SlideShare a Scribd company logo
1 of 28
Download to read offline
Guidebook
Field Mapping in Porphyry Copper Environments
Cerro Verde Mine
Arequipa, Peru
August 13-16, 2000
William X. Chavez, Jr.
Erich U. Petersen
Field Mapping in Porphyry Copper Environments
Participants
1. Brooks, William 105525.1436@compuserve.com
2. Carrizales L., Hector, Minera Teck Peru teckgeo@terra.com.pe
3. Tejada L., Walter, Minera Teck Peru teckgeo@terra.com.pe
4. Escobar B., Daniel, Minera Teck Peru teckgeo@terra.com.pe
5. Araya, Erick, Rio Algom Chile exploranto@rioalgom.cl
6. Alva, Roly, AngloGold Peru apardo@anglogold.com.pe
7. Sanchez, Carlos, AngloGold Peru
8. Waddell, Alistair, AngloGold Peru awadell@anglogold.com.pe
9. Palacios, Celso, AngloGold Peru
10. Anyosa, Nazario, AngloGold Peru apardo@anglogold.com.pe
11. Miranda, Juan, AngloGold Peru
12. Riquelme, Santiago, AngloGold Peru
13. Cortes Y., Jaime, Rio Tinto Chile jaimecortes@compuserve.com
14. Carrasco M., Pedro, Rio Tinto Chile rioanto@entelchile.net
15. Salazar S., Percy, Rio Tinto Peru mansa@rtzlima.com.pe
16. Palpan R., Ewald, Rio Tinto Peru mansa@rtzlima.com.pe
17. Paredes C., Angel, Rio Tinto Peru mansa@rtzlima.com.pe
18. Ferreira Espada, Eugenio, Rio Tinto Peru eugenio@rtzlima.com.pe
19. Pritting, Jack, Consultant/BHP Chile jrpritting@hotmail.com
20. Carrera N. Alex, student carreraalfa@hotmail.com
21. Nicolson, Diane, Noranda Peru dnicol@attglobal.net
22. Fava, Luis, Noranda Peru
23. Krischev, Yassen, Rio Tinto Europe yassen_khrischev@yahoo.com
24. Minaya Pastor, Henry, CEDIMIN geologia@cedimin.com.pe
Itinerary
13 August, Sunday
6:00 PM Assemble at Hotel Jarusalen
14 August, Monday
6:00 AM Breakfast
7:00 AM Depart from Hotel Jarusalen for Cerro Verde
8:00 AM Check in at Cerro Verde, Mine Safety
9:00 AM Mapping I: Cerro Verde Pit
1:00 PM Lunch
1:30 PM Mapping II: Cerro Verde Pit
5:00 PM Depart Cerro Verde for Hotel
Evening Session
15 August, Tuesday
6:00 AM Breakfast
7:00 AM Depart from Hotel Jarusalen for Cerro Verde
8:00 AM Mapping III: Santa Rosa Pit
12:00 PM Lunch
1:00 PM Mapping IV: Santa Rosa Pit
5:00 PM Depart Cerro Verde for Hotel
Evening Session
16 August, Wednesday
6:00 AM Breakfast
7:00 AM Depart from Hotel Jarusalen for Cerro Verde
8:00 AM Mapping V: Tour of Porphyry copper special features
1:00 PM Lunch
1:30 PM Mapping VI: Cerro Negro Tour
3:30 PM Depart for Airport
Acknowledgements
We wish to acknowledge the many individuals and organizations that made this
course possible. We thank Phelps Dodge and Sociedad Minera Cerro Verde S.A.A. for
granting generous access to the Cerro Verde and Santa Rosa deposits. Jim Jones and
David P. Braxton provided invaluable help in organizing the course. The Society of
Economic Geologists sponsored the mapping course.
Erich U. Petersen William X. Chavez, Jr.
Department of Geology and Geophysics Minerals & Environmental Engineering
The University of Utah Department
135 S. 1460 E., Room 719 New Mexico School of Mines
Salt Lake City, UT 84105 Socorro, NM 87801
801-581-7238 505-835-5252
Eupeter@mines.utah.edu wxchavez@nmt.edu
http://www.mines.utah.edu/pyrite
Geology of Cerro Verde
Cerro Verde y Santa Rosa, ubicados a 30 km al SO de Arequipa, son yacimientos
del tipo pórfido de cobre y molibdeno, emplazados en el sgmento sur del Batolito de la
Costa, Segmento Arequipa, Superunidades Tiabaya y Yarabamba. Localmente se tiene
rocas plutónicas intruidas por rocas subvolcánicas porfiríticas, volánicas y sedimentarias,
con edades que van desde el Precámbrico hasta el Terciario inferior. Remanentes de
ignimbritas, cenizas y arenas volcánica, corresponden a los últimos eventos ocurridos in
el área.
Las rocas plutónicas que engloban al os pórfidos subvolcánicos, genéticamente
relacionados a los depósitos de cobre porfirítico de Cerro Verde y Santa Rosa, conforman
el complejo intrusivo conocido como "La Caldera", estos pórfidos están alineados según
una dirección NO-SE, que es la misma de la Cordillera de los Andes. Fisiográficamente,
presentan una topografía madura con cerros redondeados de baja altura, quebradas secas
y drenaje dendrítico. Geológicamente estos depósitos se extienden más allá de sus
