SlideShare a Scribd company logo
3.1
Chapter 3
Data and Signals
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
3.2
3-3 DIGITAL SIGNALS
In addition to being represented by an analog signal,
information can also be represented by a digital signal.
For example, a 1 can be encoded as a positive voltage
and a 0 as zero voltage. A digital signal can have more
than two levels. In this case, we can send more than 1 bit
for each level.
 Bit Rate
 Bit Length
 Digital Signal as a Composite Analog Signal
 Application Layer
Topics discussed in this section:
3.3
Figure 3.16 Two digital signals: one with two signal levels and the other
with four signal levels
3.4
A digital signal has eight levels. How many bits are
needed per level? We calculate the number of bits from
the formula
Example 3.16
Each signal level is represented by 3 bits.
3.5
A digital signal has nine levels. How many bits are
needed per level? We calculate the number of bits by
using the formula. Each signal level is represented by
3.17 bits. However, this answer is not realistic. The
number of bits sent per level needs to be an integer as
well as a power of 2. For this example, 4 bits can
represent one level.
Example 3.17
3.6
Assume we need to download text documents at the rate
of 100 pages per sec. What is the required bit rate of the
channel?
Solution
A page is an average of 24 lines with 80 characters in
each line. If we assume that one character requires 8
bits (ascii), the bit rate is
Example 3.18
3.7
A digitized voice channel, as we will see in Chapter 4, is
made by digitizing a 4-kHz bandwidth analog voice
signal. We need to sample the signal at twice the highest
frequency (two samples per hertz). We assume that each
sample requires 8 bits. What is the required bit rate?
Solution
The bit rate can be calculated as
Example 3.19
3.8
What is the bit rate for high-definition TV (HDTV)?
Solution
HDTV uses digital signals to broadcast high quality
video signals. The HDTV screen is normally a ratio of
16 : 9. There are 1920 by 1080 pixels per screen, and the
screen is renewed 30 times per second. Twenty-four bits
represents one color pixel.
Example 3.20
The TV stations reduce this rate to 20 to 40 Mbps
through compression.
3.9
Figure 3.17 The time and frequency domains of periodic and nonperiodic
digital signals
3.10
Figure 3.18 Baseband transmission
3.11
A digital signal is a composite analog
signal with an infinite bandwidth.
Note
3.12
Figure 3.19 Bandwidths of two low-pass channels
3.13
Figure 3.20 Baseband transmission using a dedicated medium
3.14
Baseband transmission of a digital
signal that preserves the shape of the
digital signal is possible only if we have
a low-pass channel with an infinite or
very wide bandwidth.
Note
3.15
An example of a dedicated channel where the entire
bandwidth of the medium is used as one single channel
is a LAN. Almost every wired LAN today uses a
dedicated channel for two stations communicating with
each other. In a bus topology LAN with multipoint
connections, only two stations can communicate with
each other at each moment in time (timesharing); the
other stations need to refrain from sending data. In a
star topology LAN, the entire channel between each
station and the hub is used for communication between
these two entities.
Example 3.21
3.16
Figure 3.21 Rough approximation of a digital signal using the first harmonic
for worst case
3.17
Figure 3.22 Simulating a digital signal with first three harmonics
3.18
In baseband transmission, the required bandwidth is
proportional to the bit rate;
if we need to send bits faster, we need more bandwidth.
Note
In baseband transmission, the required
bandwidth is proportional to the bit rate;
if we need to send bits faster, we need
more bandwidth.
3.19
Table 3.2 Bandwidth requirements
3.20
What is the required bandwidth of a low-pass channel if
we need to send 1 Mbps by using baseband transmission?
Solution
The answer depends on the accuracy desired.
a. The minimum bandwidth, is B = bit rate /2, or 500 kHz.
b. A better solution is to use the first and the third
harmonics with B = 3 × 500 kHz = 1.5 MHz.
c. Still a better solution is to use the first, third, and fifth
harmonics with B = 5 × 500 kHz = 2.5 MHz.
Example 3.22
3.21
We have a low-pass channel with bandwidth 100 kHz.
What is the maximum bit rate of this
channel?
Solution
The maximum bit rate can be achieved if we use the first
harmonic. The bit rate is 2 times the available bandwidth,
or 200 kbps.
Example 3.22
3.22
Figure 3.23 Bandwidth of a bandpass channel
3.23
If the available channel is a bandpass
channel, we cannot send the digital
signal directly to the channel;
we need to convert the digital signal to
an analog signal before transmission.
Note
3.24
Figure 3.24 Modulation of a digital signal for transmission on a bandpass
channel
3.25
An example of broadband transmission using
modulation is the sending of computer data through a
telephone subscriber line, the line connecting a resident
to the central telephone office. These lines are designed
to carry voice with a limited bandwidth. The channel is
considered a bandpass channel. We convert the digital
signal from the computer to an analog signal, and send
the analog signal. We can install two converters to
change the digital signal to analog and vice versa at the
receiving end. The converter, in this case, is called a
modem which we discuss in detail in Chapter 5.
Example 3.24
3.26
A second example is the digital cellular telephone. For
better reception, digital cellular phones convert the
analog voice signal to a digital signal (see Chapter 16).
Although the bandwidth allocated to a company
providing digital cellular phone service is very wide, we
still cannot send the digital signal without conversion.
The reason is that we only have a bandpass channel
available between caller and callee. We need to convert
the digitized voice to a composite analog signal before
sending.
Example 3.25

