SlideShare a Scribd company logo
1 of 46
By
V.D.TAMILARASAN
Research associate cum Assistant Professor
Mechanical Engineering Department
Bannari Amman Institute of Technology
INTRODUCTION OF MECHATRONICS
1
MECHATRONICS
Topics
2
SL.NO TOPIC
1 Introduction to Mechatronics
systems, Concepts &
Application.
2 Mechatronics System
Components with examples
3 Measurement Systems, Control
systems, Open & Closed Loop
Systems.
4 Sequential Controllers with
examples – Water level
controller.
5 Shaft speed control, Washing
machine control.
3
The word mechatronics was originated from Japan (Yasakawa Electric Company) in the
late 1960s, spread through Europe, and is now commonly used round the globe.
“The word, mechatronics, is composed of ‘mecha’ from mechanism and the ‘tronics’ from
electronics.
Mechatronics solves technological problems using interdisciplinary knowledge consisting
of mechanical engineering, electronics, and computer technology.
In 1996, Harashima, Tomizuka, and Fukuda defined mechatronics as being “the
synergistic integration of mechanical engineering, with electronics and intelligent computer
control in the design and manufacturing of industrial products and processes.”
Bolton presented yet another definition by saying “a mechatronic system is not just a
marriage of electrical and mechanical systems and is more than just a control system; the
mechatronic system is a complete integration of them all.”
Mechatronics is the field of study concerned with the design, selection, analysis, and
control of systems that combine mechanical elements with electronic components,
including computers and/or microcontrollers.
Introduction to Mechatronics Systems
4
Mechatronics is the synergistic integration of sensors, actuators, signal conditioning, power
electronics, decision and control algorithms, and computer hardware and software to
manage complexity, uncertainty, and communication in engineered systems.
Working definition
Graphical Representation of Mechatronics
5
6
Evolution of Mechatronics
Technological advances in design, manufacturing, and operation of engineered
products/devices/processes can be traced through:
– Industrial revolution
– Semiconductor revolution
– Information revolution
Industrial Revolution
• Allowed design of products and processes for energy conversion and transmission thus
allowing the use of energy to do useful work.
• Engineering designs of this era were largely mechanical
– e.g., operations of motion transmission, sensing, actuation, and computation were
performed using mechanical components such as cams, gears, levers, and linkages).
• Purely mechanical systems suffer from
– Power amplification inability.
– Energy losses due to tolerances, inertia, and friction.
7
8
Semiconductor Revolution
• Led to the creation of integrated circuit (IC) technology.
• Effective, miniaturized, power electronics could amplify and deliver needed amount of
power to actuators.
• Signal conditioning electronics could filter and encode sensory data in analog/digital
format.
• Hard-wired, on-board, discrete analog/digital ICs provided rudimentary computational
and decision-making circuits for control of mechanical devices.
9
Information Revolution
• Development of VLSI technology led to the introduction of microprocessor,
microcomputer, and microcontroller.
• Now computing hardware is everywhere, cheap, and small.
• As computing hardware can be effortlessly interfaced with real world electromechanical
systems, it is now routinely embedded in engineered products/processes for decision-
making.
– Microcontrollers are replacing precision mechanical components, e.g., precision
machined camshaft that in many applications functions as a timing device.
– Programmability of microcontrollers is providing a versatile and flexible alternative to the
hard-wired analog/digital computational hardware.
– Integrated computer-electrical-mechanical devices are now capable of converting,
transmitting, and processing both the physical energy and the virtual energy (information).
• Result: Highly efficient products and processes are now being developed by
judicious selection and integration of sensors, actuators, signal conditioning, power
electronics, decision and control algorithms, and computer hardware and software.
10
Mechatronics has evolved through the following stages:
• Primary Level Mechatronics: Integrates electrical signaling with mechanical action at the
basic control level for e.g.fluid valves and relay switches
• Secondary Level Mechatronics: Integrates microelectronics into electrically controlled
devices for e.g. cassette tape player.
• Tertiary Level Mechantronics: Incorporates advanced control strategy using
microelectronics, microprocessors and other application specific integrated circuits for e.g.
microprocessor based electrical motor used for actuation purpose in robots.
• Quaternary Level Mechatronics: This level attempts to improve smartness a step ahead
by introducing intelligence ( artificial neutral network and fuzzy logic ) and fault detection
and isolation ( F.D.I.) capability into the system.
11
Mechatronics Applications
• Smart consumer products: home security, camera, microwave oven, toaster, dish washer,
laundry washer-dryer, climate control units, Automatic Digital Cemera etc.
•Computer disk VCR/DVD drives, ATM, etc
• Medical: implant-devices, assisted surgery, haptic, etc.