limites conocidos, tanto lateral como vericalmente, pero económicamente y en términos
operativos comprometen sólo parte de la extensión anterior. Dentro del área de estudio,
los principales tipos de rocas son: gneis, granodiorta, pórfidos de dacita-monzonita y
brechas de cuarzo-tourmalina, curazo-dumotierita y silíceas, estas brechas contienen
fragmentos de distintas litologías antes mencionadas.
El origen de estos depósitos está estrechamente vinculado al emplazamiento de
los stocks porfiríticos dacíticos-monzoníticos, de origen hipabisal. La edad asignada a
estas rocas es de 60 m.a. La alteración hipógena producida por estas intursiones tiene
una dstribución algo simétrica y concéntrica, con una zona potásica al centro, seguida de
una fílica, que es la más difundida y finalmente la propilítica envolviendo casi eteramente
a las anteriores. De forma asimétrica y sólo en algunas partes del depósito se presentan la
alteración argílica avanzada y la silicificación; la primera está muy relacionada con la
zona de enriquecimiento supergénico por calcosita y covelita; la mieralización dentro de
la zona de óxidos por brochantita, crisocola, malaquita y "pitch de cobre", pro encima de
estas zonas se encontraba una potente cubierta de minerales lixiviados y limonitas.
El fallamiento premineral sigue la dirección NO-SE del levantamiento Andino,
los cuerpos de pórdidos y brechas se alinean sigiendo esta misma drección; el fallamiento
tensional post-mineral revela una importante componente E-O también los sistemas NO-
SE y NE-SO.
Departamento de Geologia MCVSAA
Cerro Verde Rocks
A suite of rocks collected in May 2000 in the Cerro Verde and Santa Rosa open
pits are described below. Many of the rocks were examined petrographically and
analyzed by X-ray diffraction. The plates can also be seen in the Mapping Course
website. The URL is http://www.mines.utah.edu/pyrite/mappingcourse.
Rock Plate A
A CV 0+0: Cerro Verde. Dacite-Monzonite Porphyry cut by hematite veins. All
mafic minerals and feldspars have been altered to white phyllosilicates. See
also Plate 1, A, C (7310027)
B CV 0+25: Cerro Verde. Dacite-Monzonite Porphyry cut by hematite veins.
All mafic minerals and feldspars have been altered to white phyllosilicates.
What criteria can we see in the actual rocks that indicate whether the
precursor mineral to hematite was chalcopyrite or chalcocite? See also Plate
1, B, D (7310026)
C CV 2633B: Cerro Verde. Dacite-Monzonite Porphyry cut by jarosite veins.
All mafic minerals and feldspars have been altered to white phyllosilicates.
All disseminated sulfides have been converted to jarosite. This suggests that
the pyrite was disseminated in the rock and dominated the vein filling. See
also Plate 2, A, B, C (7310025)
D SR Alun: Santa Rosa. Massive, tan-colored alunite vein about 6 cm thick. See
also Plate 2, D (7310023)
Rock Plate B
A SR 208: Santa Rosa. Tourmaline breccia. See also Plate 3, A, B (7310033)
B SR SW B: Santa Rosa. Silicified and pyritized dacite-monzonite porphyry.
See also Plate 3, D (7310032)
C SR 2558: Santa Rosa. "D" vein cuts dacite-monzonite porphyry. Note ~1.5
cm wide silicified halo on pyrite vein. See also Plate 3, C; Plate 4, A, B
(7310034)
D CVS: Cerro Verde. Cerro Verde Schist. Massive phlogopite; folliated. See
also Plate 4, C, D (7310030)
Rock Plate C
A BRECCIA: Santa Rosa. Polylithic breccia. Subrounded to angular fragments
range in size from less than 1 cm to over 5 cm. Breccias Silíseas. (8090003)
B BON: Santa Rosa. Chalcopyrite breccia from high-grade 'bonanza' zone.
Breccia fragments contain disseminated chalcopyrite. Chalcopyrite cements
angular breccia fragments. (8090005)
Photomicrographs Plate 1
A CV 0+0: Cerro Verde. Dacite-monzonite porphyry showing leached pyrite
(hematite-lined voids). Minor tourmaline is present throughout the rock. X-
ray diffraction shows that the sample contains considerable kaolinite. PL,
50X, FOV = 2mm (7310027)
C CV 0+0: Cerro Verde. Same as A. Photomicrograph shows that all
groundmass, feldspar and mafic minerals have been altered to white
phyllosilicate. XP, 50X, FOV = 2mm (7310027)
