge [7] structures. Besides the three basic multilevel inverter topologies; other multilevel converter topologies have been proposed, most of these are hybrid circuits that are combinations of two of the basic multilevel topologies. The schemes of multilevel inverters are classified in to two types the multicarrier sub-harmonic pulse width modulation (MC- SH PWM) and the multicarrier switching frequency optimal pulse width modulation (MC-SFO PWM) [8], [9]. The MC-SH PWM cascaded multilevel inverter strategy reduced total harmonic distortion and the MC-SFO PWM cascade multilevel inverter strategy enhances the fundamental output voltage [10]. The THD will be decreased by increasing the number of levels. It is obvious that an output voltage with low THD is Manuscript received August 4, 2011; revised September 31, 2011.This work was supported by the Department of Electrical Engineering, Faculty of Engineering at Si Racha, Kasetsart University Si Racha Campus, and Thailand. P. Thongprasri is with the Department of Electrical Engineering, Faculty of Engineering at Si Racha, Kasetsart University Si Racha Campus, Chonburi, Thailand (e-mail: sfengprt@ src.ku.ac.th). desirable, but increasing the number of levels needs more hardware, also the control will be more complicated. It is a tradeoff between price, weight, complexity and a very good output voltage with lower THD. Fig. 1 shows single phase topology of the diode Clamped, flying capacitor, a cascaded H-bridge, and cascade hybrid multilevel inverter that they have the number of switches, diodes, and capacitors as shown in table I (a 5- level multilevel inverter). dcV 1S 2S 3S 4S 5S 6S 7S 8S oV 1C 2C 3C 4C dcV 1S 2S 3S 4S 5S 6S 7S 8S 1C 2C 3C 4C 5C 6C 7C 8C 9C 10C oV (a) Diode Clamped (b) Flying capacitor multilevel inverter multilevel inverter dcV dcV 1S 2S 3S 4S 5S 6S 7S 8S oV 2 dcV dcV 1S 2S 3S 4S 5S oV 6S 1C 2C (c) Cascaded H-bridge (d) Cascaded Hybrid multilevel inverter multilevel inverter Fig. 1. One phase of a 5-level multilevel inverter. TABLE I: COMPONENTS OF ONE PHASE OF A-5 LEVEL MULTILEVEL INVERTER Types of multilevel inverter Number of switches Number of diodes Number of capacitors Diode Clamped 8 12 4 Flying capacitor 8 - 10 Cascaded H-bridge 8 - - Cascade hybrid 6 - 2 In this paper, the proposed a 5-level three-phase cascaded hybrid multilevel inverter includes a standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter leg as shown in Fig. 2. To develop the model of a 5-level cascaded hybrid multilevel inverter, a simulation is done based on PSCAD/EMTDC. All signals for controlling the hybrid multilevel inverter are created by a FPGA controller using PWM signal modulated technique and digital technique. The prototype is tested with 3 types of load; a 18W fluorescent lamp-ballast, RL (R is 265 Ω , L is 0.125 H ), and a 1HP 3-phase induction motor (no load); without filtering. A 5-Level Three-Phase Cascaded Hybrid Multilevel Inverter P. Thongprasri International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011 789
  • 2. II. OPERATION PRINCIPLE OF THE HYBRID MULTILEVEL INVERTER 1aS 2aS 3aS 4aS 1bS 2bS 3bS 4bS 1cS 2cS 3cS 4cS LOAD aV bV cV dcV 1S 2S 3S 4S 5S 6S 2 dcV 2 dcV 2 dcV Fig. 2. Topology of a 5-level three-phase cascaded hybrid multilevel inverter. Fig. 2 shows the topology of the proposed a 5-level 3-phase cascaded hybrid multilevel inverter. Single phase topology of the hybrid multilevel inverter is shown in Fig. 3; the bottom is one leg of a standard 3-leg inverter with a dc power source ( dcV ), the top is a hybrid in series with each standard inverter leg that the H-bridge inverter can use a separate dc power source ( 2/dcV ). Considering the output voltage 1v of this leg is either 2/dcV+ when 1S closed or 2/dcV− when 2S closed. This leg is connected in series with a full H-bridge inverter, then the output voltage 2v of the H-bridge inverter is either 2/dcV+ when 41, aa SS closed, 0 when 31, aa SS or 42, aa SS closed, or 2/dcV− when 32, aa SS closed. An example output waveform that this topology can achieve as shown in the Fig. 4, when the output voltage 21 vvv += is required to be zero, one can either set 2/1 dcvv += and 2/2 dcvv −= or 2/1 