SlideShare a Scribd company logo
1 of 55
Download to read offline
LINEAR ALGEBRA II
Chapter one
Characteristic Equation
1
by shimelis Ayele
1.1. Eigen values and Eigen
vectors
2
by shimelis Ayele
Contโ€ฆ
๏ฑwe have ๐ด๐‘ฃ =
1 2
4 3
1
2
=
5
10
= 5
1
2
= ๐œ†๐‘ฃ so 5 is an eigenvalue
of ๐ด and
1
2
is an eigenvector of ๐ด corresponding to the eigenvalue
5
๏ฑDefinition1.1.2: Let ๐ด be an ๐‘› ร— ๐‘› matrix. The set of all eigenvalues
of ๐ด is called the spectrum of ๐ด.
๏ฑTheorem 1.1.1: Let ๐ด be an ๐‘› ร— ๐‘› matrix. A Number ๐œ† is an Eigen
value of ๐ด if and only if ๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = 0, where ๐ผ denotes the ๐‘› ร— ๐‘›
identity matrix.
3
by shimelis Ayele
Properties of Eigen Values
i. The sum of the eigen values of a matrix is the sum of the elements of
the principal diagonal.
ii. The product of the eigen values of a matrix A is equal to its
determinant.
iii. If ๐œ† is an eigen value of a matrix A, then ฮค
1
๐œ† is the eigen value of A-
1 .
iv. If ๐œ† is an eigen value of an orthogonal matrix, then ฮค
1
๐œ†is also its
eigen value.
v. The eigen values of a triangular matrix are precisely the entries of
diagonal entries.
4
by shimelis Ayele
Contโ€ฆ
vi. If ๐œ†1, ๐œ†2,โ€ฆ, ๐œ†๐‘› are the eigenvalues of A, then
a. ๐‘˜๐œ†1,๐‘˜๐œ†2,โ€ฆ, ๐‘˜๐œ†๐‘› are the eigenvalues of the matrix kA, where k is a
non โ€“ zero scalar.
b.
1
๐œ†1
,
1
๐œ†2
โ€ฆ
1
๐œ†๐‘›
are the eigenvalues of the inverse matrix ๐ดโˆ’1
.
c. ๐œ†1
๐‘
, ๐œ†2
๐‘
โ€ฆ๐œ†๐‘›
๐‘
are the eigenvalues of ๐ด๐‘ƒ
, where ๐‘ is any positive
integer.
5
by shimelis Ayele
1.2 Characteristic polynomial
โ€ข Definition 1.2.1:Polynomial of degree ๐‘› in ๐‘ฅ is an expression of the form
๐‘Ž๐‘›๐‘ฅ๐‘›
+ ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1
+ โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0, where ๐‘Ž0,๐‘Ž1,โ€ฆ๐‘Ž๐‘› โˆˆ ๐น ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘› โ‰  0
, ๐‘› ๐‘–๐‘  ๐‘›๐‘œ๐‘› ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ.
โ€ข We can write ๐‘ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘›
+ ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1
+ โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0, if we replace x
every where by a given number ๐œ† and we obtain ๐‘ ๐œ† = ๐‘Ž๐‘›๐œ†๐‘›
+
๐‘Ž๐‘›โˆ’1๐œ†๐‘›โˆ’1
+ โ‹ฏ + ๐‘Ž1๐œ† + ๐‘Ž0
โ€ข Definition 1.2.2: Let ๐‘ ๐‘ฅ be a polynomial in x. A number ๐œ† is called a
root of ๐‘ ๐‘ฅ if ๐‘ ๐œ† = 0.
6
by shimelis Ayele
Cont.โ€ฆ
โ€ข Definition 1.2.3: Let ๐ด = ๐‘Ž๐‘–๐‘— be an ๐‘› ร— ๐‘› matrix. Then the
polynomial
๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = ๐‘‘๐‘’๐‘ก
๐‘Ž11 โˆ’ ๐œ† ๐‘Ž12
โ‹ฏ ๐‘Ž1๐‘›
๐‘Ž21 ๐‘Ž22 โˆ’ ๐œ† โ‹ฏ ๐‘Ž21
โ‹ฎ
๐‘Ž๐‘›1
โ‹ฎ
๐‘Ž๐‘›2
โ‹ฑ
โ€ฆ
โ‹ฎ
๐‘Ž๐‘›๐‘› โˆ’ ๐œ†
is called the
characteristic polynomial of ๐ด.
โ€ข Denoted as ๐ถ๐ด ๐‘ฅ , the leading coefficient is โˆ’1 ๐‘›
๐‘Ž๐‘›๐‘‘ the constant
term is ๐‘‘๐‘’๐‘ก๐ด.
7
by shimelis Ayele
Contโ€ฆ
โ€ข The equation ๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = 0 or equivalently ๐‘‘๐‘’๐‘ก ๐œ†๐ผ โˆ’ ๐ด = 0 is
called characteristic equation of ๐ด.
โ€ข Definition 1.2.4: If an eigenvalue ๐œ† occur k times as a root of the
characteristic polynomial ๐ถ๐ด ๐‘ฅ , then k is called the multiplicity of the
eigenvalue .
โ€ข Example 1: Let ๐ด =
3 โˆ’1 โˆ’1
โˆ’12 0 5
4 โˆ’2 โˆ’1
then,
8
by shimelis Ayele
Cont.
i. Find characteristic polynomial and characteristic equation of A.
ii. Eigenvalues and eigenvectors of A.
iii. Eigen values of ๐ดโˆ’1
iv. Eigen values of ๐ด10
v. Eigen values of 10A.
Solution:
Characteristic polynomial is
๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ =
3 โˆ’1 โˆ’1
โˆ’12 0 5
4 โˆ’2 โˆ’1
โˆ’ ๐œ†
1 0 0
0 1 0
0 0 1
9
by shimelis Ayele
Cont.
=
3 โˆ’ ๐œ† โˆ’1 โˆ’1
โˆ’12 โˆ’๐œ† 5
4 โˆ’2 โˆ’1 โˆ’ ๐œ†
= 3 โˆ’ ๐œ† ๐œ†2
+ ๐œ† + 10 + 1 12๐œ† + 12 โˆ’ 20 โˆ’ 1 24 + 4๐œ†
characteristic polynomial is โˆ’๐œ†3
+ 2๐œ†2
+ ๐œ† โˆ’ 2 and characteristic
equation of A is โˆ’๐œ†3
+ 2๐œ†2
+ ๐œ† โˆ’ 2 = 0
ii. To find Eigenvalues of A we have to find root of
โˆ’๐œ†3
+ 2๐œ†2
+ ๐œ† โˆ’ 2 = 0
โŸน โˆ’ ๐œ† + 1 ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 = 0
๐œ†= -1 or ๐œ†= 1 or ๐œ†=2
10
by shimelis Ayele
Cont.
๏ฑSo the eigenvalues are -1,1 and 2 .
๏ฑTo find eigenvector corresponding to eigenvalues
๏ฑwrite ๐ด๐‘ฃ = ๐œ†๐‘ฃ
โŸน ๐ด โˆ’ ๐œ†๐ผ ๐‘ฃ = 0 that is
โŸน
3 โˆ’ ๐œ† โˆ’1 โˆ’1
โˆ’12 โˆ’๐œ† 5
4 โˆ’2 โˆ’1 โˆ’ ๐œ†
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
0
0
0
Then we can solve for ๐‘ฅ1, ๐‘ฅ2 and ๐‘ฅ3 by appropriate method.
Let ๐œ†= -1 ,then we have
11
by shimelis Ayele
Cont.
4 โˆ’1 โˆ’1
โˆ’12 1 5
4 โˆ’2 0
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
0
0
0
Solve by using Gaussian elimination .
Since the constant matrix is zero matrix, reduce the coefficient matrix to row
echelon form
4 โˆ’1 โˆ’1
โˆ’12 1 5
4 โˆ’2 0
๐‘…2+3๐‘…1
๐‘…3โˆ’๐‘…1
4 โˆ’1 โˆ’1
0 โˆ’2 2
0 โˆ’1 1
๐‘…3โˆ’ เต—
1
2 ๐‘…2
4 โˆ’1 โˆ’1
0 โˆ’2 2
0 0 0
.
12
by shimelis Ayele
Cont.
4 โˆ’1 โˆ’1
0 โˆ’2 2
0 0 0
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
0
0
0
Thus the linear system becomes
4๐‘ฅ1 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ3 = 0
โˆ’2๐‘ฅ2 + 2๐‘ฅ3 = 0
โ‡’ ๐‘ฅ2 = ๐‘ฅ3,๐‘ฅ1 =
1
2
๐‘ฅ3
๏ฑ Let ๐‘ฅ3 = ๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐‘ฅ2 = ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ฅ1 = ฮค
1
2 ๐‘ก where t is arbitrary
13
by shimelis Ayele
Cont.
Thus v =
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
ฮค
1
2 ๐‘ก
๐‘ก
๐‘ก
= ๐‘ก
ฮค
1
2
1
1
So
ฮค
1
2
1
1
is eigenvector corresponding to eigenvalue ๐œ† = -1
๏ฑSimilarly, we obtain
3
โˆ’1
7
as an eigenvector corresponding to
eigenvalue ๐œ†=1and
1
โˆ’1
2
as an eigenvector corresponding to eigenvalue 2.
14
by shimelis Ayele
Cont.
iii. Eigen values of ๐ดโˆ’1
. 1, -1 and
1
2
are eigenvalues of ๐ดโˆ’1
by the
property of eigenvalue.
iv. Eigen values of ๐ด10
are -1 , 1 and 210
v. Eigen values of 10A are -10,10 and 20
Example 2: Let ๐ด =
0 0 โˆ’2
1 2 1
1 0 3
Solution:
โ€ข The characteristic equation of matrix A is ๐œ†3
โˆ’5๐œ†2
+ 8๐œ† โˆ’ 4 = 0, or,
in factored form ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 2
= 0
15
by shimelis Ayele
Cont.
โ€ข Thus the eigenvalues of A are ๐œ† = 1and ๐œ†2,3 = 2, so there
are two eigenvalues of A.
v =
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
,is an eigenvector of A corresponding to ๐œ† if and
only v is a nontrivial solution of ๐ด โˆ’ ๐œ†๐ผ ๐‘ฃ = 0
that is, of the form
โˆ’๐œ† 0 โˆ’2
1 2 โˆ’ ๐œ† 1
1 0 3 โˆ’ ๐œ†
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
0
0
0
16
by shimelis Ayele
cont.
โ€ข If ๐œ† = 1, then
โˆ’1 0 โˆ’2
1 1 1
1 0 2
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
0
0
0
๏ฑSolving this system using Gaussian elimination yields ๐‘ฅ1 =
โˆ’ 2๐‘ , ๐‘ฅ2 = ๐‘  , ๐‘ฅ3 = ๐‘  (verify)
๏ฑThus the eigenvectors corresponding to ๐œ† = 1are the nonzero vectors
of the form
โˆ’2๐‘ 
๐‘ 
๐‘ 
= ๐‘ 
โˆ’2
1
1
so that
โˆ’2
1
1
is the Eigen vector corresponding to
eigenvalue 1
17
by shimelis Ayele
Cont.
โ€ข If ๐œ† = 2, then it becomes
โˆ’2 0 โˆ’2
1 0 1
1 0 1
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
