SlideShare a Scribd company logo
1 of 26
3.1
Chapter 3
Data and Signals
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
3.2
3-3 DIGITAL SIGNALS
In addition to being represented by an analog signal,
information can also be represented by a digital signal.
For example, a 1 can be encoded as a positive voltage
and a 0 as zero voltage. A digital signal can have more
than two levels. In this case, we can send more than 1 bit
for each level.
 Bit Rate
 Bit Length
 Digital Signal as a Composite Analog Signal
 Application Layer
Topics discussed in this section:
3.3
Figure 3.16 Two digital signals: one with two signal levels and the other
with four signal levels
3.4
A digital signal has eight levels. How many bits are
needed per level? We calculate the number of bits from
the formula
Example 3.16
Each signal level is represented by 3 bits.
3.5
A digital signal has nine levels. How many bits are
needed per level? We calculate the number of bits by
using the formula. Each signal level is represented by
3.17 bits. However, this answer is not realistic. The
number of bits sent per level needs to be an integer as
well as a power of 2. For this example, 4 bits can
represent one level.
Example 3.17
3.6
Assume we need to download text documents at the rate
of 100 pages per sec. What is the required bit rate of the
channel?
Solution
A page is an average of 24 lines with 80 characters in
each line. If we assume that one character requires 8
bits (ascii), the bit rate is
Example 3.18
3.7
A digitized voice channel, as we will see in Chapter 4, is
made by digitizing a 4-kHz bandwidth analog voice
signal. We need to sample the signal at twice the highest
frequency (two samples per hertz). We assume that each
sample requires 8 bits. What is the required bit rate?
Solution
The bit rate can be calculated as
Example 3.19
3.8
What is the bit rate for high-definition TV (HDTV)?
Solution
HDTV uses digital signals to broadcast high quality
video signals. The HDTV screen is normally a ratio of
16 : 9. There are 1920 by 1080 pixels per screen, and the
screen is renewed 30 times per second. Twenty-four bits
represents one color pixel.
Example 3.20
The TV stations reduce this rate to 20 to 40 Mbps
through compression.
3.9
Figure 3.17 The time and frequency domains of periodic and nonperiodic
digital signals
3.10
Figure 3.18 Baseband transmission
3.11
A digital signal is a composite analog
signal with an infinite bandwidth.
Note
3.12
Figure 3.19 Bandwidths of two low-pass channels
3.13
Figure 3.20 Baseband transmission using a dedicated medium
3.14
Baseband transmission of a digital
signal that preserves the shape of the
digital signal is possible only if we have
a low-pass channel with an infinite or
very wide bandwidth.
Note
3.15
An example of a dedicated channel where the entire
bandwidth of the medium is used as one single channel
is a LAN. Almost every wired LAN today uses a
dedicated channel for two stations communicating with
each other. In a bus topology LAN with multipoint
connections, only two stations can communicate with
each other at each moment in time (timesharing); the
other stations need to refrain from sending data. In a
star topology LAN, the entire channel between each
station and the hub is used for communication between
these two entities.
Example 3.21
3.16
Figure 3.21 Rough approximation of a digital signal using the first harmonic
for worst case
3.17
Figure 3.22 Simulating a digital signal with first three harmonics
3.18
In baseband transmission, the required bandwidth is
proportional to the bit rate;
if we need to send bits faster, we need more bandwidth.
Note
In baseband transmission, the required
bandwidth is proportional to the bit rate;
if we need to send bits faster, we need
more bandwidth.
3.19
Table 3.2 Bandwidth requirements
3.20
What is the required bandwidth of a low-pass channel if
we need to send 1 Mbps by using baseband transmission?
Solution
The answer depends on the accuracy desired.
a. The minimum bandwidth, is B = bit rate /2, or 500 kHz.
b. A better solution is to use the first and the third
harmonics with B = 3 × 500 kHz = 1.5 MHz.
c. Still a better solution is to use the first, third, and fifth
harmonics with B = 5 × 500 kHz = 2.5 MHz.
Example 3.22
3.21
We have a low-pass channel with bandwidth 100 kHz.
What is the maximum bit rate of this
channel?
Solution
The maximum bit rate can be achieved if we use the first
harmonic. The bit rate is 2 times the available bandwidth,
or 200 kbps.
Example 3.22
3.22
Figure 3.23 Bandwidth of a bandpass channel
3.23
If the available channel is a bandpass
channel, we cannot send the digital
signal directly to the channel;
we need to convert the digital signal to
an analog signal before transmission.
Note
3.24
Figure 3.24 Modulation of a digital signal for transmission on a bandpass
channel
3.25
An example of broadband transmission using
modulation is the sending of computer data through a
telephone subscriber line, the line connecting a resident
to the central telephone office. These lines are designed
to carry voice with a limited bandwidth. The channel is
considered a bandpass channel. We convert the digital
signal from the computer to an analog signal, and send
the analog signal. We can install two converters to
change the digital signal to analog and vice versa at the
receiving end. The converter, in this case, is called a
modem which we discuss in detail in Chapter 5.
Example 3.24
3.26
A second example is the digital cellular telephone. For
better reception, digital cellular phones convert the
analog voice signal to a digital signal (see Chapter 16).
Although the bandwidth allocated to a company
providing digital cellular phone service is very wide, we
still cannot send the digital signal without conversion.
The reason is that we only have a bandpass channel
available between caller and callee. We need to convert
the digitized voice to a composite analog signal before
sending.
Example 3.25