More Related Content

Similar to ch3_2_v1.ppt

Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSAvijeet Negel
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university studenttarekrahat
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsNURAINBINTIBAHRUDIN
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxKALPANAC20
 
Ch03
Ch03Ch03
Ch03H K
 
Chapter 3 - Data and Signals
Chapter 3 - Data and SignalsChapter 3 - Data and Signals
Chapter 3 - Data and SignalsWayne Jones Jnr
 
Data Communications and Networking ch03
Data Communications and Networking  ch03Data Communications and Networking  ch03
Data Communications and Networking ch03ssuserdf9c52
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.pptRiyaBatool
 
Ch3 2 Data communication and networking
Ch3 2  Data communication and networkingCh3 2  Data communication and networking
Ch3 2 Data communication and networkingNeha Kurale
 
Gsm rf interview questions
Gsm rf interview questionsGsm rf interview questions
Gsm rf interview questionsradira03
 
Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication PrinciplesKamal Acharya
 
CH_02_1 Physical Layer.ppt
CH_02_1 Physical Layer.pptCH_02_1 Physical Layer.ppt
CH_02_1 Physical Layer.ppttaxegap762
 

Similar to ch3_2_v1.ppt (20)

Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITS
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
 
Ch03
Ch03Ch03
Ch03
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Ch03
Ch03Ch03
Ch03
 
Chapter 3 - Data and Signals
Chapter 3 - Data and SignalsChapter 3 - Data and Signals
Chapter 3 - Data and Signals
 
Data Communications and Networking ch03
Data Communications and Networking  ch03Data Communications and Networking  ch03
Data Communications and Networking ch03
 
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
Lecture 2.ppt
Lecture 2.pptLecture 2.ppt
Lecture 2.ppt
 
Ch3 2 Data communication and networking
Ch3 2  Data communication and networkingCh3 2  Data communication and networking
Ch3 2 Data communication and networking
 
Network : Ch03
Network : Ch03Network : Ch03
Network : Ch03
 
Gsm rf interview questions
Gsm rf interview questionsGsm rf interview questions
Gsm rf interview questions
 
Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication Principles
 
CH_02_1 Physical Layer.ppt
CH_02_1 Physical Layer.pptCH_02_1 Physical Layer.ppt
CH_02_1 Physical Layer.ppt
 
Answers to questions
Answers to questionsAnswers to questions
Answers to questions
 
Ch 03
Ch 03Ch 03
Ch 03
 

Recently uploaded

Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industriesMuhammadTufail242431
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectRased Khan
 
Peek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdfPeek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdfAyahmorsy
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxMd. Shahidul Islam Prodhan
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationRobbie Edward Sayers
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdfAhmedHussein950959
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdfKamal Acharya
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...Amil baba
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdfKamal Acharya
 
shape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxshape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxVishalDeshpande27
 
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Laundry management system project report.pdf
Laundry management system project report.pdfLaundry management system project report.pdf
Laundry management system project report.pdfKamal Acharya
 
retail automation billing system ppt.pptx
retail automation billing system ppt.pptxretail automation billing system ppt.pptx
retail automation billing system ppt.pptxfaamieahmd
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturingssuser0811ec
 
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsRS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsAtif Razi
 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineJulioCesarSalazarHer1
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.PrashantGoswami42
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdfKamal Acharya
 

Recently uploaded (20)

Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 
Peek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdfPeek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdf
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
shape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxshape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptx
 
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
 
Laundry management system project report.pdf
Laundry management system project report.pdfLaundry management system project report.pdf
Laundry management system project report.pdf
 
retail automation billing system ppt.pptx
retail automation billing system ppt.pptxretail automation billing system ppt.pptx
retail automation billing system ppt.pptx
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturing
 