0
0
0
โ€ข Solving this system using Gaussian elimination yields
๐‘ฅ1 = โˆ’๐‘ , ๐‘ฅ2 = ๐‘ก , ๐‘ฅ3 = ๐‘ (verify)
โ€ข Thus, the eigenvectors of A corresponding to ๐œ† = 2 are the nonzero
vectors of the form
๏ฑThus, the eigenvectors of A corresponding to ๐œ† = 2are the nonzero
vectors of the form
๐‘ฅ1
๐‘ฅ2
๐‘ฅ3
=
โˆ’๐‘ 
๐‘ก
๐‘ 
= ๐‘ 
โˆ’1
0
1
+ ๐‘ก
0
1
0 18
by shimelis Ayele
Contโ€ฆ
๏ฑSince
โˆ’1
0
1
and
0
1
0
are linearly independent,these vectors form a basis for
the Eigen space corresponding to ๐œ† = 2.
๏ฑSo the Eigen vectors of A corresponding Eigen values 1and 2 are
โˆ’2
1
1
,
โˆ’1
0
1
and
0
1
0
Exercise 1:
1. Find eigenvalues and eigenvectors of
A =
1 1 2 3 4
0 1 1 2 1
0
0
0
0
0
0
2
0
0
1
3
0
1
1
4 19
by shimelis Ayele
Cont.
2. Let A=
3 โˆ’2 2
4 โˆ’4 6
2 โˆ’3 5
,then find
a. Find characteristic polynomial and characteristic equation of A.
b. Eigenvalues and eigenvectors of A.
c. Eigen values of ๐ดโˆ’1
d. Eigen values of ๐ด11
e. Eigen values of
30 โˆ’20 20
40 โˆ’40 60
20 โˆ’30 50
.
20
by shimelis Ayele
1.3.Similarity of matrix
๏ฑDefinition1.3.1: If A and B are n xn matrices, then A is similar to B if
there is an invertible matrix P such that P-1AP = B, or, equivalently
A = PBP-1
๏ฑChanging A into B is called a similarity transformation.
๏ฑTheorem 1.3.1: If nxn matrices A and B are similar, then they have
the same characteristic polynomial and hence the same eigenvalues
(with the same multiplicities).
๏ฑProof:
๏ฑSuppose A and B are similar matrices of order n.
21
by shimelis Ayele
Cont.
๏ฑThe characteristic polynomial of B is given by
det B โˆ’ ฮปI
= det Pโˆ’1AP โˆ’ ฮปI
= det pโˆ’1
๐ด โˆ’ ฮปI p
= det(pโˆ’1
)det A โˆ’ ฮปI det(p )
= det(pโˆ’1
p) det A โˆ’ ฮปI
= det A โˆ’ ฮปI
๏ฑDefinition 1.3.2: The set of distinct eigenvalues, denoted by ฯƒ(A) , is
called the spectrum of A.
๏ฑDefinition 1.3.3:For square matrices A , the number ฯ(A) =
max ๐œ† , ฮปโˆˆ ฯƒ(A)is called the spectral radius of A.
22
by shimelis Ayele
1.4. Diagonalization
โ€ข Definition1.4.1: A square matrix A is called diagonalizable if there
exist an invertible matrix P such that ๐‘ƒโˆ’1
๐ด๐‘ƒ is a diagonal matrix; the
matrix P is said to diagonalize A.
๏ฑTHEOREM 1.4.1 : If ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘˜ are Eigen vectors of A
corresponding to distinct eigenvalues
,ฮป1, ฮป2 , โ€ฆ,ฮปk then {P1 , P2, โ€ฆ, Pk } is a linearly independent set.
โ€ข Proof
๏ฑ Let , ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘˜ be eigenvectors of A corresponding to distinct
eigenvalues ๐œ†1, ๐œ†2 , โ€ฆ,๐œ†๐‘˜ .
23
by shimelis Ayele
Cont.
โ€ข We shall assume that, ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘˜ are linearly dependent and
obtain a contradiction. We can then conclude that , P1 , P2, โ€ฆ, Pk
are linearly independent.
โ€ข Since an eigenvector is nonzero by definition, p1 is linearly
independent. Let r be the largest integer such that P1 , P2, โ€ฆ, Pr
is linearly independent. Since we are assuming that P1 , P2, โ€ฆ,
Pk is linearly dependent, r satisfies 1 โ‰ค r โ‰ค k .
๏ฑMore over, by definition of r, P1 , P2, โ€ฆ, Pr+1 is linearly
dependent.
24
by shimelis Ayele
Cont.
๏ฑThus there are scalars c1 , c2, โ€ฆ, cr+1 , not all zero, such that
P1c1 + P2c2+ โ€ฆ, Pr+1cr+1 = 0 (4)
Multiplying both sides of 4 by A and using
AP1=ฮป1p1, AP2 = ฮป2P2 โ€ฆ , APn = ฮปr+1Pr+1
๏ฑwe obtain c1ฮป1p1 + c2ฮป2p2 + โ€ฆ + cr+1ฮปr+1pr+1 = 0 โ€ฆ (5)
๏ฑMultiplying both sides of 4 by ฮปr+1 and subtracting the resulting
equation from 5 yields
๏ฑc1(ฮป1โˆ’ฮปr+1)p1 + c2(ฮป2โˆ’ฮปr+1)p2 + โ€ฆ + cr(ฮปr โˆ’ ฮปr+1)pr = 0
25
by shimelis Ayele
Cont.
โ€ข Since P1 , P2, โ€ฆ, Pr is a linearly independent set, this equation
implies that c1(ฮป1โˆ’ฮปr+1) + c2(ฮป2โˆ’ฮปr+1) + โ€ฆ + cr(ฮปr โˆ’ ฮปr+1) =
0and since , ฮป1, ฮป2 , โ€ฆ, ฮปr are distinct by hypothesis, it follows that
โ€ข c1 = c2=โ€ฆ= cr= 0 (6)
Substituting these values in 4 yields
โ€ข Pr+1cn+1 = 0 (7)
๏ฑSince the eigenvector Pr+1 is nonzero, it follows that cr+1 = 0
๏ฑEquations 6 and 7 contradict the fact that c1 , c2, โ€ฆ, cr+1 are not all
zero; this completes the proof
26
by shimelis Ayele
Cont.
๏ฑTheorem 1.4.2: If A is an n ร— n matrix, then the following are
equivalent.
๏ƒผa. A is diagonalizable.
๏ƒผb. A has n linearly independent eigenvectors.
โ€ข Proof
๏ฑ๐‘Ž โ‡’ ๐‘ Since A is assumed diagonalizable, there is an invertible matrix
๐‘11 ๐‘12
โ‹ฏ ๐‘1๐‘›
๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘›
โ‹ฎ
๐‘๐‘›1
โ‹ฎ
๐‘๐‘›2
โ€ฆ
โ€ฆ
โ‹ฎ
๐‘๐‘›๐‘›
such that ๐‘ƒโˆ’1
๐ด๐‘ƒ is diagonal, say ๐‘ƒโˆ’1
๐ด๐‘ƒ = ๐ท ,
27
by shimelis Ayele
Cont.
where D =
๐œ†1 0 โ‹ฏ 0
0 ๐œ†2 โ€ฆ 0
โ‹ฎ
0
โ‹ฎ
0
โ€ฆ
โ€ฆ
โ‹ฎ
๐œ†๐‘›
๏ฑIt follows from the formula ๐‘ƒโˆ’1
๐ด๐‘ƒ = ๐ท that ๐ด๐‘ƒ = ๐‘ƒ๐ท ; that is ,
๏ฑAP =
๐‘11 ๐‘12
โ‹ฏ ๐‘1๐‘›
๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘›
โ‹ฎ
๐‘๐‘›1
โ‹ฎ
๐‘๐‘›2
โ€ฆ
โ€ฆ
โ‹ฎ
๐‘๐‘›๐‘›
๐œ†1 0 โ‹ฏ 0
0 ๐œ†2 โ€ฆ 0
โ‹ฎ
0
โ‹ฎ
0
โ€ฆ
โ€ฆ
โ‹ฎ
๐œ†๐‘›
28
by shimelis Ayele
Cont.
=
๐œ†1๐‘11 ๐œ†2๐‘12 โ‹ฏ ๐œ†๐‘›๐‘1๐‘›
๐œ†1๐‘21 ๐œ†2๐‘22 โ€ฆ ๐œ†๐‘›๐‘2๐‘›
โ‹ฎ
๐œ†1๐‘๐‘›1
โ‹ฎ
๐œ†2๐‘๐‘›2
โ€ฆ
โ€ฆ
โ‹ฎ
๐œ†๐‘›๐‘๐‘›๐‘›
1
๏ฑIf we denote the column vectors of P,๐‘๐‘ฆ ๐‘ƒ1,๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘›, then from 1,
the successive columns of PD are ๐œ†1๐‘ƒ1 , ๐œ†2๐‘ƒ2, โ€ฆ, ๐œ†๐‘›๐‘ƒ๐‘› .
๏ฑThe successive columns of AP are ๐ด๐‘ƒ1 , ๐ด๐‘ƒ2, โ€ฆ, ๐ด๐‘ƒ๐‘› .
๏ฑThus we must have
๐ด๐‘ƒ1 = ๐œ†1๐‘1, ๐ด๐‘ƒ2 = ๐œ†2๐‘ƒ2 โ€ฆ , ๐ด๐‘ƒ๐‘› = ๐œ†๐‘›๐‘ƒ๐‘› 2
29
by shimelis Ayele
Cont.โ€ฆ
โ€ข Since P is invertible, its column vectors are all nonzero; thus, it
follows from 2 that ๐œ†1,๐œ†2 , โ€ฆ,๐œ†๐‘› are eigenvalues of A, and ๐‘ƒ1 , ๐‘ƒ2,
โ€ฆ, ๐‘ƒ๐‘› are corresponding eigenvectors.
Since P is invertible, ๐‘ƒ1, ๐‘ƒ2 , โ€ฆ,๐‘ƒ๐‘› are linearly independent.
๏ฑ Thus A has n linearly independent eigenvectors.
๏ฑ๐‘ โ‡’ ๐‘Ž Assume that A has n linearly independent eigenvectors ๐‘ƒ1 , ๐‘ƒ2,
โ€ฆ, ๐‘ƒ๐‘› with corresponding eigenvalues , ๐œ†1, ๐œ†2 , โ€ฆ,๐œ†๐‘›
30
by shimelis Ayele
Cont.โ€ฆ
โ€ข Let P =
๐‘11 ๐‘12
โ‹ฏ ๐‘1๐‘›
๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘›
โ‹ฎ
๐‘๐‘›1
โ‹ฎ
๐‘๐‘›2
โ€ฆ
โ€ฆ
โ‹ฎ
๐‘๐‘›๐‘›
be the matrix whose column vectors
are
๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘›
โ€ข The column vectors of the product AP are ๐ด๐‘ƒ1 , ๐ด๐‘ƒ2, โ€ฆ, ๐ด๐‘ƒ๐‘›
๏ฑBut ,๐ด๐‘ƒ1 = ๐œ†1๐‘1, ๐ด๐‘ƒ2 = ๐œ†2๐‘ƒ2 โ€ฆ , ๐ด๐‘ƒ๐‘› = ๐œ†๐‘›๐‘ƒ๐‘› Why?
31
by shimelis Ayele
Cont.
AP =
๐œ†1๐‘11 ๐œ†2๐‘12 โ‹ฏ ๐œ†๐‘›๐‘1๐‘›
๐œ†1๐‘21 ๐œ†2๐‘22 โ€ฆ ๐œ†2๐‘2๐‘›
โ‹ฎ
๐œ†1๐‘๐‘›1
โ‹ฎ
๐œ†2๐‘๐‘›2
โ€ฆ
โ€ฆ
โ‹ฎ
๐œ†2๐‘๐‘›๐‘›
=
๐‘11 ๐‘12
โ‹ฏ ๐‘1๐‘›
๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘›
โ‹ฎ
๐‘๐‘›1
โ‹ฎ
๐‘๐‘›2
โ€ฆ
โ€ฆ
โ‹ฎ
๐‘๐‘›๐‘›
๐œ†1 0 โ‹ฏ 0
0 ๐œ†2 โ€ฆ 0
โ‹ฎ
0
โ‹ฎ
0
โ€ฆ
โ€ฆ
โ‹ฎ
๐œ†๐‘›
= ๐‘ƒ๐ท 3
32
by shimelis Ayele
Cont.
โ€ข Where D is the diagonal matrix having the eigenvalues, ๐œ†1, ๐œ†2 , โ€ฆ,๐œ†๐‘›
on the main diagonal.
โ€ข Since the column vectors of P are linearly independent, P is invertible.
Thus 3 can be rewritten as ๐‘ƒโˆ’1
๐ด๐‘ƒ = ๐ท ; that is, A is diagonalizable
โ€ข THEOREM 1.4.3: If an n ร— n matrix A has n distinct eigenvalues,ฮป1,