B CV 0+25: Cerro Verde. Dacite-monzonite porphyry showing leached pyrite
(hematite lined voids). Late torumaline occurs along fractures and is also
disseminated throughout the rock. PL, 50X, FOV = 2mm (7310026)
D CV 0+25: Cerro Verde. Same as B. Hematite boxworks after pyrite. PL,
50X, FOV = 2mm (7310026)
Photomicrographs Plate 2
A CV 2633B: Cerro Verde. Dacite-monzonite porphyry showing that all
disseminated precursor sulfides (pyrite) are altered to pale yellow jarosite.
PL, 50X, FOV = 2mm (7310025)
B CV 2633B: Cerro Verde. Same as B. Photomicrograph shows that all
feldspars and mafic mineral have been converted to white phyllosilicate. XP,
50X, FOV = 2mm (7310025)
C CV 2633B: Cerro Verde. 1200-micron wide 'vein' cuts from lower right to
upper left. "Vein" contains fragments of wall rock (microbreccia) in a matrix
of jarosite. Elsewhere, younger jarosite-only veins are developed within this
vein. PL, 50X, FOV = 2mm (7310025)
D SR Alun: Santa Rosa. Contact between vein fill and wall rock. Vein fill is
fine-grained (10 x 40 micron) alunite crystals (top right). XP, 50X, FOV =
2mm (7310023)
Photomicrographs Plate 3
A SR 208: Santa Rosa. Three habits of tourmaline are present. A fibrous, light
colored variety; a very coarse, pale-dark green variety that commonly forms
rosettes; and clusters of isolated crystals. Crystals of the latter variety can
range from 80 to 1000 microns but are commonly less than 100 microns long.
The fibrous variety commonly overgrows the coarse variety. The
"groundmass” is coarse mosaic quartz. PL, 50X, FOV = 2mm (7310033)
B SR 208: Santa Rosa. Same as A. XP, 50X, FOV = 2mm (7310033)
C SR 2558: Santa Rosa. Fine-grained quartz, white phyllosilicate and pyrite
(opaque). All the mafic minerals and feldspar have been converted to white
phyllosilicate. XRD shows that quartz, phyllosilicate, kaolinite and pyrite are
present. XP, 50X, FOV = 2mm (7310034)
D SR SW B: Santa Rosa. X-ray confirms that this sample consists of quartz,
white phyllosilicate and pyrite. White phyllosilicate pseudomorphs of
euhedral feldspar can be recognized. This sample is much coarser grained
than SR 2558 and contains no Cu-sulfides as disseminations or 'eggs'. XP,
50X, FOV = 2mm (7310032)
Photomicrographs Plate 4
A SR 2558: Santa Rosa. Vein pyrite showing "eggs" of chalcopyrite, bornite
and bornite-chalcopyrite. RL, 200X, FOV = 0.5mm (7310034)
B SR 2558: Santa Rosa. Disseminated sulfides in sample. Pyrite abundance is
greater than Cu-sulfide abundance. Dark blue is covellite; lighter blue is
chalcocite. Elsewhere covellite replaces chalcopyrite. Replacement by
covellite indicates low copper activity solutions. RL, 200X, FOV = 0.5mm
(7310034)
C CVS: PL, Cerro Verde. This sample has strong folliation that is imparted by
the alignment of pale green trioctahedral phyllosilicate ('phlogopite'). Knots
of chlorite and white phyllosilicate (relic feldspar?) are common. 100X, FOV
= 1mm (7310030)
D CVS: XP, Cerro Verde. Same as C. 100X, FOV = 1mm (7310030)
A B
C D
Plate A
A B
C D
Plate B
A B
Plate C
Plate 1
A
D
C
B
Plate 2
A
D
C
B
Plate 3
A
D
C
B
Plate 4
A
D
C
B
Useful References
Titley, S.R., Ed., 1982, Advances in Geology of the Porphyry Copper Deposits,
Southwestern North America. University of Arizona Press, Tucson, AZ, 560 p.
Titley, S.R. and Hicks, C.L., Eds., 1966, Geology of the Porphyry Copper Deposits,
Southwestern North America, University of Arizona Press, Tucson, AZ, 287 p.
Compton, R.R., 1985, Geology in the Field. John Wiley and Sons, New York, 398 p.
Billings, M.P., 1972, Structural Geology, third edition, Prentice Hall, New York, 606 p.
Davis, G.H., 1984, Structural Geology of Rocks and Regions. John Wiley and Sons, New
York, 492 p.
Pierce, F.W and Bolm, J.G., Eds., 1995, Porphyry Copper Deposits of the American
Cordillera. Arizona Geological Society Digest 20, 656 p.
Chávez. W.X., Jr., 2000, Supergene Oxidation of Copper Deposits: Zoning and
Distribution of Copper Oxide Minerals. SEG Newsletter No. 41, April 2000.
Phelps Dodge, 2000, Geologia de los Porfidos de Cobre Cerro Verde Y Santa Rosa,
Arequipa, Peru. Departamento de Geologia, 21 p.