• Defense: unmanned air, ground, and underwater vehicles, smart weapons, jet engines, etc.
• Manufacturing: NC & CNC machine tools, Rapid Prototyping, robotics, etc.
• Automotive: climate control, antilock brake, active suspension, cruise control, air bags,
engine management, safety, etc.
• Network-centric, distributed systems: distributed robotics, telerobotics, intelligent highways,
etc.
12
13
14
15
16
17
Advantages of Mechatronics
Cost effective and good quality products
High degree of flexibility to modify or redesign
Very good performance characteristics
Wide are of application
Greater productivity in case of manufacturing organization
Greater extend of machine utilization
Disadvantages of Mechatronics
High Initial cost
Multi-disciplinary engineering background required to design and implementation
Need of highly trained workers
Complexity in identification an correction of problems in the system
18
Elements of Mechatronics System
Actuators & Sensors
Signals & Conditioning
Digital Logic System
Software & Data
acquisition Systems
Computers & Display
devices
19
20
Actuators & Sensors
Sensors and actuators come under mechanical systems
Actuators Sensors
The actuators produce
motion or cause some action
The sensors detect the state
of the system parameters,
inputs and outputs
Various actuators: Pneumatic
an hydraulic actuators,
Electro Mechanical actuators,
Piezoelectric, Electrical
Motors, i.e. D.C, A.C, Stepper,
Servo motors.
Various Sensors: Liner and
rotaional sensors,
acceleration sensors, force,
torque, pressure sensor,
temperature, proximity and
light sensors.
21
22
23
24
25
Signals & Conditioning
Mechatronic system deals with two types of signals and conditioning , i.e.
Input & Output
Input devices receive input signals from the mechatronics system via
interfacing devices an sensors.
From sensors the signal is send to the control circuits for conditioning or
processing.
Various input signal conditioning devices are amplifiers, A2D, D2D converters .
Output signals from the system are send to the output/display devices through
interfacing devices
Various output signal conditioning devices are D2A, display decoders, power
transistors, op-amps.
26
Digital Thermometer
The thermocouple is a transducer that converts temperature to a small voltage; the
amplifier increases the magnitude of the voltage; the A/D (analog-to-digital)
converter is a device that changes the analog signal to a coded digital signal; and the
LEDs (light emitting diodes) display the value of the temperature.
27
Digital Logic System
It will control overall system operation
Various digital logic systems are logic circuits, microcontrollers, PLC, sequencing &
timing controls
28
29
Software & Data acquisition Systems
Data acquisition system acquires the output signals from sensors in the form of
voltage, frequency, resistance etc. an inputting into the microprocessor or
computer.
Software is used to control the acquisition of data through DAC board.
Data acquisition system consists of multiplexer, amplifier, register and control
circuits.
Software Examples: Ladder Logic, Visual C++, Visual Basic, Lab VIEW, MATLAB,
Lab Chart, LOX
30
Using Lab VIEW
31
Computers and display devices
Computers are use to store large amount of data and process further through
software.
Display devices are used to give visual feedback to the user.
Display devices are LED, CRT, LCD, Digital displays etc.
32
Measurement System
What is a system?
MOTOR
Input,
Electrical Power
Output,
Rotaion
Not concentrate on what goes on inside
Concentrate only on output & Input device
Measurement system?
Measuring Input quantity
Output
the value of
quantity
Measurement
System
ThermometerInput Temp.
Output
number on
scale
33
Digital Thermometer
The thermocouple is a transducer that converts temperature to a small voltage; the
amplifier increases the magnitude of the voltage; the A/D (analog-to-digital)
converter is a device that changes the analog signal to a coded digital signal; and the
LEDs (light emitting diodes) display the value of the temperature.
34
Control System
To control the output to some particular value or particular sequence of values
Central Heating
system
Input, required
temperature
Output, temperature at the set
value
Difference between Open loop and Closed loop
system
SI.No. Open loop system Closed loop system
1 Not using feedback Feedback using
2 Less accurate More accurate
3 Simple in construction Complicated in construction
4 Optimisation in control is not possible Optimisation in control is possible
5 Easy maintenance & cost is less Difficult to maintain & cost is more
6 Eg. CD deck, Digital thermometer Eg. Automatic water level, washing
machine
Open Loop system
Closed loop system
Basic Elements of a closed loop
system
1. Comparison element
2. Control element
3. Correction element
4. Process elements
5. Measurement elements
Various elements for controlling the
room temperature.
Controlled variable - the room temperature
Reference value - the required room temperature
Comparison element - the person comparing the measured value wit required temp.
Error signal - difference between measured and required temperatures
Control unit - the person
Correction unit - the switch on the fire
Process unit - the heating by the fire
Measuring device - a thermometer
Shaft Speed Control
Water Level Controller
Washing machine control
Cam operated Switch
Engine Management system
Automatic Camera
The Digital Camera