ฮป2 , โ€ฆ,ฮปn then A is diagonalizable
โ€ข Proof: If P1 , P2, โ€ฆ, Pn are eigenvectors corresponding to the distinct
eigenvalues ,ฮป1, ฮป2 , โ€ฆ,ฮปn
then by Theorem , P1 , P2, โ€ฆ, Pnare linearly independent.
โ€ข Thus A is diagonalizable by Theorem .
33
by shimelis Ayele
Procedure to diagonalize a matrix
๏ƒผ Find the linearly independent eigenvectors
๏ƒผ Construct P from eigenvectors
๏ƒผ Construct ๐ท = ๐‘ƒโˆ’1
๐ด๐‘ƒ from eigenvalues
โ€ข Example 1: Finding a Matrix P that diagonalize a matrix A
A =
0 0 โˆ’2
1 2 1
1 0 3
โ€ข Solution
โ€ข The characteristic equation of A is ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 2
= 0 and we found
the following bases for the Eigen spaces:
34
by shimelis Ayele
Cont.
โ€ข ๐œ† = 2: ๐‘1 =
โˆ’1
0
1
, ๐‘2 =
0
1
0
and ๐œ† = 1: ๐‘3 =
โˆ’2
1
1
โ€ข There are three basis vectors in total, so the matrix A is diagonalizable
and
P =
โˆ’1 0 โˆ’2
0 1 1
1 0 1
diagonalize A.
35
by shimelis Ayele
Cont.
Verify that ๐‘ƒโˆ’1
๐ด๐‘ƒ =
1 0 2
1 1 1
โˆ’1 0 โˆ’1
0 0 โˆ’2
1 2 1
1 0 3
1 0 2
1 1 1
โˆ’1 0 โˆ’1
=
2 0 0
0 2 1
0 0 1
โ€ข EXAMPLE 2:
โ€ข Find a matrix P that diagonalizable ๐ด =
1 0 0
1 2 0
โˆ’3 5 2
36
by shimelis Ayele
Cont.
Solution
โ€ข The characteristic polynomial of A is
๏ฑ det ๐ด โˆ’ ๐œ†๐ผ =
1 โˆ’ ๐œ† 0 0
1 2 โˆ’ ๐œ† 0
โˆ’3 5 2 โˆ’ ๐œ†
= ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 2
๏ฑThus the eigenvalues of A are ๐œ†1 = 1 and ๐œ†2,3= 2 .
37
by shimelis Ayele
Cont.
โ€ข Verify that eigenvalues are corresponding to
๐œ†1 = 1 ๐‘–๐‘  ๐‘1 =
โˆ’1
1
โˆ’8
and corresponding to ๐œ†2,3 = 2 ๐‘–๐‘  ๐‘2 =
0
0
1
โ€ข Since A is a 3 ร— 3 matrix and there are only two basis vectors in total,
A is not diagonalizable by theorem.
38
by shimelis Ayele
1.5.Cayley-Hamilton Theorem
๏ฑTheorem: If CA x is characteristic polynomial of A, then CA x = 0
โ€ข Let A =
a11 a12
โ€ฆ a1n
a21 a22
โ€ฆ a2n
โ‹ฎ
an1
โ‹ฎ
an2
โ‹ฑ โ‹ฎ
โ€ฆ ann
then characteristic polynomial of A
CA x = det A โˆ’ ฮปI = det
a11 โˆ’ ฮป a12 โ€ฆ a1n
a21 a22 โˆ’ ฮป โ€ฆ a2n
โ‹ฎ
an1
โ‹ฎ
an2
โ‹ฑ โ‹ฎ
โ€ฆ ann โˆ’ ฮป
39
by shimelis Ayele
Cont.
๏ฑThe characteristic equation is given by
CA x = xn
+ anโˆ’1xnโˆ’1
+ anโˆ’2xnโˆ’2
+ โ‹ฏ + a1x1
+ a0 = 0
โ€ข CA x = An
+ anโˆ’1Anโˆ’1
+ anโˆ’2Anโˆ’2
+ โ‹ฏ + a1A1
+ Ia0 = 0
โ€ข Theorem: Let A be a non singular n ร— n matrix, and let its
characteristic polynomial be CA x = An
+ anโˆ’1Anโˆ’1
+ anโˆ’2Anโˆ’2
+
โ‹ฏ + a1A1
+ Ia0 = 0,then Aโˆ’1
= โˆ’
1
a0
(Anโˆ’1
+ anโˆ’1Anโˆ’2
+ โ‹ฏ + Ia1)
โ€ข Proof :
โ€ข By Cayley-Hamilton theorem An
+ anโˆ’1Anโˆ’1
+ anโˆ’2Anโˆ’2
+ โ‹ฏ +
a1A1
+ Ia0 = 0
40
by shimelis Ayele
Cont.
โ€ข a0 = โˆ’1 n
detA โ‰  0, Since A is non singular .
โ€ข So the above equation can be written as
I = โˆ’
1
a0
(An
+ anโˆ’1Anโˆ’1
+ anโˆ’2Anโˆ’2
+ โ‹ฏ + a1A1
= โˆ’
1
a0
(Anโˆ’1
+ anโˆ’1Anโˆ’2
+ โ‹ฏ + Ia1)A
๏ฑAโˆ’1
= โˆ’
1
a0
(Anโˆ’1
+ anโˆ’1Anโˆ’2
+ โ‹ฏ + Ia1)
41
by shimelis Ayele
Cont.โ€ฆ
Example 1:๐ฟ๐‘’๐‘ก A =
2 โˆ’1 1
โˆ’1 2 โˆ’1
1 โˆ’1 2
Verify Cayley -Hamilton theorem and compute Aโˆ’1
โ€ข Solution
โ€ข The characteristic equation of A is ๐ด โˆ’ ๐œ†๐ผ = 0
โ€ข
2 โˆ’ ฮป โˆ’1 1
โˆ’1 2 โˆ’ ฮป โˆ’1
1 โˆ’1 2 โˆ’ ฮป
= 0
โ‡’ โˆ’(ฮป3
โˆ’ 6ฮป2
+ 9ฮป โˆ’ 4) = 0
42
by shimelis Ayele
Cont.
๏ฑTo verify Cayley โ€“ Hamilton theorem, we have to show that
A3
โˆ’ 6A2
+ 9A โˆ’ 4I = 0
๏ฑA2
=
2 โˆ’1 1
โˆ’1 2 โˆ’1
1 โˆ’1 2
2 โˆ’1 1
โˆ’1 2 โˆ’1
1 โˆ’1 2
=
6 โˆ’5 5
โˆ’5 6 โˆ’5
5 โˆ’5 6
โ€ข A3
= A2
A =
6 โˆ’5 5
โˆ’5 6 โˆ’5
5 โˆ’5 6
2 โˆ’1 1
โˆ’1 2 โˆ’1
1 โˆ’1 2
=
22 โˆ’21 21
โˆ’21 22 โˆ’21
22 โˆ’21 22
43
by shimelis Ayele
Cont.
โ€ข Therefore A3
โˆ’ 6A2
+ 9A โˆ’ 4I
๏ƒผ=
22 โˆ’21 21
โˆ’21 22 โˆ’21
22 โˆ’21 22
โˆ’ 6
6 โˆ’5 5
โˆ’5 6 โˆ’5
5 โˆ’5 6
+ 9
2 โˆ’1 1
โˆ’1 2 โˆ’1
1 โˆ’1 2
โˆ’
4
1 0 0
0 1 0
0 0 1
=
0 0 0
0 0 0
0 0 0
โ€ข Now multiplying both side of (1 ) by Aโˆ’1
yields
โ€ข A2
โˆ’ 6A1
+ 9I โˆ’ 4Aโˆ’1
= 0
โ€ข 4Aโˆ’1
= (A2
โˆ’ 6A1
+ 9I)
44
by shimelis Ayele
Cont.
4๐ดโˆ’1
=
6 โˆ’5 5
โˆ’5 6 โˆ’5
5 โˆ’5 6
โˆ’ 6
2 โˆ’1 1
โˆ’1 2 โˆ’1
1 โˆ’1 2
+ 9
1 0 0
0 1 0
0 0 1
=
3 1 โˆ’1
1 3 1
โˆ’1 1 3
โŸน ๐ดโˆ’1
=
1
4
3 1 โˆ’1
1 3 1
โˆ’1 1 3
45
by shimelis Ayele
Cont.
โ€ข Example 2: given A =
1 2 โˆ’1
0 1 โˆ’1
3 โˆ’1 1
find AdjA by using Cayley-
Hamilton theorem.
โ€ข Solution
โ€ข The characteristic equation of a matrix A is
โ€ข ๐ด โˆ’ ๐œ†๐ผ = 0 i.e.,
1 โˆ’ ๐œ† 2 โˆ’1
0 1 โˆ’ ๐œ† โˆ’1
3 โˆ’1 1 โˆ’ ๐œ†
= 0
โ€ข โŸน ๐œ†3
โˆ’ 3๐œ†2
+ 5๐œ† + 3 = 0
โ€ข by Cayley-Hamilton theorem ๐ด3
โˆ’ 3๐ด2
+ 5๐ด + 3๐ผ = 0
โ€ข Multiply both side by ๐ดโˆ’1
,we get ๐ด2
โˆ’ 3๐ด + 5๐ผ + 3๐ดโˆ’1
= 0
46
by shimelis Ayele
Cont.
โ€ข ๐ดโˆ’1
= โˆ’
1
3
๐ด2
โˆ’ 3๐ด + 5๐ผ
โ€ข = โˆ’
1
3
โˆ’2 5 โˆ’4
โˆ’3 2 โˆ’2
6 4 โˆ’1
โˆ’
3 6 โˆ’3
0 3 โˆ’3
9 โˆ’3 3
+
5 0 0
0 5 0
0 0 5
โ€ข ๐ดโˆ’1
=
0
1
3
1
3
1
โˆ’4
3
โˆ’
1
3
1 โˆ’
7
3
โˆ’
1
3
47
by shimelis Ayele
Cont.
โ€ข We know that , ๐ดโˆ’1
=
๐‘Ž๐‘‘๐‘—๐ด
๐ด
โ€ข Therefore ๐‘Ž๐‘‘๐‘—๐ด = ๐ด ๐ดโˆ’1
= โˆ’3
0
1
3
1
3
1
โˆ’4
3
โˆ’
1
3
1 โˆ’
7
3
โˆ’
1
3
=
0 โˆ’1 โˆ’1
1 4 1
1 7 1
48
by shimelis Ayele
Cont.
โ€ข Another application of Cayley-Hamilton theorem is to compute power
of square matrix ๐ด
โ€ข Example: Let A =
2 5
1 โˆ’2
and then find A735
โ€ข Solution
โ€ข The characteristic polynomial of A is x2
โˆ’ 9. Eigen values are -3,3 .
โ€ข Division algorithm applied to the polynomial x735
, x2
โˆ’ 9 will give
equation of the form x735
= (x2
โˆ’ 9)q x + a0 + a1x , (1)
Where a0 + a1x is remainder obtained by dividing x735
by x2
โˆ’ 9.
49
by shimelis Ayele
Cont.
โ€ข Note that the degree of remainder is less than the degree of the
divisor x2
โˆ’ 9.
โ€ข By Cayley-Hamilton theorem A2
โˆ’ 9I = 0 .
โ€ข Inserting A for x in equation (1), we get
โ€ข A735
= a0 + a1A (2)
โ€ข Inserting eigen values 3 and -3 for x successively in equation (1), we
get
โ€ข 3735
= a0 + 3a1
50
by shimelis Ayele
Cont.โ€ฆ
โ€ข โˆ’3 735
= a0 โˆ’ 3a1
โ€ข This gives a0 = 0, a1 = 3734
.
โ€ข Then A735
= a0 + a1A
โ€ข gives
โ€ข A735
= 3735
A.
51
by shimelis Ayele
1.6.Minimal polynomial
โ€ข Definition 1.6.1: The minimal polynomial of a matrix A, denoted by ๐‘š๐ด ๐œ†
is the unique monic polynomial of least degree such that ๐‘š๐ด ๐œ† = 0 .
โ€ข Theorem: a scalar ๐œ† is Eigen values of a matrix A if and only if is root of
minimal polynomial.
โ€ข proof(exercise)
โ€ข Example: find minimal polynomial ๐‘š๐ด ๐œ† of ๐ด =
2 2 โˆ’5
3 7 โˆ’15
1 2 โˆ’4
โ€ข Solution
โ€ข First find the characteristic polynomial of A.
52
by shimelis Ayele
Exercise 3
โ€ข Let ๐ด =
1 2 โˆ’1
0 1 โˆ’1
3 โˆ’1 1
, then
1. Verify Cayley-Hamilton theorem
2. Find ๐ดโˆ’1
and AdjA by using Cayley-Hamilton theorem.
53
by shimelis Ayele
Cont.
โ€ข
p ฮป = โˆ’ฮป3
+ 5ฮป2
โˆ’ 7ฮป + 3 = โˆ’ ฮป โˆ’ 1 2
ฮป โˆ’ 3 .
The minimal polynomial must divid๐‘’
characteristic polynomial.
Thus minimal polynomial is exactly one of the following
p ฮป = ฮป โˆ’ 3 ฮป โˆ’ 1 2
or g ฮป = ฮป โˆ’ 3 ฮป โˆ’ 1
g A = A โˆ’ I A โˆ’ 3I =
1 2 โˆ’5
3 6 โˆ’15
1 2 โˆ’5
โˆ’1 2 โˆ’5
3 4 โˆ’15
1 2 โˆ’7
=
0 0 0
0 0 0
0 0 0
54
by shimelis Ayele
Cont.
Thus ๐‘” ๐‘ก = (๐œ† โˆ’ 1)(๐œ† โˆ’ 3) = ๐œ†2
โˆ’ 4๐œ† + 3 is a minimal polynomial
of A
Exercise 3 : Find minimal polynomial m (ฮป ) of
i. ๐ด =
3 โˆ’2 2
4 โˆ’4 6
2 โˆ’3 5
i. ๐ต =
1 0 0 0
0 1 1 0
0
0
0
0
1 0
0 1
55
by shimelis Ayele