More Related Content

Similar to Field Mapping in Porphyry Copper Environments.pdf

Field assignment final
Field assignment finalField assignment final
Field assignment final
johnifors
 
Clark 1983 Occurrence and age of Tin mineralization .pdf
Clark 1983 Occurrence and age of Tin mineralization .pdfClark 1983 Occurrence and age of Tin mineralization .pdf
Clark 1983 Occurrence and age of Tin mineralization .pdf
VictorValdivia20
 
1-s2.0-S0169136823000902-main.pdf
1-s2.0-S0169136823000902-main.pdf1-s2.0-S0169136823000902-main.pdf
1-s2.0-S0169136823000902-main.pdf
alan271040
 
8th geology jeopardy
8th geology jeopardy8th geology jeopardy
8th geology jeopardy
Jenny Dixon
 
Deciphering_the_Tectonic_Evolution_of_the_Peruvian.pdf
Deciphering_the_Tectonic_Evolution_of_the_Peruvian.pdfDeciphering_the_Tectonic_Evolution_of_the_Peruvian.pdf
Deciphering_the_Tectonic_Evolution_of_the_Peruvian.pdf
VictorValdivia20
 
RC Drilling near Island Copper
RC Drilling near Island CopperRC Drilling near Island Copper
RC Drilling near Island Copper
Gary Sutton
 
GSA_2014_Bozeman Poster_WM FINAL
GSA_2014_Bozeman Poster_WM FINALGSA_2014_Bozeman Poster_WM FINAL
GSA_2014_Bozeman Poster_WM FINAL
Wesley Massoll
 
7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)
Cameron Perks
 
Geologic history of water on mars
Geologic history of water on marsGeologic history of water on mars
Geologic history of water on mars
Awad Albalwi
 

Similar to Field Mapping in Porphyry Copper Environments.pdf (20)

Ancient hydrothermal seafloor deposits in Eridania basin on Mars
Ancient hydrothermal seafloor deposits in Eridania basin on MarsAncient hydrothermal seafloor deposits in Eridania basin on Mars
Ancient hydrothermal seafloor deposits in Eridania basin on Mars
 
quartoo sand
quartoo sandquartoo sand
quartoo sand
 
The Piedmont Essay
The Piedmont EssayThe Piedmont Essay
The Piedmont Essay
 
Presentation
PresentationPresentation
Presentation
 
Field assignment final
Field assignment finalField assignment final
Field assignment final
 
First approach for quantifying undiscovered petroleum initially in place on u...
First approach for quantifying undiscovered petroleum initially in place on u...First approach for quantifying undiscovered petroleum initially in place on u...
First approach for quantifying undiscovered petroleum initially in place on u...
 