More Related Content

What's hot

Introduction to cnc machines (1)
Introduction to cnc machines (1)Introduction to cnc machines (1)
Introduction to cnc machines (1)someshking
 
L6 Electrical Actuation system
L6 Electrical Actuation systemL6 Electrical Actuation system
L6 Electrical Actuation systemtaruian
 
Adaptive control System
Adaptive control SystemAdaptive control System
Adaptive control SystemSUMIT ATTRI
 
Introduction to Mechatronics, Sensors and Transducers
Introduction to Mechatronics, Sensors and TransducersIntroduction to Mechatronics, Sensors and Transducers
Introduction to Mechatronics, Sensors and Transducerstaruian
 
Numerical control machines tool
Numerical control machines toolNumerical control machines tool
Numerical control machines tooljntuhcej
 
Introduction to mechatronics
Introduction to mechatronicsIntroduction to mechatronics
Introduction to mechatronicsAmeya Nijasure
 
Introduction to Mechatronics
Introduction to MechatronicsIntroduction to Mechatronics
Introduction to Mechatronicschandra kumar s
 
Introduction of mechatronics
Introduction of mechatronicsIntroduction of mechatronics
Introduction of mechatronicsahmed saqer
 
Mechatronics An Introduction
Mechatronics An IntroductionMechatronics An Introduction
Mechatronics An IntroductionSHIVAJI CHOUDHURY
 
Unit 1(part-2)sensors and transducer
Unit 1(part-2)sensors and transducerUnit 1(part-2)sensors and transducer
Unit 1(part-2)sensors and transducerswathi1998
 
Measurement of force, torque and strain
Measurement of force, torque and strainMeasurement of force, torque and strain
Measurement of force, torque and strainDigvijaysinh Gohil
 
What is Mechatronics?
What is Mechatronics?What is Mechatronics?
What is Mechatronics?REPEX
 
INTRODUCTION TO MECHATRONICS
INTRODUCTION TO MECHATRONICSINTRODUCTION TO MECHATRONICS
INTRODUCTION TO MECHATRONICSAladin Ganesh
 
Hydraulic and Pneumatic Actuators
Hydraulic and Pneumatic ActuatorsHydraulic and Pneumatic Actuators
Hydraulic and Pneumatic ActuatorsSukesh O P
 
Cad cam input output devices
Cad cam input output devicesCad cam input output devices
Cad cam input output devicesJagilam Kumar
 

What's hot (20)

Introduction to cnc machines (1)
Introduction to cnc machines (1)Introduction to cnc machines (1)
Introduction to cnc machines (1)
 
Mechatronics systems
Mechatronics systemsMechatronics systems
Mechatronics systems
 
L6 Electrical Actuation system
L6 Electrical Actuation systemL6 Electrical Actuation system
L6 Electrical Actuation system
 
Introduction to Mechatronics
 Introduction to Mechatronics Introduction to Mechatronics
Introduction to Mechatronics
 
Adaptive control System
Adaptive control SystemAdaptive control System
Adaptive control System
 
Introduction to Mechatronics, Sensors and Transducers
Introduction to Mechatronics, Sensors and TransducersIntroduction to Mechatronics, Sensors and Transducers
Introduction to Mechatronics, Sensors and Transducers
 