More Related Content

Similar to Note.pdf

Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vectorRutvij Patel
ย 
DOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdfDOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdfSatyabrataMandal7
ย 
Lecture_note2.pdf
Lecture_note2.pdfLecture_note2.pdf
Lecture_note2.pdfEssaAlMadhagi
ย 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectorsAmit Singh
ย 
Lecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdfLecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdfRupesh383474
ย 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvaluesAmanSaeed11
ย 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docxGetachew Mulaw
ย 
Eigenvalues - Contd
Eigenvalues - ContdEigenvalues - Contd
Eigenvalues - ContdPrasanth George
ย 
Eigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theoremEigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theoremgidc engineering college
ย 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationArijitDhali
ย 
Eigen value and vectors
Eigen value and vectorsEigen value and vectors
Eigen value and vectorsPraveen Prashant
ย 
Finite mathematics
Finite mathematicsFinite mathematics
Finite mathematicsIgor Rivin
ย 
Vector space introduction
Vector space introductionVector space introduction
Vector space introductionROHAN GAIKWAD
ย 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxAlokSingh205089
ย 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdfd00a7ece
ย 
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...Ceni Babaoglu, PhD
ย 
Matrices ppt
Matrices pptMatrices ppt
Matrices pptaakashray33
ย 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfPrathamPatel560716
ย 

Similar to Note.pdf (20)

Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
ย 
DOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdfDOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdf
ย 
Lecture_note2.pdf
Lecture_note2.pdfLecture_note2.pdf
Lecture_note2.pdf
ย 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
ย 
Lecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdfLecture-4 Reduction of Quadratic Form.pdf
Lecture-4 Reduction of Quadratic Form.pdf
ย 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
ย 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
ย 
Eigenvalues - Contd
Eigenvalues - ContdEigenvalues - Contd
Eigenvalues - Contd
ย 
Eigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theoremEigen value , eigen vectors, caley hamilton theorem
Eigen value , eigen vectors, caley hamilton theorem
ย 
Senior_Project
Senior_ProjectSenior_Project
Senior_Project
ย 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's Equation
ย 
Eigen value and vectors
Eigen value and vectorsEigen value and vectors
Eigen value and vectors
ย 
Finite mathematics
Finite mathematicsFinite mathematics
Finite mathematics
ย 
Vector space introduction
Vector space introductionVector space introduction
Vector space introduction
ย 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
ย 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
ย 
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
4. Linear Algebra for Machine Learning: Eigenvalues, Eigenvectors and Diagona...
ย 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
ย 
PROJECT
PROJECTPROJECT
PROJECT
ย 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
ย 

More from habtamu292245

Inclusiveness all in one.pdf
Inclusiveness all in one.pdfInclusiveness all in one.pdf
Inclusiveness all in one.pdfhabtamu292245
ย 
English II module.pdf
English II module.pdfEnglish II module.pdf
English II module.pdfhabtamu292245
ย 
Final submission (2).pdf
Final submission (2).pdfFinal submission (2).pdf
Final submission (2).pdfhabtamu292245
ย 
file_1622440466657.pdf
file_1622440466657.pdffile_1622440466657.pdf
file_1622440466657.pdfhabtamu292245
ย 
Module of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdfModule of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdfhabtamu292245
ย 
mikiyas research paper .pdf
mikiyas research paper .pdfmikiyas research paper .pdf
mikiyas research paper .pdfhabtamu292245
ย 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfhabtamu292245
ย 
Maths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdfMaths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdfhabtamu292245
ย 
Saayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdfSaayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdfhabtamu292245
ย 
Maths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdfMaths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdfhabtamu292245
ย 
maths derivative.pdf
maths derivative.pdfmaths derivative.pdf
maths derivative.pdfhabtamu292245
ย 
my_cv (4).pdf
my_cv (4).pdfmy_cv (4).pdf
my_cv (4).pdfhabtamu292245
ย 
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdfRonald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdfhabtamu292245
ย 
post partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdfpost partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdfhabtamu292245
ย 
Mesy Plant Dsgn.pdf
Mesy Plant Dsgn.pdfMesy Plant Dsgn.pdf
Mesy Plant Dsgn.pdfhabtamu292245
ย 
probability and statistics-4.pdf
probability and statistics-4.pdfprobability and statistics-4.pdf
probability and statistics-4.pdfhabtamu292245
ย 
post partal sepsis ppt.pdf
post partal sepsis ppt.pdfpost partal sepsis ppt.pdf
post partal sepsis ppt.pdfhabtamu292245
ย 
Postbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdfPostbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdfhabtamu292245
ย 
Recommedation.pdf
Recommedation.pdfRecommedation.pdf
Recommedation.pdfhabtamu292245
ย 
research thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdfresearch thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdfhabtamu292245
ย 