Clark 1983 Occurrence and age of Tin mineralization .pdf
Clark 1983 Occurrence and age of Tin mineralization .pdfClark 1983 Occurrence and age of Tin mineralization .pdf
Clark 1983 Occurrence and age of Tin mineralization .pdf
 
1-s2.0-S0169136823000902-main.pdf
1-s2.0-S0169136823000902-main.pdf1-s2.0-S0169136823000902-main.pdf
1-s2.0-S0169136823000902-main.pdf
 
Petrology Final
Petrology FinalPetrology Final
Petrology Final
 
8th geology jeopardy
8th geology jeopardy8th geology jeopardy
8th geology jeopardy
 
Deciphering_the_Tectonic_Evolution_of_the_Peruvian.pdf
Deciphering_the_Tectonic_Evolution_of_the_Peruvian.pdfDeciphering_the_Tectonic_Evolution_of_the_Peruvian.pdf
Deciphering_the_Tectonic_Evolution_of_the_Peruvian.pdf
 
RC Drilling near Island Copper
RC Drilling near Island CopperRC Drilling near Island Copper
RC Drilling near Island Copper
 
Dhiego c silva_et_al-presentation1
Dhiego c silva_et_al-presentation1Dhiego c silva_et_al-presentation1
Dhiego c silva_et_al-presentation1
 
depositos de cobre em sedimentos
depositos de cobre em sedimentosdepositos de cobre em sedimentos
depositos de cobre em sedimentos
 
GSA_2014_Bozeman Poster_WM FINAL
GSA_2014_Bozeman Poster_WM FINALGSA_2014_Bozeman Poster_WM FINAL
GSA_2014_Bozeman Poster_WM FINAL
 
7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)7.Greenfield_MnW2015_abstract_edit6 (1)
7.Greenfield_MnW2015_abstract_edit6 (1)
 
Facies characterisation of a shallow-water deltaic succession.pptx
Facies characterisation of a shallow-water deltaic succession.pptxFacies characterisation of a shallow-water deltaic succession.pptx
Facies characterisation of a shallow-water deltaic succession.pptx
 
2005 fmcc agate_symposium
2005 fmcc agate_symposium2005 fmcc agate_symposium
2005 fmcc agate_symposium
 
Geologic history of water on mars
Geologic history of water on marsGeologic history of water on mars
Geologic history of water on mars
 
Geologic history of water on mars
Geologic history of water on marsGeologic history of water on mars
Geologic history of water on mars
 

Recently uploaded

Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 

Recently uploaded (20)

Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
 
PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th sem
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
MSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdfMSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdf
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary Gland
 
GBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyGBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) Enzymology
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of Uganda
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Introduction and significance of Symbiotic algae
Introduction and significance of  Symbiotic algaeIntroduction and significance of  Symbiotic algae
Introduction and significance of Symbiotic algae
 
ANATOMY OF DICOT AND MONOCOT LEAVES.pptx
ANATOMY OF DICOT AND MONOCOT LEAVES.pptxANATOMY OF DICOT AND MONOCOT LEAVES.pptx
ANATOMY OF DICOT AND MONOCOT LEAVES.pptx
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdf
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 