Numerical control machines tool
Numerical control machines toolNumerical control machines tool
Numerical control machines tool
 
Introduction to mechatronics
Introduction to mechatronicsIntroduction to mechatronics
Introduction to mechatronics
 
Mechatronics
MechatronicsMechatronics
Mechatronics
 
Introduction to Mechatronics
Introduction to MechatronicsIntroduction to Mechatronics
Introduction to Mechatronics
 
Adaptive Control System
Adaptive Control SystemAdaptive Control System
Adaptive Control System
 
Introduction of mechatronics
Introduction of mechatronicsIntroduction of mechatronics
Introduction of mechatronics
 
Cnc technology
Cnc technology Cnc technology
Cnc technology
 
Mechatronics An Introduction
Mechatronics An IntroductionMechatronics An Introduction
Mechatronics An Introduction
 
Unit 1(part-2)sensors and transducer
Unit 1(part-2)sensors and transducerUnit 1(part-2)sensors and transducer
Unit 1(part-2)sensors and transducer
 
Measurement of force, torque and strain
Measurement of force, torque and strainMeasurement of force, torque and strain
Measurement of force, torque and strain
 
What is Mechatronics?
What is Mechatronics?What is Mechatronics?
What is Mechatronics?
 
INTRODUCTION TO MECHATRONICS
INTRODUCTION TO MECHATRONICSINTRODUCTION TO MECHATRONICS
INTRODUCTION TO MECHATRONICS
 
Hydraulic and Pneumatic Actuators
Hydraulic and Pneumatic ActuatorsHydraulic and Pneumatic Actuators
Hydraulic and Pneumatic Actuators
 
Cad cam input output devices
Cad cam input output devicesCad cam input output devices
Cad cam input output devices
 

Similar to Unit 1(part-1)Introduction of mechatronics

fdocuments.in_introduction-to-mechatronics-58ba067510807.pptx
fdocuments.in_introduction-to-mechatronics-58ba067510807.pptxfdocuments.in_introduction-to-mechatronics-58ba067510807.pptx
fdocuments.in_introduction-to-mechatronics-58ba067510807.pptxMaheshbabuMuthyam
 
Mechatronics Systems.pdf
Mechatronics Systems.pdfMechatronics Systems.pdf
Mechatronics Systems.pdfChamathKushan
 
Introduction to Mechatronics
Introduction to MechatronicsIntroduction to Mechatronics
Introduction to MechatronicsVeerakumar S
 
ME8791 Mechatronics Notes.pptx
ME8791 Mechatronics Notes.pptxME8791 Mechatronics Notes.pptx
ME8791 Mechatronics Notes.pptxdharma raja`
 
MECHATRONICS Part-2.pdf
MECHATRONICS Part-2.pdfMECHATRONICS Part-2.pdf
MECHATRONICS Part-2.pdfabelmeketa
 
1 introduction of mechatronics
1 introduction of mechatronics1 introduction of mechatronics
1 introduction of mechatronicsdataniyaarunkumar
 
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptx
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptxDr.PSP ME8791- Mechatronics Material- SSMIET.pptx
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptxCrazySuriya
 
Introduction to Mechatronics
Introduction to MechatronicsIntroduction to Mechatronics
Introduction to MechatronicsProfDrDileepK
 
UNIT - 1- INTRODUCTION-ME6702– MECHATRONICS
UNIT  - 1- INTRODUCTION-ME6702– MECHATRONICS UNIT  - 1- INTRODUCTION-ME6702– MECHATRONICS
UNIT - 1- INTRODUCTION-ME6702– MECHATRONICS Mohanumar S
 
Ekeeda - Mechatronics Engineering - Introduction to Mechatronics
Ekeeda - Mechatronics Engineering - Introduction to MechatronicsEkeeda - Mechatronics Engineering - Introduction to Mechatronics
Ekeeda - Mechatronics Engineering - Introduction to MechatronicsEkeedaPvtLtd
 
Application of Microcontroller in Transmitter Section of Wireless System
Application of Microcontroller in Transmitter Section of Wireless SystemApplication of Microcontroller in Transmitter Section of Wireless System
Application of Microcontroller in Transmitter Section of Wireless Systemijceronline
 