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsRS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission line
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdf
 

ch3_2_v1.ppt

  • 1. 3.1 Chapter 3 Data and Signals Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 3.2 3-3 DIGITAL SIGNALS In addition to being represented by an analog signal, information can also be represented by a digital signal. For example, a 1 can be encoded as a positive voltage and a 0 as zero voltage. A digital signal can have more than two levels. In this case, we can send more than 1 bit for each level.  Bit Rate  Bit Length  Digital Signal as a Composite Analog Signal  Application Layer Topics discussed in this section:
  • 3. 3.3 Figure 3.16 Two digital signals: one with two signal levels and the other with four signal levels
  • 4. 3.4 A digital signal has eight levels. How many bits are needed per level? We calculate the number of bits from the formula Example 3.16 Each signal level is represented by 3 bits.
  • 5. 3.5 A digital signal has nine levels. How many bits are needed per level? We calculate the number of bits by using the formula. Each signal level is represented by 3.17 bits. However, this answer is not realistic. The number of bits sent per level needs to be an integer as well as a power of 2. For this example, 4 bits can represent one level. Example 3.17
  • 6. 3.6 Assume we need to download text documents at the rate of 100 pages per sec. What is the required bit rate of the channel? Solution A page is an average of 24 lines with 80 characters in each line. If we assume that one character requires 8 bits (ascii), the bit rate is Example 3.18
  • 7. 3.7 A digitized voice channel, as we will see in Chapter 4, is made by digitizing a 4-kHz bandwidth analog voice signal. We need to sample the signal at twice the highest frequency (two samples per hertz). We assume that each sample requires 8 bits. What is the required bit rate? Solution The bit rate can be calculated as Example 3.19
  • 8. 3.8 What is the bit rate for high-definition TV (HDTV)? Solution HDTV uses digital signals to broadcast high quality video signals. The HDTV screen is normally a ratio of 16 : 9. There are 1920 by 1080 pixels per screen, and the screen is renewed 30 times per second. Twenty-four bits represents one color pixel. Example 3.20 The TV stations reduce this rate to 20 to 40 Mbps through compression.
  • 9. 3.9 Figure 3.17 The time and frequency domains of periodic and nonperiodic digital signals
  • 11. 3.11 A digital signal is a composite analog signal with an infinite bandwidth. Note
  • 12. 3.12 Figure 3.19 Bandwidths of two low-pass channels
  • 13. 3.13 Figure 3.20 Baseband transmission using a dedicated medium
  • 14. 3.14 Baseband transmission of a digital signal that preserves the shape of the digital signal is possible only if we have a low-pass channel with an infinite or very wide bandwidth. Note
  • 15. 3.15 An example of a dedicated channel where the entire bandwidth of the medium is used as one single channel is a LAN. Almost every wired LAN today uses a dedicated channel for two stations communicating with each other. In a bus topology LAN with multipoint connections, only two stations can communicate with each other at each moment in time (timesharing); the other stations need to refrain from sending data. In a star topology LAN, the entire channel between each station and the hub is used for communication between these two entities. Example 3.21
  • 16. 3.16 Figure 3.21 Rough approximation of a digital signal using the first harmonic for worst case
  • 17. 3.17 Figure 3.22 Simulating a digital signal with first three harmonics
  • 18. 3.18 In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth. Note In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth.
  • 19. 3.19 Table 3.2 Bandwidth requirements
  • 20. 3.20 What is the required bandwidth of a low-pass channel if we need to send 1 Mbps by using baseband transmission? Solution The answer depends on the accuracy desired. a. The minimum bandwidth, is B = bit rate /2, or 500 kHz. b. A better solution is to use the first and the third harmonics with B = 3 × 500 kHz = 1.5 MHz. c. Still a better solution is to use the first, third, and fifth harmonics with B = 5 × 500 kHz = 2.5 MHz. Example 3.22
  • 21. 3.21 We have a low-pass channel with bandwidth 100 kHz. What is the maximum bit rate of this channel? Solution The maximum bit rate can be achieved if we use the first harmonic. The bit rate is 2 times the available bandwidth, or 200 kbps. Example 3.22
  • 22. 3.22 Figure 3.23 Bandwidth of a bandpass channel
  • 23. 3.23 If the available channel is a bandpass channel, we cannot send the digital signal directly to the channel; we need to convert the digital signal to an analog signal before transmission. Note
  • 24. 3.24 Figure 3.24 Modulation of a digital signal for transmission on a bandpass channel
  • 25. 3.25 An example of broadband transmission using modulation is the sending of computer data through a telephone subscriber line, the line connecting a resident to the central telephone office. These lines are designed to carry voice with a limited bandwidth. The channel is considered a bandpass channel. We convert the digital signal from the computer to an analog signal, and send the analog signal. We can install two converters to change the digital signal to analog and vice versa at the receiving end. The converter, in this case, is called a modem which we discuss in detail in Chapter 5. Example 3.24
  • 26. 3.26 A second example is the digital cellular telephone. For better reception, digital cellular phones convert the analog voice signal to a digital signal (see Chapter 16). Although the bandwidth allocated to a company providing digital cellular phone service is very wide, we still cannot send the digital signal without conversion. The reason is that we only have a bandpass channel available between caller and callee. We need to convert the digitized voice to a composite analog signal before sending. Example 3.25