Field Mapping in Porphyry Copper Environments.pdf

  • 1. Guidebook Field Mapping in Porphyry Copper Environments Cerro Verde Mine Arequipa, Peru August 13-16, 2000 William X. Chavez, Jr. Erich U. Petersen
  • 2. Field Mapping in Porphyry Copper Environments Participants 1. Brooks, William 105525.1436@compuserve.com 2. Carrizales L., Hector, Minera Teck Peru teckgeo@terra.com.pe 3. Tejada L., Walter, Minera Teck Peru teckgeo@terra.com.pe 4. Escobar B., Daniel, Minera Teck Peru teckgeo@terra.com.pe 5. Araya, Erick, Rio Algom Chile exploranto@rioalgom.cl 6. Alva, Roly, AngloGold Peru apardo@anglogold.com.pe 7. Sanchez, Carlos, AngloGold Peru 8. Waddell, Alistair, AngloGold Peru awadell@anglogold.com.pe 9. Palacios, Celso, AngloGold Peru 10. Anyosa, Nazario, AngloGold Peru apardo@anglogold.com.pe 11. Miranda, Juan, AngloGold Peru 12. Riquelme, Santiago, AngloGold Peru 13. Cortes Y., Jaime, Rio Tinto Chile jaimecortes@compuserve.com 14. Carrasco M., Pedro, Rio Tinto Chile rioanto@entelchile.net 15. Salazar S., Percy, Rio Tinto Peru mansa@rtzlima.com.pe 16. Palpan R., Ewald, Rio Tinto Peru mansa@rtzlima.com.pe 17. Paredes C., Angel, Rio Tinto Peru mansa@rtzlima.com.pe 18. Ferreira Espada, Eugenio, Rio Tinto Peru eugenio@rtzlima.com.pe 19. Pritting, Jack, Consultant/BHP Chile jrpritting@hotmail.com 20. Carrera N. Alex, student carreraalfa@hotmail.com 21. Nicolson, Diane, Noranda Peru dnicol@attglobal.net 22. Fava, Luis, Noranda Peru 23. Krischev, Yassen, Rio Tinto Europe yassen_khrischev@yahoo.com 24. Minaya Pastor, Henry, CEDIMIN geologia@cedimin.com.pe
  • 3. Itinerary 13 August, Sunday 6:00 PM Assemble at Hotel Jarusalen 14 August, Monday 6:00 AM Breakfast 7:00 AM Depart from Hotel Jarusalen for Cerro Verde 8:00 AM Check in at Cerro Verde, Mine Safety 9:00 AM Mapping I: Cerro Verde Pit 1:00 PM Lunch 1:30 PM Mapping II: Cerro Verde Pit 5:00 PM Depart Cerro Verde for Hotel Evening Session 15 August, Tuesday 6:00 AM Breakfast 7:00 AM Depart from Hotel Jarusalen for Cerro Verde 8:00 AM Mapping III: Santa Rosa Pit 12:00 PM Lunch 1:00 PM Mapping IV: Santa Rosa Pit 5:00 PM Depart Cerro Verde for Hotel Evening Session 16 August, Wednesday 6:00 AM Breakfast 7:00 AM Depart from Hotel Jarusalen for Cerro Verde 8:00 AM Mapping V: Tour of Porphyry copper special features 1:00 PM Lunch 1:30 PM Mapping VI: Cerro Negro Tour 3:30 PM Depart for Airport
  • 4. Acknowledgements We wish to acknowledge the many individuals and organizations that made this course possible. We thank Phelps Dodge and Sociedad Minera Cerro Verde S.A.A. for granting generous access to the Cerro Verde and Santa Rosa deposits. Jim Jones and David P. Braxton provided invaluable help in organizing the course. The Society of Economic Geologists sponsored the mapping course. Erich U. Petersen William X. Chavez, Jr. Department of Geology and Geophysics Minerals & Environmental Engineering The University of Utah Department 135 S. 1460 E., Room 719 New Mexico School of Mines Salt Lake City, UT 84105 Socorro, NM 87801 801-581-7238 505-835-5252 Eupeter@mines.utah.edu wxchavez@nmt.edu http://www.mines.utah.edu/pyrite
  • 5. Geology of Cerro Verde Cerro Verde y Santa Rosa, ubicados a 30 km al SO de Arequipa, son yacimientos del tipo pórfido de cobre y molibdeno, emplazados en el sgmento sur del Batolito de la Costa, Segmento Arequipa, Superunidades Tiabaya y Yarabamba. Localmente se tiene rocas plutónicas intruidas por rocas subvolcánicas porfiríticas, volánicas y sedimentarias, con edades que van desde el Precámbrico hasta el Terciario inferior. Remanentes de ignimbritas, cenizas y arenas volcánica, corresponden a los últimos eventos ocurridos in el área. Las rocas plutónicas que engloban al os pórfidos subvolcánicos, genéticamente relacionados a los depósitos de cobre porfirítico de Cerro Verde y Santa Rosa, conforman el complejo intrusivo conocido como "La Caldera", estos pórfidos están alineados según una dirección NO-SE, que es la misma de la Cordillera de los Andes. Fisiográficamente, presentan una topografía madura con cerros redondeados de baja altura, quebradas secas y drenaje