Presentation on Industrial Automation by Vivek Atalkar
Presentation on Industrial Automation by Vivek Atalkar Presentation on Industrial Automation by Vivek Atalkar
Presentation on Industrial Automation by Vivek Atalkar Vivek Atalkar
 
Mechatronics lec 1& 2
Mechatronics lec 1& 2Mechatronics lec 1& 2
Mechatronics lec 1& 2Abdul Qadir
 

Similar to Unit 1(part-1)Introduction of mechatronics (20)

fdocuments.in_introduction-to-mechatronics-58ba067510807.pptx
fdocuments.in_introduction-to-mechatronics-58ba067510807.pptxfdocuments.in_introduction-to-mechatronics-58ba067510807.pptx
fdocuments.in_introduction-to-mechatronics-58ba067510807.pptx
 
Unit 1
Unit 1Unit 1
Unit 1
 
Unit 1.pdf
Unit 1.pdfUnit 1.pdf
Unit 1.pdf
 
Mechatronics Systems.pdf
Mechatronics Systems.pdfMechatronics Systems.pdf
Mechatronics Systems.pdf
 
Introduction to Mechatronics
Introduction to MechatronicsIntroduction to Mechatronics
Introduction to Mechatronics
 
ME8791 Mechatronics Notes.pptx
ME8791 Mechatronics Notes.pptxME8791 Mechatronics Notes.pptx
ME8791 Mechatronics Notes.pptx
 
MECHATRONICS Part-2.pdf
MECHATRONICS Part-2.pdfMECHATRONICS Part-2.pdf
MECHATRONICS Part-2.pdf
 
1 introduction of mechatronics
1 introduction of mechatronics1 introduction of mechatronics
1 introduction of mechatronics
 
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptx
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptxDr.PSP ME8791- Mechatronics Material- SSMIET.pptx
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptx
 
Unit 1.ppt
Unit 1.pptUnit 1.ppt
Unit 1.ppt
 
Introduction to Mechatronics
Introduction to MechatronicsIntroduction to Mechatronics
Introduction to Mechatronics
 
UNIT - 1- INTRODUCTION-ME6702– MECHATRONICS
UNIT  - 1- INTRODUCTION-ME6702– MECHATRONICS UNIT  - 1- INTRODUCTION-ME6702– MECHATRONICS
UNIT - 1- INTRODUCTION-ME6702– MECHATRONICS
 
Ekeeda - Mechatronics Engineering - Introduction to Mechatronics
Ekeeda - Mechatronics Engineering - Introduction to MechatronicsEkeeda - Mechatronics Engineering - Introduction to Mechatronics
Ekeeda - Mechatronics Engineering - Introduction to Mechatronics
 
Application of Microcontroller in Transmitter Section of Wireless System
Application of Microcontroller in Transmitter Section of Wireless SystemApplication of Microcontroller in Transmitter Section of Wireless System
Application of Microcontroller in Transmitter Section of Wireless System
 
B41012015
B41012015B41012015
B41012015
 
Presentation on Industrial Automation by Vivek Atalkar
Presentation on Industrial Automation by Vivek Atalkar Presentation on Industrial Automation by Vivek Atalkar
Presentation on Industrial Automation by Vivek Atalkar
 
Mechatronics lec 1& 2
Mechatronics lec 1& 2Mechatronics lec 1& 2
Mechatronics lec 1& 2
 
Data Acquisition System
Data Acquisition SystemData Acquisition System
Data Acquisition System
 
Automation(plc&scada)
Automation(plc&scada)Automation(plc&scada)
Automation(plc&scada)
 
ELN_3modul.pptx
ELN_3modul.pptxELN_3modul.pptx
ELN_3modul.pptx
 

Recently uploaded

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Unit 1(part-1)Introduction of mechatronics