More from habtamu292245 (20)

Inclusiveness all in one.pdf
Inclusiveness all in one.pdfInclusiveness all in one.pdf
Inclusiveness all in one.pdf
ย 
English II module.pdf
English II module.pdfEnglish II module.pdf
English II module.pdf
ย 
Final submission (2).pdf
Final submission (2).pdfFinal submission (2).pdf
Final submission (2).pdf
ย 
file_1622440466657.pdf
file_1622440466657.pdffile_1622440466657.pdf
file_1622440466657.pdf
ย 
Module of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdfModule of Health Education(2)(1).pdf
Module of Health Education(2)(1).pdf
ย 
mikiyas research paper .pdf
mikiyas research paper .pdfmikiyas research paper .pdf
mikiyas research paper .pdf
ย 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
ย 
Maths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdfMaths teachers guide For freshman course.pdf
Maths teachers guide For freshman course.pdf
ย 
Saayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdfSaayinsii Naannoo Kutaa-3.pdf
Saayinsii Naannoo Kutaa-3.pdf
ย 
Maths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdfMaths_Final_Exam_AAU.pdf
Maths_Final_Exam_AAU.pdf
ย 
maths derivative.pdf
maths derivative.pdfmaths derivative.pdf
maths derivative.pdf
ย 
my_cv (4).pdf
my_cv (4).pdfmy_cv (4).pdf
my_cv (4).pdf
ย 
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdfRonald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
Ronald_E_Walpole,_Raymond_H_Myers,_Sharon_L_Myers,_Keying_E_Ye_Probability.pdf
ย 
post partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdfpost partal haemorrhage ppt.pdf
post partal haemorrhage ppt.pdf
ย 
Mesy Plant Dsgn.pdf
Mesy Plant Dsgn.pdfMesy Plant Dsgn.pdf
Mesy Plant Dsgn.pdf
ย 
probability and statistics-4.pdf
probability and statistics-4.pdfprobability and statistics-4.pdf
probability and statistics-4.pdf
ย 
post partal sepsis ppt.pdf
post partal sepsis ppt.pdfpost partal sepsis ppt.pdf
post partal sepsis ppt.pdf
ย 
Postbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdfPostbasic Midwifery hospital attachment placement.pdf
Postbasic Midwifery hospital attachment placement.pdf
ย 
Recommedation.pdf
Recommedation.pdfRecommedation.pdf
Recommedation.pdf
ย 
research thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdfresearch thesis summitted for final evaluation .pdf
research thesis summitted for final evaluation .pdf
ย 

Recently uploaded

Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
ย 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
ย 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsApsara Of India
ย 
VIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130 Available With Room
VIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130  Available With RoomVIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130  Available With Room
VIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130 Available With Roomdivyansh0kumar0
ย 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
ย 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
ย 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
ย 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Trucks in Minnesota
ย 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
ย 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
ย 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth MarketingShawn Pang
ย 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni
ย 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
ย 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Serviceankitnayak356677
ย 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
ย 
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service PuneVIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service PuneCall girls in Ahmedabad High profile
ย 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...lizamodels9
ย 
/:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc...
/:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc.../:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc...
/:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc...lizamodels9
ย 

Recently uploaded (20)

Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
ย 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
ย 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
ย 
VIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130 Available With Room
VIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130  Available With RoomVIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130  Available With Room
VIP Kolkata Call Girl Howrah ๐Ÿ‘‰ 8250192130 Available With Room
ย 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
ย 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
ย 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
ย 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
ย 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
ย 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
ย 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
ย 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.
ย 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
ย 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
ย 
Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
ย 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
ย 
KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)
ย 
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service PuneVIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
VIP Call Girls Pune Kirti 8617697112 Independent Escort Service Pune
ย 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar โค๏ธ8860477959 Escorts...
ย 
/:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc...
/:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc.../:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc...
/:Call Girls In Jaypee Siddharth - 5 Star Hotel New Delhi โžฅ9990211544 Top Esc...
ย 