dendrítico. Geológicamente estos depósitos se extienden más allá de sus limites conocidos, tanto lateral como vericalmente, pero económicamente y en términos operativos comprometen sólo parte de la extensión anterior. Dentro del área de estudio, los principales tipos de rocas son: gneis, granodiorta, pórfidos de dacita-monzonita y brechas de cuarzo-tourmalina, curazo-dumotierita y silíceas, estas brechas contienen fragmentos de distintas litologías antes mencionadas. El origen de estos depósitos está estrechamente vinculado al emplazamiento de los stocks porfiríticos dacíticos-monzoníticos, de origen hipabisal. La edad asignada a estas rocas es de 60 m.a. La alteración hipógena producida por estas intursiones tiene una dstribución algo simétrica y concéntrica, con una zona potásica al centro, seguida de una fílica, que es la más difundida y finalmente la propilítica envolviendo casi eteramente a las anteriores. De forma asimétrica y sólo en algunas partes del depósito se presentan la alteración argílica avanzada y la silicificación; la primera está muy relacionada con la
  • 6. zona de enriquecimiento supergénico por calcosita y covelita; la mieralización dentro de la zona de óxidos por brochantita, crisocola, malaquita y "pitch de cobre", pro encima de estas zonas se encontraba una potente cubierta de minerales lixiviados y limonitas. El fallamiento premineral sigue la dirección NO-SE del levantamiento Andino, los cuerpos de pórdidos y brechas se alinean sigiendo esta misma drección; el fallamiento tensional post-mineral revela una importante componente E-O también los sistemas NO- SE y NE-SO. Departamento de Geologia MCVSAA
  • 7.
  • 8. Cerro Verde Rocks A suite of rocks collected in May 2000 in the Cerro Verde and Santa Rosa open pits are described below. Many of the rocks were examined petrographically and analyzed by X-ray diffraction. The plates can also be seen in the Mapping Course website. The URL is http://www.mines.utah.edu/pyrite/mappingcourse. Rock Plate A A CV 0+0: Cerro Verde. Dacite-Monzonite Porphyry cut by hematite veins. All mafic minerals and feldspars have been altered to white phyllosilicates. See also Plate 1, A, C (7310027) B CV 0+25: Cerro Verde. Dacite-Monzonite Porphyry cut by hematite veins. All mafic minerals and feldspars have been altered to white phyllosilicates. What criteria can we see in the actual rocks that indicate whether the precursor mineral to hematite was chalcopyrite or chalcocite? See also Plate 1, B, D (7310026) C CV 2633B: Cerro Verde. Dacite-Monzonite Porphyry cut by jarosite veins. All mafic minerals and feldspars have been altered to white phyllosilicates. All disseminated sulfides have been converted to jarosite. This suggests that the pyrite was disseminated in the rock and dominated the vein filling. See also Plate 2, A, B, C (7310025) D SR Alun: Santa Rosa. Massive, tan-colored alunite vein about 6 cm thick. See also Plate 2, D (7310023) Rock Plate B A SR 208: Santa Rosa. Tourmaline breccia. See also Plate 3, A, B (7310033) B SR SW B: Santa Rosa. Silicified and pyritized dacite-monzonite porphyry. See also Plate 3, D (7310032) C SR 2558: Santa Rosa. "D" vein cuts dacite-monzonite porphyry. Note ~1.5 cm wide silicified halo on pyrite vein. See also Plate 3, C; Plate 4, A, B (7310034) D CVS: Cerro Verde. Cerro Verde Schist. Massive phlogopite; folliated. See also Plate 4, C, D (7310030)
  • 9. Rock Plate C A BRECCIA: Santa Rosa. Polylithic breccia. Subrounded to angular fragments range in size from less than 1 cm to over 5 cm. Breccias Silíseas. (8090003) B BON: Santa Rosa. Chalcopyrite breccia from high-grade 'bonanza' zone. Breccia fragments contain disseminated chalcopyrite. Chalcopyrite cements angular breccia fragments. (8090005) Photomicrographs Plate 1 A CV 0+0: Cerro Verde. Dacite-monzonite porphyry showing leached pyrite (hematite-lined voids). Minor tourmaline is present throughout the rock. X- ray diffraction shows that the sample contains considerable kaolinite. PL, 50X, FOV = 2mm (7310027) C CV 0+0: Cerro Verde. Same as A. Photomicrograph shows that all groundmass, feldspar and mafic