  • 1. By V.D.TAMILARASAN Research associate cum Assistant Professor Mechanical Engineering Department Bannari Amman Institute of Technology INTRODUCTION OF MECHATRONICS 1 MECHATRONICS
  • 2. Topics 2 SL.NO TOPIC 1 Introduction to Mechatronics systems, Concepts & Application. 2 Mechatronics System Components with examples 3 Measurement Systems, Control systems, Open & Closed Loop Systems. 4 Sequential Controllers with examples – Water level controller. 5 Shaft speed control, Washing machine control.
  • 3. 3 The word mechatronics was originated from Japan (Yasakawa Electric Company) in the late 1960s, spread through Europe, and is now commonly used round the globe. “The word, mechatronics, is composed of ‘mecha’ from mechanism and the ‘tronics’ from electronics. Mechatronics solves technological problems using interdisciplinary knowledge consisting of mechanical engineering, electronics, and computer technology. In 1996, Harashima, Tomizuka, and Fukuda defined mechatronics as being “the synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes.” Bolton presented yet another definition by saying “a mechatronic system is not just a marriage of electrical and mechanical systems and is more than just a control system; the mechatronic system is a complete integration of them all.” Mechatronics is the field of study concerned with the design, selection, analysis, and control of systems that combine mechanical elements with electronic components, including computers and/or microcontrollers. Introduction to Mechatronics Systems
  • 4. 4 Mechatronics is the synergistic integration of sensors, actuators, signal conditioning, power electronics, decision and control algorithms, and computer hardware and software to manage complexity, uncertainty, and communication in engineered systems. Working definition Graphical Representation of Mechatronics
  • 5. 5
  • 6. 6 Evolution of Mechatronics Technological advances in design, manufacturing, and operation of engineered products/devices/processes can be traced through: – Industrial revolution – Semiconductor revolution – Information revolution Industrial Revolution • Allowed design of products and processes for energy conversion and transmission thus allowing the use of energy to do useful work. • Engineering designs of this era were largely mechanical – e.g., operations of motion transmission, sensing, actuation, and computation were performed using mechanical components such as cams, gears, levers, and linkages). • Purely mechanical systems suffer from – Power amplification inability. – Energy losses due to tolerances, inertia, and friction.
  • 7. 7
  • 8. 8 Semiconductor Revolution • Led to the creation of integrated circuit (IC) technology. • Effective, miniaturized, power electronics could amplify and deliver needed amount of power to actuators. • Signal conditioning electronics could filter and encode sensory data in analog/digital format. • Hard-wired, on-board, discrete analog/digital ICs provided rudimentary computational and decision-making circuits for control of mechanical devices.
  • 9. 9 Information Revolution • Development of VLSI technology led to the introduction of microprocessor, microcomputer, and microcontroller. • Now computing hardware is everywhere, cheap, and small. • As computing hardware can be effortlessly interfaced with real world electromechanical systems, it is now routinely embedded in engineered products/processes for decision- making. – Microcontrollers are replacing precision mechanical components, e.g., precision machined camshaft that in many applications functions as a timing device. – Programmability of microcontrollers is providing a versatile and flexible alternative to the hard-wired analog/digital computational hardware. – Integrated computer-electrical-mechanical devices are now capable of converting, transmitting, and processing both the physical energy and the virtual energy (information). • Result: Highly efficient products and processes are now being developed by judicious selection and integration of sensors, actuators, signal conditioning, power electronics, decision and control algorithms, and computer hardware and software.
  • 10. 10 Mechatronics has evolved through the following stages: • Primary Level Mechatronics: Integrates electrical signaling with mechanical action at the basic control level for e.g.fluid valves and relay switches • Secondary Level Mechatronics: Integrates microelectronics into electrically controlled devices for e.g. cassette tape player. • Tertiary Level Mechantronics: Incorporates advanced control strategy using microelectronics, microprocessors and other application specific integrated circuits for e.g. microprocessor based electrical motor used for actuation purpose in robots. • Quaternary Level Mechatronics: This level attempts to improve smartness a step ahead by introducing intelligence ( artificial neutral network and fuzzy logic ) and fault detection and isolation ( F.D.I.) capability into the system.
  • 11. 11 Mechatronics Applications • Smart consumer products: home security, camera, microwave oven, toaster, dish washer, laundry washer-dryer, climate control units, Automatic Digital Cemera etc. •Computer disk VCR/DVD drives, ATM, etc • Medical: implant-devices, assisted surgery, haptic, etc. • Defense: unmanned air, ground, and underwater vehicles, smart weapons, jet engines, etc. • Manufacturing: NC & CNC machine tools, Rapid Prototyping, robotics, etc. • Automotive: climate control, antilock brake, active suspension, cruise control, air bags, engine management, safety, etc. • Network-centric, distributed systems: distributed robotics, telerobotics, intelligent highways, etc.