Note.pdf

  • 1. LINEAR ALGEBRA II Chapter one Characteristic Equation 1 by shimelis Ayele
  • 2. 1.1. Eigen values and Eigen vectors 2 by shimelis Ayele
  • 3. Contโ€ฆ ๏ฑwe have ๐ด๐‘ฃ = 1 2 4 3 1 2 = 5 10 = 5 1 2 = ๐œ†๐‘ฃ so 5 is an eigenvalue of ๐ด and 1 2 is an eigenvector of ๐ด corresponding to the eigenvalue 5 ๏ฑDefinition1.1.2: Let ๐ด be an ๐‘› ร— ๐‘› matrix. The set of all eigenvalues of ๐ด is called the spectrum of ๐ด. ๏ฑTheorem 1.1.1: Let ๐ด be an ๐‘› ร— ๐‘› matrix. A Number ๐œ† is an Eigen value of ๐ด if and only if ๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = 0, where ๐ผ denotes the ๐‘› ร— ๐‘› identity matrix. 3 by shimelis Ayele
  • 4. Properties of Eigen Values i. The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal. ii. The product of the eigen values of a matrix A is equal to its determinant. iii. If ๐œ† is an eigen value of a matrix A, then ฮค 1 ๐œ† is the eigen value of A- 1 . iv. If ๐œ† is an eigen value of an orthogonal matrix, then ฮค 1 ๐œ†is also its eigen value. v. The eigen values of a triangular matrix are precisely the entries of diagonal entries. 4 by shimelis Ayele
  • 5. Contโ€ฆ vi. If ๐œ†1, ๐œ†2,โ€ฆ, ๐œ†๐‘› are the eigenvalues of A, then a. ๐‘˜๐œ†1,๐‘˜๐œ†2,โ€ฆ, ๐‘˜๐œ†๐‘› are the eigenvalues of the matrix kA, where k is a non โ€“ zero scalar. b. 1 ๐œ†1 , 1 ๐œ†2 โ€ฆ 1 ๐œ†๐‘› are the eigenvalues of the inverse matrix ๐ดโˆ’1 . c. ๐œ†1 ๐‘ , ๐œ†2 ๐‘ โ€ฆ๐œ†๐‘› ๐‘ are the eigenvalues of ๐ด๐‘ƒ , where ๐‘ is any positive integer. 5 by shimelis Ayele
  • 6. 1.2 Characteristic polynomial โ€ข Definition 1.2.1:Polynomial of degree ๐‘› in ๐‘ฅ is an expression of the form ๐‘Ž๐‘›๐‘ฅ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0, where ๐‘Ž0,๐‘Ž1,โ€ฆ๐‘Ž๐‘› โˆˆ ๐น ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘› โ‰  0 , ๐‘› ๐‘–๐‘  ๐‘›๐‘œ๐‘› ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ. โ€ข We can write ๐‘ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0, if we replace x every where by a given number ๐œ† and we obtain ๐‘ ๐œ† = ๐‘Ž๐‘›๐œ†๐‘› + ๐‘Ž๐‘›โˆ’1๐œ†๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1๐œ† + ๐‘Ž0 โ€ข Definition 1.2.2: Let ๐‘ ๐‘ฅ be a polynomial in x. A number ๐œ† is called a root of ๐‘ ๐‘ฅ if ๐‘ ๐œ† = 0. 6 by shimelis Ayele
  • 7. Cont.โ€ฆ โ€ข Definition 1.2.3: Let ๐ด = ๐‘Ž๐‘–๐‘— be an ๐‘› ร— ๐‘› matrix. Then the polynomial ๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = ๐‘‘๐‘’๐‘ก ๐‘Ž11 โˆ’ ๐œ† ๐‘Ž12 โ‹ฏ ๐‘Ž1๐‘› ๐‘Ž21 ๐‘Ž22 โˆ’ ๐œ† โ‹ฏ ๐‘Ž21 โ‹ฎ ๐‘Ž๐‘›1 โ‹ฎ ๐‘Ž๐‘›2 โ‹ฑ โ€ฆ โ‹ฎ ๐‘Ž๐‘›๐‘› โˆ’ ๐œ† is called the characteristic polynomial of ๐ด. โ€ข Denoted as ๐ถ๐ด ๐‘ฅ , the leading coefficient is โˆ’1 ๐‘› ๐‘Ž๐‘›๐‘‘ the constant term is ๐‘‘๐‘’๐‘ก๐ด. 7 by shimelis Ayele
  • 8. Contโ€ฆ โ€ข The equation ๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = 0 or equivalently ๐‘‘๐‘’๐‘ก ๐œ†๐ผ โˆ’ ๐ด = 0 is called characteristic equation of ๐ด. โ€ข Definition 1.2.4: If an eigenvalue ๐œ† occur k times as a root of the characteristic polynomial ๐ถ๐ด ๐‘ฅ , then k is called the multiplicity of the eigenvalue . โ€ข Example 1: Let ๐ด = 3 โˆ’1 โˆ’1 โˆ’12 0 5 4 โˆ’2 โˆ’1 then, 8 by shimelis Ayele
  • 9. Cont. i. Find characteristic polynomial and characteristic equation of A. ii. Eigenvalues and eigenvectors of A. iii. Eigen values of ๐ดโˆ’1 iv. Eigen values of ๐ด10 v. Eigen values of 10A. Solution: Characteristic polynomial is ๐‘‘๐‘’๐‘ก ๐ด โˆ’ ๐œ†๐ผ = 3 โˆ’1 โˆ’1 โˆ’12 0 5 4 โˆ’2 โˆ’1 โˆ’ ๐œ† 1 0 0 0 1 0 0 0 1 9 by shimelis Ayele
  • 10. Cont. = 3 โˆ’ ๐œ† โˆ’1 โˆ’1 โˆ’12 โˆ’๐œ† 5 4 โˆ’2 โˆ’1 โˆ’ ๐œ† = 3 โˆ’ ๐œ† ๐œ†2 + ๐œ† + 10 + 1 12๐œ† + 12 โˆ’ 20 โˆ’ 1 24 + 4๐œ† characteristic polynomial is โˆ’๐œ†3 + 2๐œ†2 + ๐œ† โˆ’ 2 and characteristic equation of A is โˆ’๐œ†3 + 2๐œ†2 + ๐œ† โˆ’ 2 = 0 ii. To find Eigenvalues of A we have to find root of โˆ’๐œ†3 + 2๐œ†2 + ๐œ† โˆ’ 2 = 0 โŸน โˆ’ ๐œ† + 1 ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 = 0 ๐œ†= -1 or ๐œ†= 1 or ๐œ†=2 10 by shimelis Ayele
  • 11. Cont. ๏ฑSo the eigenvalues are -1,1 and 2 . ๏ฑTo find eigenvector corresponding to eigenvalues ๏ฑwrite ๐ด๐‘ฃ = ๐œ†๐‘ฃ โŸน ๐ด โˆ’ ๐œ†๐ผ ๐‘ฃ = 0 that is โŸน 3 โˆ’ ๐œ† โˆ’1 โˆ’1 โˆ’12 โˆ’๐œ† 5 4 โˆ’2 โˆ’1 โˆ’ ๐œ† ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = 0 0 0 Then we can solve for ๐‘ฅ1, ๐‘ฅ2 and ๐‘ฅ3 by appropriate method. Let ๐œ†= -1 ,then we have 11 by shimelis Ayele
  • 12. Cont. 4 โˆ’1 โˆ’1 โˆ’12 1 5 4 โˆ’2 0 ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = 0 0 0 Solve by using Gaussian elimination . Since the constant matrix is zero matrix, reduce the coefficient matrix to row echelon form 4 โˆ’1 โˆ’1 โˆ’12 1 5 4 โˆ’2 0 ๐‘…2+3๐‘…1 ๐‘…3โˆ’๐‘…1 4 โˆ’1 โˆ’1 0 โˆ’2 2 0 โˆ’1 1 ๐‘…3โˆ’ เต— 1 2 ๐‘…2 4 โˆ’1 โˆ’1 0 โˆ’2 2 0 0 0 . 12 by shimelis Ayele
  • 13. Cont. 4 โˆ’1 โˆ’1 0 โˆ’2 2 0 0 0 ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = 0 0 0 Thus the linear system becomes 4๐‘ฅ1 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ3 = 0 โˆ’2๐‘ฅ2 + 2๐‘ฅ3 = 0 โ‡’ ๐‘ฅ2 = ๐‘ฅ3,๐‘ฅ1 = 1 2 ๐‘ฅ3 ๏ฑ Let ๐‘ฅ3 = ๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐‘ฅ2 = ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ฅ1 = ฮค 1 2 ๐‘ก where t is arbitrary 13 by shimelis Ayele
  • 14. Cont. Thus v = ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 ฮค 1 2 ๐‘ก ๐‘ก ๐‘ก = ๐‘ก ฮค 1 2 1 1 So ฮค 1 2 1 1 is eigenvector corresponding to eigenvalue ๐œ† = -1 ๏ฑSimilarly, we obtain 3 โˆ’1 7 as an eigenvector corresponding to eigenvalue ๐œ†=1and 1 โˆ’1 2 as an eigenvector corresponding to eigenvalue 2. 14 by shimelis Ayele
  • 15. Cont. iii. Eigen values of ๐ดโˆ’1 . 1, -1 and 1 2 are eigenvalues of ๐ดโˆ’1 by the property of eigenvalue. iv. Eigen values of ๐ด10 are -1 , 1 and 210 v. Eigen values of 10A are -10,10 and 20 Example 2: Let ๐ด = 0 0 โˆ’2 1 2 1 1 0 3 Solution: โ€ข The characteristic equation of matrix A is ๐œ†3 โˆ’5๐œ†2 + 8๐œ† โˆ’ 4 = 0, or, in factored form ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 2 = 0 15 by shimelis Ayele
  • 16. Cont. โ€ข Thus the eigenvalues of A are ๐œ† = 1and ๐œ†2,3 = 2, so there are two eigenvalues of A. v = ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 ,is an eigenvector of A corresponding to ๐œ† if and only v is a nontrivial solution of ๐ด โˆ’ ๐œ†๐ผ ๐‘ฃ = 0 that is, of the form โˆ’๐œ† 0 โˆ’2 1 2 โˆ’ ๐œ† 1 1 0 3 โˆ’ ๐œ† ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = 0 0 0 16 by shimelis Ayele
  • 17. cont. โ€ข If ๐œ† = 1, then โˆ’1 0 โˆ’2 1 1 1 1 0 2 ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = 0 0 0 ๏ฑSolving this system using Gaussian elimination yields ๐‘ฅ1 = โˆ’ 2๐‘ , ๐‘ฅ2 = ๐‘  , ๐‘ฅ3 = ๐‘  (verify) ๏ฑThus the eigenvectors corresponding to ๐œ† = 1are the nonzero vectors of the form โˆ’2๐‘  ๐‘  ๐‘  = ๐‘  โˆ’2 1 1 so that โˆ’2 1 1 is the Eigen vector corresponding to eigenvalue 1 17 by shimelis Ayele
  • 18. Cont. โ€ข If ๐œ† = 2, then it becomes โˆ’2 0 โˆ’2 1 0 1 1 0 1 ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = 0 0 0 โ€ข Solving this system using Gaussian elimination yields ๐‘ฅ1 = โˆ’๐‘ , ๐‘ฅ2 = ๐‘ก , ๐‘ฅ3 = ๐‘ (verify) โ€ข Thus, the eigenvectors of A corresponding to ๐œ† = 2 are the nonzero vectors of the form ๏ฑThus, the eigenvectors of A corresponding to ๐œ† = 2are the nonzero vectors of the form ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3 = โˆ’๐‘  ๐‘ก ๐‘  = ๐‘  โˆ’1 0 1 + ๐‘ก 0 1 0 18 by shimelis Ayele