dcvv −= , and 2/2 dcvv += . In [11], several different two-level multilevel carrier-based PWM techniques have been extend for controlling the active devices in a multilevel converter, the most popular and easiest technique to implement uses several triangle carrier signals and one reference, or modulation, signal per phase. In order to achieve better dc link utilization at high modulation indices, the sinusoidal reference signal can be injected by a third harmonic with a magnitude equal to 25% of fundamental. Fig. 5 shows MC-SH PWM of a 5-level inverter, m-1 carriers with the same frequency cf and the same amplitude cA are dispose such that the bands they occupy are contiguous, The reference waveform has peak-to-peak amplitude mA , a frequency mf , and its zero centered in the middle of the carrier set, The reference is continuously compared with each of the carrier signals. If the reference is greater than a carrier signal, then the active device corresponding to that carrier is switched on, and if the reference is less than a carrier signal, then the active device corresponding to that carrier is switched off. 2 dcV 1aS 2aS 3aS 4aS dcV 1S 2S 1v 2v i v Fig. 3. Single phase topology of the hybrid multilevel inverter. 21 vvv += i dcv+ dcv− 2/dcv+ π π2 2/dcv− Fig. 4. Output waveform of the hybrid multilevel inverter. Fig. 6 shows the relationship between the sinusoidal reference signal and the triangular signal which used to create the PWM signal; the output of the PWM signal is either 1, when trictrl VV > or 0 when, trictrl VV < , and the PWM signal width can be written as equation (1). 10; ≤≤⋅= ctrltrictrlPWM ATAT (1) Nomenclature: PWMT Width of the PWM signal. ctrlA Height of the control signal. triT Period of the triangular signal. ctrlV Output voltage of the control signal. triV Output voltage of the triangular signal. 0 1 2 2− 1− Fig. 5. MC-SH PWM of a 5-level inverter. Fig. 6. The relationship between the sinusoidal referencesignal and the triangular signal. 0 controlV triV trictrl VV > PWM rA triT ctrlT 0 1 International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011 790
  • 3. 2/dcV+ 2/dcV− 0 0 6/π 6/5π π 2/dcV+ 2/dcV− 0 π26/7π 6/10π 2/dcV+ 2/dcV− 0 dcV+ dcV− inverterbridgeHforSignals − inverterphaseforSignals −3 inverterhybridofwaveformOutput Fig. 7. Output waveform of the 5-level hybrid multilevel inverter. 0 6 π 6 5π π 6 7π 6 10π π2 PWM 0 0 1 1v 2v dcV− dcV 0 1 0 1 0 1 .Mod Output )( 3v Fig. 8. Signals for controlling the hybrid multilevel inverter. Fig. 7 shows output waveform of the 5-level cascaded hybrid multilevel inverter that it is used to be the pattern to create the control signal for hybrid multilevel inverter. PWM ),( 3v ,1v and 2v signals shown in Fig. 8 are the parameters in digital process to create all control signals that they are shown in table II. Modulated signal is created as equation (2) and (3), amplitude modulation index am can be found at the following equation (4); am in this paper is 0.8. ⎪ ⎩ ⎪ ⎨ ⎧ ≤< <≤ −= πω π π ω ω t t tTmT triaPWM 6 5 6 0 ;))sin(21( (2) 6 5 6 ;)1)sin(2( π ω π ω ≤≤−= ttTmT triaPWM (3) tri ctrl a V V m = (4) TABLE II: DIGITAL PROCESS OF THE CONTROL SIGNALS. Electronic switch devices Digital process 1s 1v 2s 1v 1as ))()(( 21213 vvvvv ⋅+⋅⋅ 2as ))()(( 21213 vvvvv ⋅+⋅⋅ 3as ))()(( 21213 vvvvv ⋅+⋅⋅ 4as ))()(( 21213 vvvvv ⋅+⋅⋅ III. SIMULATION RESULTS The simulation model based on PSCAD/EMTDC is shown in appendix; dcV are 24V and 48V, RL load (R is 265 Ω , L is 0.125 H ), sinusoidal reference signal frequency is 50Hz, carrier signal frequency is 2,500Hz, and am is 0.8. .Mod PWM 2v 1v )( 3v Fig. 9. Simulation result of ,1v ,2v ,3v and modulated signal. Results of the simulation; Fig. 9 shows modulated signal, ,1v 2v , and PWM )( 3v signals. Fig. 10 shows all control signals for the power electronic switches. Fig. 11 shows the output waveform of phase voltage and phase current. 1S 2S 1aS 2aS 3aS 4aS Fig. 10. Simulation result of all control signals for electronic switch devices (IGBTs). aV bV cV ai bi ci Fig. 11. Simulation result of phase voltage and phase current when load is RL (R is 265 Ω , L is 0.125 H ). IV. EXPERIMENTAL RESULTS Fig. 12 shows the topology of the hybrid multilevel inverter with separate DC voltage sources ;24V and 48V; that the IGBTs (GT60M303) are used to be power electronic switches in the H-bridge inverter, and the IGBT modules (CM75DU-12H) are used to be power electronic switches in the 3-phase inverter. The output voltage of the hybrid International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011 791