  • 12. 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. 16
  • 17. 17 Advantages of Mechatronics Cost effective and good quality products High degree of flexibility to modify or redesign Very good performance characteristics Wide are of application Greater productivity in case of manufacturing organization Greater extend of machine utilization Disadvantages of Mechatronics High Initial cost Multi-disciplinary engineering background required to design and implementation Need of highly trained workers Complexity in identification an correction of problems in the system
  • 18. 18 Elements of Mechatronics System Actuators & Sensors Signals & Conditioning Digital Logic System Software & Data acquisition Systems Computers & Display devices
  • 19. 19
  • 20. 20 Actuators & Sensors Sensors and actuators come under mechanical systems Actuators Sensors The actuators produce motion or cause some action The sensors detect the state of the system parameters, inputs and outputs Various actuators: Pneumatic an hydraulic actuators, Electro Mechanical actuators, Piezoelectric, Electrical Motors, i.e. D.C, A.C, Stepper, Servo motors. Various Sensors: Liner and rotaional sensors, acceleration sensors, force, torque, pressure sensor, temperature, proximity and light sensors.
  • 21. 21
  • 22. 22
  • 23. 23
  • 24. 24
  • 25. 25 Signals & Conditioning Mechatronic system deals with two types of signals and conditioning , i.e. Input & Output Input devices receive input signals from the mechatronics system via interfacing devices an sensors. From sensors the signal is send to the control circuits for conditioning or processing. Various input signal conditioning devices are amplifiers, A2D, D2D converters . Output signals from the system are send to the output/display devices through interfacing devices Various output signal conditioning devices are D2A, display decoders, power transistors, op-amps.
  • 26. 26 Digital Thermometer The thermocouple is a transducer that converts temperature to a small voltage; the amplifier increases the magnitude of the voltage; the A/D (analog-to-digital) converter is a device that changes the analog signal to a coded digital signal; and the LEDs (light emitting diodes) display the value of the temperature.
  • 27. 27 Digital Logic System It will control overall system operation Various digital logic systems are logic circuits, microcontrollers, PLC, sequencing & timing controls
  • 28. 28
  • 29. 29 Software & Data acquisition Systems Data acquisition system acquires the output signals from sensors in the form of voltage, frequency, resistance etc. an inputting into the microprocessor or computer. Software is used to control the acquisition of data through DAC board. Data acquisition system consists of multiplexer, amplifier, register and control circuits. Software Examples: Ladder Logic, Visual C++, Visual Basic, Lab VIEW, MATLAB, Lab Chart, LOX
  • 31. 31 Computers and display devices Computers are use to store large amount of data and process further through software. Display devices are used to give visual feedback to the user. Display devices are LED, CRT, LCD, Digital displays etc.
  • 32. 32 Measurement System What is a system? MOTOR Input, Electrical Power Output, Rotaion Not concentrate on what goes on inside Concentrate only on output & Input device Measurement system? Measuring Input quantity Output the value of quantity Measurement System ThermometerInput Temp. Output number on scale
  • 33. 33 Digital Thermometer The thermocouple is a transducer that converts temperature to a small voltage; the amplifier increases the magnitude of the voltage; the A/D (analog-to-digital) converter is a device that changes the analog signal to a coded digital signal; and the LEDs (light emitting diodes) display the value of the temperature.
  • 34. 34 Control System To control the output to some particular value or particular sequence of values Central Heating system Input, required temperature Output, temperature at the set value
  • 35. Difference between Open loop and Closed loop system SI.No. Open loop system Closed loop system 1 Not using feedback Feedback using 2 Less accurate More accurate 3 Simple in construction Complicated in construction 4 Optimisation in control is not possible Optimisation in control is possible 5 Easy maintenance & cost is less Difficult to maintain & cost is more 6 Eg. CD deck, Digital thermometer Eg. Automatic water level, washing machine
  • 38. Basic Elements of a closed loop system 1. Comparison element 2. Control element 3. Correction element 4. Process elements 5. Measurement elements
  • 39. Various elements for controlling the room temperature. Controlled variable - the room temperature Reference value - the required room temperature Comparison element - the person comparing the measured value wit required temp. Error signal - difference between measured and required temperatures Control unit - the person Correction unit - the switch on the fire Process unit - the heating by the fire Measuring device - a thermometer