SlideShare a Scribd company logo
1 of 48
Download to read offline
Sangjun Son (SNU) 1
Multi-Aspect Streaming
Tensor Completion
(Qingquan Song et al., KDD 2017)
Sangjun Son
Data Mining Lab
Dept. of CSE
Seoul National University
Sangjun Son (SNU) 2
Keywords
◼ Multi-Aspect Streaming Tensor (MAST)
❑ Incomplete, Multiple-mode streaming
◼ MAST Completion
❑ Dynamic Tensor Decomposition (DTD)
❑ Low Rank Tensor Completion (LRTC)
◼ Temporal MAST (T-MAST)
Sangjun Son (SNU) 3
Outline
◼ Introduction
◼ Preliminaries
◼ Proposed Method
◼ Experiments
◼ Conclusion
Sangjun Son (SNU) 4
Tensor
◼ An N-way array which is a generalization of
vectors and matrices.
Sangjun Son (SNU) 5
Real-world Tensor
◼ Recommendation
❑ A 3rd order tensor
Index: (user, movie, time)
❑ Value: movie rating
◼ Link Prediction
❑ A 3rd order tensor
Index: (user, user, interaction)
❑ Value: connectivity
Missing entries of partially observed tensors
Sangjun Son (SNU) 6
Tensor Completion (1/2)
◼ Real-world tensors are often incomplete.
❑ Due to missing at random,
limited permissions and maloperations.
◼ Tensor Decomposition (CP)
user
topic
𝒖𝑖
≈ ෍
𝑖=1
𝑅
𝒕𝑖
=
𝐔
𝐓
𝐄
𝓣 ෍
𝑖=1
𝑅
𝒖𝑖 ∘ 𝒕𝑖 ∘ 𝒆𝑖≈ = 𝐔, 𝐄, 𝐓
Sangjun Son (SNU) 7
Tensor Completion (2/2)
user
topic
≈
𝐔
𝐓
𝐄
user
topic
=
Sangjun Son (SNU) 8
Tensor Completion (2/2)
user
topic
≈
𝐔
𝐓
𝐄
user
topic
=
Sangjun Son (SNU) 9
Tensor Completion (2/2)
user
topic
≈
𝐔
𝐓
𝐄
user
topic
=
Sangjun Son (SNU) 10
Tensor Completion (2/2)
user
topic
≈
𝐔
𝐓
𝐄
user
topic
=
◼ Fill missing entries of partially observed tensors.
❑ Recommender systems
❑ Image recovery
❑ Clinical data analysis
Sangjun Son (SNU) 11
Streaming Tensor
◼ High velocity streaming tensors in real world.
❑ Due to popularity of online information systems.
❑ Develop in one temporal mode.
user
item
𝓣 𝑡
user
item
user
item
𝓣 𝑡+1 𝓣 𝑡+2
Sangjun Son (SNU) 12
Multi-Aspect Streaming Tensor
◼ Existing methods ignore that,
❑ A tensor may develop in multiple dimensions.
user
item
𝓣 𝑡 𝓣 𝑡+1 𝓣 𝑡+2
item
user
item
user
Sangjun Son (SNU) 13
Multi-Aspect Streaming Tensor
◼ Existing methods ignore that,
❑ A tensor may develop in multiple dimensions.
user
item
𝓣 𝑡 𝓣 𝑡+1 𝓣 𝑡+2
item
user
item
user
⊆ ⊆
Sangjun Son (SNU) 14
Outline
◼ Introduction
◼ Preliminaries
◼ Proposed Method
◼ Experiments
◼ Conclusion
Sangjun Son (SNU) 15
Notation for Tensor
Sangjun Son (SNU) 16
Khatri-Rao Product ⨀
◼ Given matrices 𝐀 ∈ ℝ𝐼×𝐾 and 𝐁 ∈ ℝ 𝐽×𝐾,
Khatri–Rao product is denoted by 𝐀 ⨀ 𝐁.
❑ 𝐀 ⨀ 𝐁 = [𝐚1 ⊗ 𝐛1, ⋯ , 𝐚 𝐾 ⊗ 𝐛 𝐾] ∈ ℝ𝐼𝐽×𝐾
◼ where ⊗ is Kronecker product
𝐚 ⊗ 𝐛 =
𝑎1
⋮
𝑎𝐼
⊗
𝑏1
⋮
𝑏𝐽
=
𝑎1 𝐛
𝑎2 𝐛
⋮
𝑎𝐼 𝐛
=
𝑎1 𝑏1
𝑎1 𝑏2
⋮
𝑎𝐼 𝑏𝐽
◼ while ∘ is outer product
𝐚 ∘ 𝐛 = 𝐚 ⊗ 𝐛T =
𝑎1
⋮
𝑎𝐼
⊗ 𝑏1 ⋯ 𝑏𝐽 =
𝑎1 𝐛T
𝑎2 𝐛T
⋮
𝑎𝐼 𝐛T
=
𝑎1 𝑏1
𝑎2 𝑏1
⋮
𝑎𝐼 𝑏1
⋯
𝑎1 𝑏𝐽
𝑎2 𝑏𝐽
⋮
𝑎𝐼 𝑏𝐽
Sangjun Son (SNU) 17
Hadamard Product ⊛
◼ Given matrices in the same dimension
𝐀, 𝐁 ∈ ℝ𝐼×𝐽
, Hadamard product is denoted
by 𝐀 ⊛ 𝐁 ∈ ℝ𝐼×𝐽
.