  • 4. multilevel inverter is connected to a 3-phase step up transformer (55/380V/50Hz, Y-Y) rated 1.5kW. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter as shown in Fig. 13 has been built in order to verify the proposed hybrid multilevel inverter. The control signals in this paper are created by the field programmable gate array (FPGA, discovery–III XC3S200 model) controller. Fig. 14 shows three signals; PWM )( 3v , 1v , and 2v ; for the hybrid multilevel inverter, modulation index is 0.8. 1aS 2aS 3aS 4aS 1bS 2bS 3bS 4bS 1cS 2cS 3cS 4cS V YY 380/55 − aV bV cV 1S 2S 3S 4S 5S 6S V24 V12 V12 V48 inverterphase−3 inverterbridgeH − R s T N rtransformeupstep Fig. 12. Topology of the hybrid multilevel inverter with separate DC voltage sources; 24V and 48V. inverterbridgeH − inverterphase−3FPGA dc rtransformeupstepphase andsourcesdc −3 Fig. 13. Prototype of the 5-level 3-phase cascaded hybrid multilevel inverter. Fig. 15 shows prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter with a 18W fluorescent lamp-ballast load. Fig. 16 shows the experimental results including phase voltage and phase current; the output phase voltage waveform has 5 levels that its rms voltage is 225V, and the phase current waveform is close to sinusoidal that its rms current is 360mA. Fig. 17 shows the experimental result including output waveform of line-line voltage and line-line that voltage THD is 17.4%, 16.6%, and 18%. Fig. 18 shows prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter with RL load (R is 265 ,Ω L is 0.125 H ). Fig. 19 shows the experimental results including phase voltage and phase current; the output phase voltage waveform has 5 levels that its rms voltage is 195V, and the phase current waveform is close to sinusoidal that its rms current is 708mA. Fig. 20 shows the experimental result including the phase voltage THD of 17% and phase current THD of 2.7%. Fig. 21 shows the experimental result including output waveform of line-line voltage that line-line voltage THD is 17.9%, 17.4%, and 18.3%. 1v 2v 3v Fig. 14. The control signals for hybrid multilevel inverter are created by FPGA ( am =0.8). Fig. 15. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter with 3 fluorescent lamp-ballast loads. Fig. 22 shows prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter with a 3-phase induction motor load (no load). Fig. 23 shows the experimental results including phase voltage and phase current; the output phase voltage waveform has 5 levels that its rms voltage is 206V, and the phase current waveform is close to sinusoidal that its rms current is 786mA, and the output frequency is 50Hz. Fig. 24 shows the experimental result including the phase voltage THD of 16%, and phase current THD of 4.2%. Fig. 25 shows the experimental result including output waveform of line-line voltage that line-line voltage THD is 16.2%, 15.6%, 16.7%, and the output frequency is 50 Hz. Fig. 16. The output waveform of phase voltage and phase current (The top is phase voltage that its rms voltage is 225V, the bottom is phase current that its rms current is 360mA). International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011 792
  • 5. Fig. 17. The output waveform of line-line voltage that line-line voltage THD is 17.4%, 16.6%, and 18%. The output frequency is 50Hz. Fig. 18. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter with RL load (R is 265 Ω , L is 0.125 H ). Fig. 19. The output waveform of phase voltage and phase current (The top is phase voltage that its rms voltage is 195V, the bottom is phase current that its rms current is 708mA). Fig. 20. Phase voltage THD of 17%, phase current THD of 2.7%, the output frequency is 50 Hz. (RL load, R is 265 Ω , L is 0.125 H ). Fig. 21. The output waveform of line-line voltage that line-line voltage THD is 17.9%, 17.4%, and 18.3%. The output frequency is 50Hz. Fig. 22. Prototype of the 1kW 5-level three-phase cascaded hybrid multilevel inverter with a 3-phase induction motor rated 1HP load (no load). Fig. 23 . The output waveform of phase voltage and phase current (The top is phase voltage that its rms voltage is 206V, the bottom is phase current that its rms current is 786mA). Fig. 24. The output waveform of phase voltage THD of 16%, phase current THD of 4.2%. The output frequency is 50 Hz. Fig. 25. The output waveform of line-line voltage that line-line voltage THD is 16.2%, 15.6%, 16.7%. The output frequency is 50Hz. V. CONCLUSION Prototype of the 5-level three-phase cascaded hybrid multilevel inverter consists of a 3-phase inverter and 3 H-bridge inverters that it uses separate dc power sources; 24V and 48V. The control signals for power electronic switches are created by FPGA controller using PWM signal modulated technique and digital technique. The prototype is tested with three types of load; 18W fluorescent ballast-lamp, RL, and 3-phase induction motor rated 1HP; without filtering. Results of the test; the output line-line and phase voltages has 5 levels that its THD voltage is between 15.6% and 18.3%, the output waveform of phase current is close to sinusoidal that its THD current is between 2.7% and 4.2%. International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011 793
  • 6. APPENDIX Fig. 26. The simulation model of a 5-level three- phase cascaded multilevel inverter based on pscad/emtdc (single phase). ACKNOWLEDGMENT The author would like to thank the Faculty of Engineering at Si Racha, Kasetsart University Si Racha Campus, THAILAND, for instrument support on this research. REFERENCES [1] J. S. Lai and F. Z. Peng, “Multilevel converters – A new breed of power converters,” IEEE Trans. Ind. Applica, vol. 32, no. 3, pp. 509-517, May/June 1996. [2] L. M. Tolbert, F. Z. Peng, and T. G. Habetler, “Multilevel converters for large electric drives,” “IEEE Trans. Ind. Applica.”, vol.35, no.1, pp. 36-44, Jan./Feb.1999. [3] K. A. Corzine, M. W. Wielebski, F. Z. Peng, and J. Wang, “Control of Cascaded Multilevel Inverters,” IEEE Trans. power electron, vol.19, no.3, pp. 732-738, May 2004. [4] M. Fracchia, T. Ghiara, M. Marchesoni, and M. Mazzucchelli, “Optimized modulation techniques for the gemeralized N-level converter,” in proc. IEEE power electronics specialist conf, 1205-1213, Madrid, Spain, 1992. [5] K. A. Corzine and J. R. Baker, “Reduced parts-count multilevel retifiers,” “IEEE Trans. Ind. Electron.” vol.49, no.3, pp. 766-774, Aug. 2002. [6] F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,” “IEEE Trans. Ind. Applica,” vol. 37, pp. 611-618, Mar./April 2004. [7] M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, “Hybrid multilevel power conversion system: a competitive solution for high-power applications,” “IEEE Trans. Ind. Applica,” vol. 36, pp. 834-841, May/June 2000. [8] L. M. Tolber and T. G. Habetler, “Novel Multilevel Inverter Carrier based PWM Method,” IEEE Trans. Ind. Applic, vol. 35, pp. 1098-1107, Sep/Oct 1999. [9] B. P.McGrath and Holmes, “Multicarrier PWM strategies for multilevel inverter,” IEEE Trans. Ind. Electron, vol. 49, no. 4, pp. 834-841, Aug 2002. [10] A. M.Hava, R. J.Kerman, and T.A.Lipo “Carrier-based PWM-VSI Overmodulation Strategies: Analysis, Comparison, and Design,” IEEE Trans. Power Electron, vol. 13, no. 4, pp. 834-841, Jul. 1998. [11] S. Khomfoi, L. M. Tolbert, “Multilevel Power Converters,” “2nd ed. Power Electronics Handbook,” Elsevier, 2007, ch. 31, pp. 1-50. P. Thongprasri was born in Suphanburi, Thailand, on June 19, 1971. He received the B.Eng. degree in electronic engineering and M.Eng. degree in electrical Engineering from King Mongkut Institute of Technology Ladkrabang, Thailand, in 1995 and 2005, respectively. He is currently lecturer at the Department of Electrical Engineering, Faculty of Engineering at Si Racha, Kasetsart University Si Racha Campus, Thailand. His research interests are Power Converters, Power Electronics, Robotics, Applications of Microcontroller and FPGA controller. International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, December 2011 794