minerals have been altered to white phyllosilicate. XP, 50X, FOV = 2mm (7310027) B CV 0+25: Cerro Verde. Dacite-monzonite porphyry showing leached pyrite (hematite lined voids). Late torumaline occurs along fractures and is also disseminated throughout the rock. PL, 50X, FOV = 2mm (7310026) D CV 0+25: Cerro Verde. Same as B. Hematite boxworks after pyrite. PL, 50X, FOV = 2mm (7310026) Photomicrographs Plate 2 A CV 2633B: Cerro Verde. Dacite-monzonite porphyry showing that all disseminated precursor sulfides (pyrite) are altered to pale yellow jarosite. PL, 50X, FOV = 2mm (7310025) B CV 2633B: Cerro Verde. Same as B. Photomicrograph shows that all feldspars and mafic mineral have been converted to white phyllosilicate. XP, 50X, FOV = 2mm (7310025) C CV 2633B: Cerro Verde. 1200-micron wide 'vein' cuts from lower right to upper left. "Vein" contains fragments of wall rock (microbreccia) in a matrix of jarosite. Elsewhere, younger jarosite-only veins are developed within this vein. PL, 50X, FOV = 2mm (7310025)
  • 10. D SR Alun: Santa Rosa. Contact between vein fill and wall rock. Vein fill is fine-grained (10 x 40 micron) alunite crystals (top right). XP, 50X, FOV = 2mm (7310023) Photomicrographs Plate 3 A SR 208: Santa Rosa. Three habits of tourmaline are present. A fibrous, light colored variety; a very coarse, pale-dark green variety that commonly forms rosettes; and clusters of isolated crystals. Crystals of the latter variety can range from 80 to 1000 microns but are commonly less than 100 microns long. The fibrous variety commonly overgrows the coarse variety. The "groundmass” is coarse mosaic quartz. PL, 50X, FOV = 2mm (7310033) B SR 208: Santa Rosa. Same as A. XP, 50X, FOV = 2mm (7310033) C SR 2558: Santa Rosa. Fine-grained quartz, white phyllosilicate and pyrite (opaque). All the mafic minerals and feldspar have been converted to white phyllosilicate. XRD shows that quartz, phyllosilicate, kaolinite and pyrite are present. XP, 50X, FOV = 2mm (7310034) D SR SW B: Santa Rosa. X-ray confirms that this sample consists of quartz, white phyllosilicate and pyrite. White phyllosilicate pseudomorphs of euhedral feldspar can be recognized. This sample is much coarser grained than SR 2558 and contains no Cu-sulfides as disseminations or 'eggs'. XP, 50X, FOV = 2mm (7310032) Photomicrographs Plate 4 A SR 2558: Santa Rosa. Vein pyrite showing "eggs" of chalcopyrite, bornite and bornite-chalcopyrite. RL, 200X, FOV = 0.5mm (7310034) B SR 2558: Santa Rosa. Disseminated sulfides in sample. Pyrite abundance is greater than Cu-sulfide abundance. Dark blue is covellite; lighter blue is chalcocite. Elsewhere covellite replaces chalcopyrite. Replacement by covellite indicates low copper activity solutions. RL, 200X, FOV = 0.5mm (7310034) C CVS: PL, Cerro Verde. This sample has strong folliation that is imparted by the alignment of pale green trioctahedral phyllosilicate ('phlogopite'). Knots of chlorite and white phyllosilicate (relic feldspar?) are common. 100X, FOV = 1mm (7310030) D CVS: XP, Cerro Verde. Same as C. 100X, FOV = 1mm (7310030)
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28. Useful References Titley, S.R., Ed., 1982, Advances in Geology of the Porphyry Copper Deposits, Southwestern North America. University of Arizona Press, Tucson, AZ, 560 p. Titley, S.R. and Hicks, C.L., Eds., 1966, Geology of the Porphyry Copper Deposits, Southwestern North America, University of Arizona Press, Tucson, AZ, 287 p. Compton, R.R., 1985, Geology in the Field. John Wiley and Sons, New York, 398 p. Billings, M.P., 1972, Structural Geology, third edition, Prentice Hall, New York, 606 p. Davis, G.H., 1984, Structural Geology of Rocks and Regions. John Wiley and Sons, New York, 492 p. Pierce, F.W and Bolm, J.G., Eds., 1995, Porphyry Copper Deposits of the American Cordillera. Arizona Geological Society Digest 20, 656 p. Chávez. W.X., Jr., 2000, Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. SEG Newsletter No. 41, April 2000. Phelps Dodge, 2000, Geologia de los Porfidos de Cobre Cerro Verde Y Santa Rosa, Arequipa, Peru. Departamento de Geologia, 21 p.