More Related Content

Similar to ch3_2_v1.ppt

Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITS
Avijeet Negel
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
tarekrahat
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
NURAINBINTIBAHRUDIN
 
Ch03
Ch03Ch03
Ch03
H K
 
Gsm rf interview questions
Gsm rf interview questionsGsm rf interview questions
Gsm rf interview questions
radira03
 

Similar to ch3_2_v1.ppt (20)

Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITS
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
 
Ch03
Ch03Ch03
Ch03
 
Ch03
Ch03Ch03
Ch03
 
Chapter 3 - Data and Signals
Chapter 3 - Data and SignalsChapter 3 - Data and Signals
Chapter 3 - Data and Signals
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Data Communications and Networking ch03
Data Communications and Networking  ch03Data Communications and Networking  ch03
Data Communications and Networking ch03
 
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
Lecture 2.ppt
Lecture 2.pptLecture 2.ppt
Lecture 2.ppt
 
Ch3 2 Data communication and networking
Ch3 2  Data communication and networkingCh3 2  Data communication and networking
Ch3 2 Data communication and networking
 
Network : Ch03
Network : Ch03Network : Ch03
Network : Ch03
 
Gsm rf interview questions
Gsm rf interview questionsGsm rf interview questions
Gsm rf interview questions
 
Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication Principles
 
CH_02_1 Physical Layer.ppt
CH_02_1 Physical Layer.pptCH_02_1 Physical Layer.ppt
CH_02_1 Physical Layer.ppt
 
Answers to questions
Answers to questionsAnswers to questions
Answers to questions
 
Ch 03
Ch 03Ch 03
Ch 03
 

Recently uploaded

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Recently uploaded (20)

COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 

ch3_2_v1.ppt

  • 1. 3.1 Chapter 3 Data and Signals Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 3.2 3-3 DIGITAL SIGNALS In addition to being represented by an analog signal, information can also be represented by a digital signal. For example, a 1 can be encoded as a positive voltage and a 0 as zero voltage. A digital signal can have more than two levels. In this case, we can send more than 1 bit for each level.  Bit Rate  Bit Length  Digital Signal as a Composite Analog Signal  Application Layer Topics discussed in this section:
  • 3. 3.3 Figure 3.16 Two digital signals: one with two signal levels and the other with four signal levels
  • 4. 3.4 A digital signal has eight levels. How many bits are needed per level? We calculate the number of bits from the formula Example 3.16 Each signal level is represented by 3 bits.
  • 5. 3.5 A digital signal has nine levels. How many bits are needed per level? We calculate the number of bits by using the formula. Each signal level is represented by 3.17 bits. However, this answer is not realistic. The number of bits sent per level needs to be an integer as well as a power of 2. For this example, 4 bits can represent one level. Example 3.17
  • 6. 3.6 Assume we need to download text documents at the rate of 100 pages per sec. What is the required bit rate of the channel? Solution A page is an average of 24 lines with 80 characters in each line. If we assume that one character requires 8 bits (ascii), the bit rate is Example 3.18
  • 7. 3.7 A digitized voice channel, as we will see in Chapter 4, is made by digitizing a 4-kHz bandwidth analog voice signal. We need to sample the signal at twice the highest frequency (two samples per hertz). We assume that each sample requires 8 bits. What is the required bit rate? Solution The bit rate can be calculated as Example 3.19
  • 8. 3.8 What is the bit rate for high-definition TV (HDTV)? Solution HDTV uses digital signals to broadcast high quality video signals. The HDTV screen is normally a ratio of 16 : 9. There are 1920 by 1080 pixels per screen, and the screen is renewed 30 times per second. Twenty-four bits represents one color pixel. Example 3.20 The TV stations reduce this rate to 20 to 40 Mbps through compression.
  • 9. 3.9 Figure 3.17 The time and frequency domains of periodic and nonperiodic digital signals
  • 11. 3.11 A digital signal is a composite analog signal with an infinite bandwidth. Note
  • 12. 3.12 Figure 3.19 Bandwidths of two low-pass channels
  • 13. 3.13 Figure 3.20 Baseband transmission using a dedicated medium
  • 14. 3.14 Baseband transmission of a digital signal that preserves the shape of the digital signal is possible only if we have a low-pass channel with an infinite or very wide bandwidth. Note
  • 15. 3.15 An example of a dedicated channel where the entire bandwidth of the medium is used as one single channel is a LAN. Almost every wired LAN today uses a dedicated channel for two stations communicating with each other. In a bus topology LAN with multipoint connections, only two stations can communicate with each other at each moment in time (timesharing); the other stations need to refrain from sending data. In a star topology LAN, the entire channel between each station and the hub is used for communication between these two entities. Example 3.21
  • 16. 3.16 Figure 3.21 Rough approximation of a digital signal using the first harmonic for worst case
  • 17. 3.17 Figure 3.22 Simulating a digital signal with first three harmonics
  • 18. 3.18 In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth. Note In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth.
  • 19. 3.19 Table 3.2 Bandwidth requirements
  • 20. 3.20 What is the required bandwidth of a low-pass channel if we need to send 1 Mbps by using baseband transmission? Solution The answer depends on the accuracy desired. a. The minimum bandwidth, is B = bit rate /2, or 500 kHz. b. A better solution is to use the first and the third harmonics with B = 3 × 500 kHz = 1.5 MHz. c. Still a better solution is to use the first, third, and fifth harmonics with B = 5 × 500 kHz = 2.5 MHz. Example 3.22
  • 21. 3.21 We have a low-pass channel with bandwidth 100 kHz. What is the maximum bit rate of this channel? Solution The maximum bit rate can be achieved if we use the first harmonic. The bit rate is 2 times the available bandwidth, or 200 kbps. Example 3.22
  • 22. 3.22 Figure 3.23 Bandwidth of a bandpass channel
  • 23. 3.23 If the available channel is a bandpass channel, we cannot send the digital signal directly to the channel; we need to convert the digital signal to an analog signal before transmission. Note
  • 24. 3.24 Figure 3.24 Modulation of a digital signal for transmission on a bandpass channel
  • 25. 3.25 An example of broadband transmission using modulation is the sending of computer data through a telephone subscriber line, the line connecting a resident to the central telephone office. These lines are designed to carry voice with a limited bandwidth. The channel is considered a bandpass channel. We convert the digital signal from the computer to an analog signal, and send the analog signal. We can install two converters to change the digital signal to analog and vice versa at the receiving end. The converter, in this case, is called a modem which we discuss in detail in Chapter 5. Example 3.24
  • 26. 3.26 A second example is the digital cellular telephone. For better reception, digital cellular phones convert the analog voice signal to a digital signal (see Chapter 16). Although the bandwidth allocated to a company providing digital cellular phone service is very wide, we still cannot send the digital signal without conversion. The reason is that we only have a bandpass channel available between caller and callee. We need to convert the digitized voice to a composite analog signal before sending. Example 3.25