  • 19. Contโ€ฆ ๏ฑSince โˆ’1 0 1 and 0 1 0 are linearly independent,these vectors form a basis for the Eigen space corresponding to ๐œ† = 2. ๏ฑSo the Eigen vectors of A corresponding Eigen values 1and 2 are โˆ’2 1 1 , โˆ’1 0 1 and 0 1 0 Exercise 1: 1. Find eigenvalues and eigenvectors of A = 1 1 2 3 4 0 1 1 2 1 0 0 0 0 0 0 2 0 0 1 3 0 1 1 4 19 by shimelis Ayele
  • 20. Cont. 2. Let A= 3 โˆ’2 2 4 โˆ’4 6 2 โˆ’3 5 ,then find a. Find characteristic polynomial and characteristic equation of A. b. Eigenvalues and eigenvectors of A. c. Eigen values of ๐ดโˆ’1 d. Eigen values of ๐ด11 e. Eigen values of 30 โˆ’20 20 40 โˆ’40 60 20 โˆ’30 50 . 20 by shimelis Ayele
  • 21. 1.3.Similarity of matrix ๏ฑDefinition1.3.1: If A and B are n xn matrices, then A is similar to B if there is an invertible matrix P such that P-1AP = B, or, equivalently A = PBP-1 ๏ฑChanging A into B is called a similarity transformation. ๏ฑTheorem 1.3.1: If nxn matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities). ๏ฑProof: ๏ฑSuppose A and B are similar matrices of order n. 21 by shimelis Ayele
  • 22. Cont. ๏ฑThe characteristic polynomial of B is given by det B โˆ’ ฮปI = det Pโˆ’1AP โˆ’ ฮปI = det pโˆ’1 ๐ด โˆ’ ฮปI p = det(pโˆ’1 )det A โˆ’ ฮปI det(p ) = det(pโˆ’1 p) det A โˆ’ ฮปI = det A โˆ’ ฮปI ๏ฑDefinition 1.3.2: The set of distinct eigenvalues, denoted by ฯƒ(A) , is called the spectrum of A. ๏ฑDefinition 1.3.3:For square matrices A , the number ฯ(A) = max ๐œ† , ฮปโˆˆ ฯƒ(A)is called the spectral radius of A. 22 by shimelis Ayele
  • 23. 1.4. Diagonalization โ€ข Definition1.4.1: A square matrix A is called diagonalizable if there exist an invertible matrix P such that ๐‘ƒโˆ’1 ๐ด๐‘ƒ is a diagonal matrix; the matrix P is said to diagonalize A. ๏ฑTHEOREM 1.4.1 : If ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘˜ are Eigen vectors of A corresponding to distinct eigenvalues ,ฮป1, ฮป2 , โ€ฆ,ฮปk then {P1 , P2, โ€ฆ, Pk } is a linearly independent set. โ€ข Proof ๏ฑ Let , ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘˜ be eigenvectors of A corresponding to distinct eigenvalues ๐œ†1, ๐œ†2 , โ€ฆ,๐œ†๐‘˜ . 23 by shimelis Ayele
  • 24. Cont. โ€ข We shall assume that, ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘˜ are linearly dependent and obtain a contradiction. We can then conclude that , P1 , P2, โ€ฆ, Pk are linearly independent. โ€ข Since an eigenvector is nonzero by definition, p1 is linearly independent. Let r be the largest integer such that P1 , P2, โ€ฆ, Pr is linearly independent. Since we are assuming that P1 , P2, โ€ฆ, Pk is linearly dependent, r satisfies 1 โ‰ค r โ‰ค k . ๏ฑMore over, by definition of r, P1 , P2, โ€ฆ, Pr+1 is linearly dependent. 24 by shimelis Ayele
  • 25. Cont. ๏ฑThus there are scalars c1 , c2, โ€ฆ, cr+1 , not all zero, such that P1c1 + P2c2+ โ€ฆ, Pr+1cr+1 = 0 (4) Multiplying both sides of 4 by A and using AP1=ฮป1p1, AP2 = ฮป2P2 โ€ฆ , APn = ฮปr+1Pr+1 ๏ฑwe obtain c1ฮป1p1 + c2ฮป2p2 + โ€ฆ + cr+1ฮปr+1pr+1 = 0 โ€ฆ (5) ๏ฑMultiplying both sides of 4 by ฮปr+1 and subtracting the resulting equation from 5 yields ๏ฑc1(ฮป1โˆ’ฮปr+1)p1 + c2(ฮป2โˆ’ฮปr+1)p2 + โ€ฆ + cr(ฮปr โˆ’ ฮปr+1)pr = 0 25 by shimelis Ayele
  • 26. Cont. โ€ข Since P1 , P2, โ€ฆ, Pr is a linearly independent set, this equation implies that c1(ฮป1โˆ’ฮปr+1) + c2(ฮป2โˆ’ฮปr+1) + โ€ฆ + cr(ฮปr โˆ’ ฮปr+1) = 0and since , ฮป1, ฮป2 , โ€ฆ, ฮปr are distinct by hypothesis, it follows that โ€ข c1 = c2=โ€ฆ= cr= 0 (6) Substituting these values in 4 yields โ€ข Pr+1cn+1 = 0 (7) ๏ฑSince the eigenvector Pr+1 is nonzero, it follows that cr+1 = 0 ๏ฑEquations 6 and 7 contradict the fact that c1 , c2, โ€ฆ, cr+1 are not all zero; this completes the proof 26 by shimelis Ayele
  • 27. Cont. ๏ฑTheorem 1.4.2: If A is an n ร— n matrix, then the following are equivalent. ๏ƒผa. A is diagonalizable. ๏ƒผb. A has n linearly independent eigenvectors. โ€ข Proof ๏ฑ๐‘Ž โ‡’ ๐‘ Since A is assumed diagonalizable, there is an invertible matrix ๐‘11 ๐‘12 โ‹ฏ ๐‘1๐‘› ๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘› โ‹ฎ ๐‘๐‘›1 โ‹ฎ ๐‘๐‘›2 โ€ฆ โ€ฆ โ‹ฎ ๐‘๐‘›๐‘› such that ๐‘ƒโˆ’1 ๐ด๐‘ƒ is diagonal, say ๐‘ƒโˆ’1 ๐ด๐‘ƒ = ๐ท , 27 by shimelis Ayele
  • 28. Cont. where D = ๐œ†1 0 โ‹ฏ 0 0 ๐œ†2 โ€ฆ 0 โ‹ฎ 0 โ‹ฎ 0 โ€ฆ โ€ฆ โ‹ฎ ๐œ†๐‘› ๏ฑIt follows from the formula ๐‘ƒโˆ’1 ๐ด๐‘ƒ = ๐ท that ๐ด๐‘ƒ = ๐‘ƒ๐ท ; that is , ๏ฑAP = ๐‘11 ๐‘12 โ‹ฏ ๐‘1๐‘› ๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘› โ‹ฎ ๐‘๐‘›1 โ‹ฎ ๐‘๐‘›2 โ€ฆ โ€ฆ โ‹ฎ ๐‘๐‘›๐‘› ๐œ†1 0 โ‹ฏ 0 0 ๐œ†2 โ€ฆ 0 โ‹ฎ 0 โ‹ฎ 0 โ€ฆ โ€ฆ โ‹ฎ ๐œ†๐‘› 28 by shimelis Ayele
  • 29. Cont. = ๐œ†1๐‘11 ๐œ†2๐‘12 โ‹ฏ ๐œ†๐‘›๐‘1๐‘› ๐œ†1๐‘21 ๐œ†2๐‘22 โ€ฆ ๐œ†๐‘›๐‘2๐‘› โ‹ฎ ๐œ†1๐‘๐‘›1 โ‹ฎ ๐œ†2๐‘๐‘›2 โ€ฆ โ€ฆ โ‹ฎ ๐œ†๐‘›๐‘๐‘›๐‘› 1 ๏ฑIf we denote the column vectors of P,๐‘๐‘ฆ ๐‘ƒ1,๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘›, then from 1, the successive columns of PD are ๐œ†1๐‘ƒ1 , ๐œ†2๐‘ƒ2, โ€ฆ, ๐œ†๐‘›๐‘ƒ๐‘› . ๏ฑThe successive columns of AP are ๐ด๐‘ƒ1 , ๐ด๐‘ƒ2, โ€ฆ, ๐ด๐‘ƒ๐‘› . ๏ฑThus we must have ๐ด๐‘ƒ1 = ๐œ†1๐‘1, ๐ด๐‘ƒ2 = ๐œ†2๐‘ƒ2 โ€ฆ , ๐ด๐‘ƒ๐‘› = ๐œ†๐‘›๐‘ƒ๐‘› 2 29 by shimelis Ayele
  • 30. Cont.โ€ฆ โ€ข Since P is invertible, its column vectors are all nonzero; thus, it follows from 2 that ๐œ†1,๐œ†2 , โ€ฆ,๐œ†๐‘› are eigenvalues of A, and ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘› are corresponding eigenvectors. Since P is invertible, ๐‘ƒ1, ๐‘ƒ2 , โ€ฆ,๐‘ƒ๐‘› are linearly independent. ๏ฑ Thus A has n linearly independent eigenvectors. ๏ฑ๐‘ โ‡’ ๐‘Ž Assume that A has n linearly independent eigenvectors ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘› with corresponding eigenvalues , ๐œ†1, ๐œ†2 , โ€ฆ,๐œ†๐‘› 30 by shimelis Ayele
  • 31. Cont.โ€ฆ โ€ข Let P = ๐‘11 ๐‘12 โ‹ฏ ๐‘1๐‘› ๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘› โ‹ฎ ๐‘๐‘›1 โ‹ฎ ๐‘๐‘›2 โ€ฆ โ€ฆ โ‹ฎ ๐‘๐‘›๐‘› be the matrix whose column vectors are ๐‘ƒ1 , ๐‘ƒ2, โ€ฆ, ๐‘ƒ๐‘› โ€ข The column vectors of the product AP are ๐ด๐‘ƒ1 , ๐ด๐‘ƒ2, โ€ฆ, ๐ด๐‘ƒ๐‘› ๏ฑBut ,๐ด๐‘ƒ1 = ๐œ†1๐‘1, ๐ด๐‘ƒ2 = ๐œ†2๐‘ƒ2 โ€ฆ , ๐ด๐‘ƒ๐‘› = ๐œ†๐‘›๐‘ƒ๐‘› Why? 31 by shimelis Ayele
  • 32. Cont. AP = ๐œ†1๐‘11 ๐œ†2๐‘12 โ‹ฏ ๐œ†๐‘›๐‘1๐‘› ๐œ†1๐‘21 ๐œ†2๐‘22 โ€ฆ ๐œ†2๐‘2๐‘› โ‹ฎ ๐œ†1๐‘๐‘›1 โ‹ฎ ๐œ†2๐‘๐‘›2 โ€ฆ โ€ฆ โ‹ฎ ๐œ†2๐‘๐‘›๐‘› = ๐‘11 ๐‘12 โ‹ฏ ๐‘1๐‘› ๐‘21 ๐‘22 โ€ฆ ๐‘2๐‘› โ‹ฎ ๐‘๐‘›1 โ‹ฎ ๐‘๐‘›2 โ€ฆ โ€ฆ โ‹ฎ ๐‘๐‘›๐‘› ๐œ†1 0 โ‹ฏ 0 0 ๐œ†2 โ€ฆ 0 โ‹ฎ 0 โ‹ฎ 0 โ€ฆ โ€ฆ โ‹ฎ ๐œ†๐‘› = ๐‘ƒ๐ท 3 32 by shimelis Ayele
  • 33. Cont. โ€ข Where D is the diagonal matrix having the eigenvalues, ๐œ†1, ๐œ†2 , โ€ฆ,๐œ†๐‘› on the main diagonal. โ€ข Since the column vectors of P are linearly independent, P is invertible. Thus 3 can be rewritten as ๐‘ƒโˆ’1 ๐ด๐‘ƒ = ๐ท ; that is, A is diagonalizable โ€ข THEOREM 1.4.3: If an n ร— n matrix A has n distinct eigenvalues,ฮป1, ฮป2 , โ€ฆ,ฮปn then A is diagonalizable โ€ข Proof: If P1 , P2, โ€ฆ, Pn are eigenvectors corresponding to the distinct eigenvalues ,ฮป1, ฮป2 , โ€ฆ,ฮปn then by Theorem , P1 , P2, โ€ฆ, Pnare linearly independent. โ€ข Thus A is diagonalizable by Theorem . 33 by shimelis Ayele
  • 34. Procedure to diagonalize a matrix ๏ƒผ Find the linearly independent eigenvectors ๏ƒผ Construct P from eigenvectors ๏ƒผ Construct ๐ท = ๐‘ƒโˆ’1 ๐ด๐‘ƒ from eigenvalues โ€ข Example 1: Finding a Matrix P that diagonalize a matrix A A = 0 0 โˆ’2 1 2 1 1 0 3 โ€ข Solution โ€ข The characteristic equation of A is ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 2 = 0 and we found the following bases for the Eigen spaces: 34 by shimelis Ayele
  • 35. Cont. โ€ข ๐œ† = 2: ๐‘1 = โˆ’1 0 1 , ๐‘2 = 0 1 0 and ๐œ† = 1: ๐‘3 = โˆ’2 1 1 โ€ข There are three basis vectors in total, so the matrix A is diagonalizable and P = โˆ’1 0 โˆ’2 0 1 1 1 0 1 diagonalize A. 35 by shimelis Ayele
  • 36. Cont. Verify that ๐‘ƒโˆ’1 ๐ด๐‘ƒ = 1 0 2 1 1 1 โˆ’1 0 โˆ’1 0 0 โˆ’2 1 2 1 1 0 3 1 0 2 1 1 1 โˆ’1 0 โˆ’1 = 2 0 0 0 2 1 0 0 1 โ€ข EXAMPLE 2: โ€ข Find a matrix P that diagonalizable ๐ด = 1 0 0 1 2 0 โˆ’3 5 2 36 by shimelis Ayele
  • 37. Cont. Solution โ€ข The characteristic polynomial of A is ๏ฑ det ๐ด โˆ’ ๐œ†๐ผ = 1 โˆ’ ๐œ† 0 0 1 2 โˆ’ ๐œ† 0 โˆ’3 5 2 โˆ’ ๐œ† = ๐œ† โˆ’ 1 ๐œ† โˆ’ 2 2 ๏ฑThus the eigenvalues of A are ๐œ†1 = 1 and ๐œ†2,3= 2 . 37 by shimelis Ayele
  • 38. Cont. โ€ข Verify that eigenvalues are corresponding to ๐œ†1 = 1 ๐‘–๐‘  ๐‘1 = โˆ’1 1 โˆ’8 and corresponding to ๐œ†2,3 = 2 ๐‘–๐‘  ๐‘2 = 0 0 1 โ€ข Since A is a 3 ร— 3 matrix and there are only two basis vectors in total, A is not diagonalizable by theorem. 38 by shimelis Ayele
  • 39. 1.5.Cayley-Hamilton Theorem ๏ฑTheorem: If CA x is characteristic polynomial of A, then CA x = 0 โ€ข Let A = a11 a12 โ€ฆ a1n a21 a22 โ€ฆ a2n โ‹ฎ an1 โ‹ฎ an2 โ‹ฑ โ‹ฎ โ€ฆ ann then characteristic polynomial of A CA x = det A โˆ’ ฮปI = det a11 โˆ’ ฮป a12 โ€ฆ a1n a21 a22 โˆ’ ฮป โ€ฆ a2n โ‹ฎ an1 โ‹ฎ an2 โ‹ฑ โ‹ฎ โ€ฆ ann โˆ’ ฮป 39 by shimelis Ayele
  • 40. Cont. ๏ฑThe characteristic equation is given by CA x = xn + anโˆ’1xnโˆ’1 + anโˆ’2xnโˆ’2 + โ‹ฏ + a1x1 + a0 = 0 โ€ข CA x = An + anโˆ’1Anโˆ’1 + anโˆ’2Anโˆ’2 + โ‹ฏ + a1A1 + Ia0 = 0 โ€ข Theorem: Let A be a non singular n ร— n matrix, and let its characteristic polynomial be CA x = An + anโˆ’1Anโˆ’1 + anโˆ’2Anโˆ’2 + โ‹ฏ + a1A1 + Ia0 = 0,then Aโˆ’1 = โˆ’ 1 a0 (Anโˆ’1 + anโˆ’1Anโˆ’2 + โ‹ฏ + Ia1) โ€ข Proof : โ€ข By Cayley-Hamilton theorem An + anโˆ’1Anโˆ’1 + anโˆ’2Anโˆ’2 + โ‹ฏ + a1A1 + Ia0 = 0 40 by shimelis Ayele
  • 41. Cont. โ€ข a0 = โˆ’1 n detA โ‰  0, Since A is non singular . โ€ข So the above equation can be written as I = โˆ’ 1 a0 (An + anโˆ’1Anโˆ’1 + anโˆ’2Anโˆ’2 + โ‹ฏ + a1A1 = โˆ’ 1 a0 (Anโˆ’1 + anโˆ’1Anโˆ’2 + โ‹ฏ + Ia1)A ๏ฑAโˆ’1 = โˆ’ 1 a0 (Anโˆ’1 + anโˆ’1Anโˆ’2 + โ‹ฏ + Ia1) 41 by shimelis Ayele
  • 42. Cont.โ€ฆ Example 1:๐ฟ๐‘’๐‘ก A = 2 โˆ’1 1 โˆ’1 2 โˆ’1 1 โˆ’1 2 Verify Cayley -Hamilton theorem and compute Aโˆ’1 โ€ข Solution โ€ข The characteristic equation of A is ๐ด โˆ’ ๐œ†๐ผ = 0 โ€ข 2 โˆ’ ฮป โˆ’1 1 โˆ’1 2 โˆ’ ฮป โˆ’1 1 โˆ’1 2 โˆ’ ฮป = 0 โ‡’ โˆ’(ฮป3 โˆ’ 6ฮป2 + 9ฮป โˆ’ 4) = 0 42 by shimelis Ayele
  • 43. Cont. ๏ฑTo verify Cayley โ€“ Hamilton theorem, we have to show that A3 โˆ’ 6A2 + 9A โˆ’ 4I = 0 ๏ฑA2 = 2 โˆ’1 1 โˆ’1 2 โˆ’1 1 โˆ’1 2 2 โˆ’1 1 โˆ’1 2 โˆ’1 1 โˆ’1 2 = 6 โˆ’5 5 โˆ’5 6 โˆ’5 5 โˆ’5 6 โ€ข A3 = A2 A = 6 โˆ’5 5 โˆ’5 6 โˆ’5 5 โˆ’5 6 2 โˆ’1 1 โˆ’1 2 โˆ’1 1 โˆ’1 2 = 22 โˆ’21 21 โˆ’21 22 โˆ’21 22 โˆ’21 22 43 by shimelis Ayele
  • 44. Cont. โ€ข Therefore A3 โˆ’ 6A2 + 9A โˆ’ 4I ๏ƒผ= 22 โˆ’21 21 โˆ’21 22 โˆ’21 22 โˆ’21 22 โˆ’ 6 6 โˆ’5 5 โˆ’5 6 โˆ’5 5 โˆ’5 6 + 9 2 โˆ’1 1 โˆ’1 2 โˆ’1 1 โˆ’1 2 โˆ’ 4 1 0 0 0 1 0 0 0 1 = 0 0 0 0 0 0 0 0 0 โ€ข Now multiplying both side of (1 ) by Aโˆ’1 yields โ€ข A2 โˆ’ 6A1 + 9I โˆ’ 4Aโˆ’1 = 0 โ€ข 4Aโˆ’1 = (A2 โˆ’ 6A1 + 9I) 44 by shimelis Ayele
  • 45. Cont. 4๐ดโˆ’1 = 6 โˆ’5 5 โˆ’5 6 โˆ’5 5 โˆ’5 6 โˆ’ 6 2 โˆ’1 1 โˆ’1 2 โˆ’1 1 โˆ’1 2 + 9 1 0 0 0 1 0 0 0 1 = 3 1 โˆ’1 1 3 1 โˆ’1 1 3 โŸน ๐ดโˆ’1 = 1 4 3 1 โˆ’1 1 3 1 โˆ’1 1 3 45 by shimelis Ayele
  • 46. Cont. โ€ข Example 2: given A = 1 2 โˆ’1 0 1 โˆ’1 3 โˆ’1 1 find AdjA by using Cayley- Hamilton theorem. โ€ข Solution โ€ข The characteristic equation of a matrix A is โ€ข ๐ด โˆ’ ๐œ†๐ผ = 0 i.e., 1 โˆ’ ๐œ† 2 โˆ’1 0 1 โˆ’ ๐œ† โˆ’1 3 โˆ’1 1 โˆ’ ๐œ† = 0 โ€ข โŸน ๐œ†3 โˆ’ 3๐œ†2 + 5๐œ† + 3 = 0 โ€ข by Cayley-Hamilton theorem ๐ด3 โˆ’ 3๐ด2 + 5๐ด + 3๐ผ = 0 โ€ข Multiply both side by ๐ดโˆ’1 ,we get ๐ด2 โˆ’ 3๐ด + 5๐ผ + 3๐ดโˆ’1 = 0 46 by shimelis Ayele
  • 47. Cont. โ€ข ๐ดโˆ’1 = โˆ’ 1 3 ๐ด2 โˆ’ 3๐ด + 5๐ผ โ€ข = โˆ’ 1 3 โˆ’2 5 โˆ’4 โˆ’3 2 โˆ’2 6 4 โˆ’1 โˆ’ 3 6 โˆ’3 0 3 โˆ’3 9 โˆ’3 3 + 5 0 0 0 5 0 0 0 5 โ€ข ๐ดโˆ’1 = 0 1 3 1 3 1 โˆ’4 3 โˆ’ 1 3 1 โˆ’ 7 3 โˆ’ 1 3 47 by shimelis Ayele
  • 48. Cont. โ€ข We know that , ๐ดโˆ’1 = ๐‘Ž๐‘‘๐‘—๐ด ๐ด โ€ข Therefore ๐‘Ž๐‘‘๐‘—๐ด = ๐ด ๐ดโˆ’1 = โˆ’3 0 1 3 1 3 1 โˆ’4 3 โˆ’ 1 3 1 โˆ’ 7 3 โˆ’ 1 3 = 0 โˆ’1 โˆ’1 1 4 1 1 7 1 48 by shimelis Ayele
  • 49. Cont. โ€ข Another application of Cayley-Hamilton theorem is to compute power of square matrix ๐ด โ€ข Example: Let A = 2 5 1 โˆ’2 and then find A735 โ€ข Solution โ€ข The characteristic polynomial of A is x2 โˆ’ 9. Eigen values are -3,3 . โ€ข Division algorithm applied to the polynomial x735 , x2 โˆ’ 9 will give equation of the form x735 = (x2 โˆ’ 9)q x + a0 + a1x , (1) Where a0 + a1x is remainder obtained by dividing x735 by x2 โˆ’ 9. 49 by shimelis Ayele
  • 50. Cont. โ€ข Note that the degree of remainder is less than the degree of the divisor x2 โˆ’ 9. โ€ข By Cayley-Hamilton theorem A2 โˆ’ 9I = 0 . โ€ข Inserting A for x in equation (1), we get โ€ข A735 = a0 + a1A (2) โ€ข Inserting eigen values 3 and -3 for x successively in equation (1), we get โ€ข 3735 = a0 + 3a1 50 by shimelis Ayele
  • 51. Cont.โ€ฆ โ€ข โˆ’3 735 = a0 โˆ’ 3a1 โ€ข This gives a0 = 0, a1 = 3734 . โ€ข Then A735 = a0 + a1A โ€ข gives โ€ข A735 = 3735 A. 51 by shimelis Ayele
  • 52. 1.6.Minimal polynomial โ€ข Definition 1.6.1: The minimal polynomial of a matrix A, denoted by ๐‘š๐ด ๐œ† is the unique monic polynomial of least degree such that ๐‘š๐ด ๐œ† = 0 . โ€ข Theorem: a scalar ๐œ† is Eigen values of a matrix A if and only if is root of minimal polynomial. โ€ข proof(exercise) โ€ข Example: find minimal polynomial ๐‘š๐ด ๐œ† of ๐ด = 2 2 โˆ’5 3 7 โˆ’15 1 2 โˆ’4 โ€ข Solution โ€ข First find the characteristic polynomial of A. 52 by shimelis Ayele
  • 53. Exercise 3 โ€ข Let ๐ด = 1 2 โˆ’1 0 1 โˆ’1 3 โˆ’1 1 , then 1. Verify Cayley-Hamilton theorem 2. Find ๐ดโˆ’1 and AdjA by using Cayley-Hamilton theorem. 53 by shimelis Ayele
  • 54. Cont. โ€ข p ฮป = โˆ’ฮป3 + 5ฮป2 โˆ’ 7ฮป + 3 = โˆ’ ฮป โˆ’ 1 2 ฮป โˆ’ 3 . The minimal polynomial must divid๐‘’ characteristic polynomial. Thus minimal polynomial is exactly one of the following p ฮป = ฮป โˆ’ 3 ฮป โˆ’ 1 2 or g ฮป = ฮป โˆ’ 3 ฮป โˆ’ 1 g A = A โˆ’ I A โˆ’ 3I = 1 2 โˆ’5 3 6 โˆ’15 1 2 โˆ’5 โˆ’1 2 โˆ’5 3 4 โˆ’15 1 2 โˆ’7 = 0 0 0 0 0 0 0 0 0 54 by shimelis Ayele
  • 55. Cont. Thus ๐‘” ๐‘ก = (๐œ† โˆ’ 1)(๐œ† โˆ’ 3) = ๐œ†2 โˆ’ 4๐œ† + 3 is a minimal polynomial of A Exercise 3 : Find minimal polynomial m (ฮป ) of i. ๐ด = 3 โˆ’2 2 4 โˆ’4 6 2 โˆ’3 5 i. ๐ต = 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 55 by shimelis Ayele