❑ 𝐀 ⊛ 𝐁 𝑖𝑗 = 𝐀 𝑖𝑗 𝐁 𝑖𝑗
❑ 𝐀 ⊛ 𝐁 =
𝑎11 𝑏11
𝑎21 𝑏22
⋮
𝑎𝐼1 𝑏𝐼1
⋯
𝑎1𝐽 𝑏1𝐽
𝑎2𝐽 𝑏2𝐽
⋮
𝑎𝐼𝐽 𝑏𝐼𝐽
Sangjun Son (SNU) 18
Unfolding
Figure from Lieven De Lathauwer et al,
A Multi-Linear Singular Value Decomposition,
𝓧
𝓧
𝓧
𝐗(1)
𝐗(2)
𝐗(3)
𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3
❑ 𝐗(1) ∈ ℝ𝐼1×𝐼2 𝐼3
❑ 𝐗(2) ∈ ℝ𝐼2×𝐼3 𝐼1
❑ 𝐗(3) ∈ ℝ𝐼3×𝐼1 𝐼2
Given a tensor
𝓧 ∈ ℝ𝐼1×⋯×𝐼 𝑁,
its mode-𝑛 unfolding matrix
𝐗(𝑛) ∈ ℝ𝐼 𝑛×ς 𝑖≠𝑛
𝑁
𝐼 𝑖.
Sangjun Son (SNU) 19
CP Decomposition (CPD)
◼ Given a 𝑁th order tensor 𝓧 ∈ ℝ𝐼1×⋯×𝐼 𝑁,
CPD is an approximation form of 𝑁 matrices
𝐀 𝑛 ∈ ℝ𝐼 𝑛×𝑅
.
❑ where 𝑛 = 1, … , 𝑁 and 𝑅 is the rank of 𝓧.
◼ 𝓧 ≈ 𝐀1, … , 𝐀 𝑁
❑ 𝓧
unfold
𝐗(𝑛) ≈ 𝐀 𝑛 𝐀 𝑁 ⨀ … 𝐀 𝑛+1 ⨀ 𝐀 𝑛−1 … ⨀ 𝐀1
T
= 𝐀 𝑛 𝐀 𝑘
⊙ 𝑘≠𝑛
T
𝓧 ≈ 𝐀, 𝐁, 𝐂
𝐗(1) ≈ 𝐀 𝐂 ⨀ 𝐁 T
𝐗(2) ≈ 𝐁 𝐂 ⨀ 𝐀 T
𝐗(3) ≈ 𝐂 𝐁 ⨀ 𝐀 T
𝐀
𝐁
𝐂
Sangjun Son (SNU) 20
Alternating Least Square Update
𝐀 ≈ 𝐗(1) 𝐂 ⨀ 𝐁 T
†
𝐁 ≈ 𝐗(2) 𝐂 ⨀ 𝐀 T
†
𝐂 ≈ 𝐗(3) 𝐁 ⨀ 𝐀 T
†
= 𝐗(1) 𝐂 ⨀ 𝐁 𝐂T 𝐂 ⊛ 𝐁T 𝐁
†
= 𝐗(2) 𝐂 ⨀ 𝐀 𝐂T 𝐂 ⊛ 𝐀T 𝐀
†
= 𝐗(3) 𝐁 ⨀ 𝐀 𝐁T 𝐁 ⊛ 𝐀T 𝐀
†
◼ Find factor sequence 𝐀 𝑛 that minimizes
𝓛 𝐀1, … , 𝐀 𝑁 = 𝓧 − 𝐀1, … , 𝐀 𝑁 F
2
❑ Optimize factor matrix 𝐀 𝑛 while others 𝐀 𝑘≠𝑛 are fixed.
❑ And repeat until convergence.
Sangjun Son (SNU) 21
◼ Find factor sequence 𝐀 𝑛 that minimizes
𝓛 𝐀1, … , 𝐀 𝑁 = 𝓧 − 𝐀1, … , 𝐀 𝑁 F
2
❑ Optimize factor matrix 𝐀 𝑛 while others 𝐀 𝑘≠𝑛 are fixed.
❑ And repeat until convergence.
Alternating Least Square Update
𝐀 ≈ 𝐗(1) 𝐂 ⨀ 𝐁 T
†
𝐁 ≈ 𝐗(2) 𝐂 ⨀ 𝐀 T
†
𝐂 ≈ 𝐗(3) 𝐁 ⨀ 𝐀 T
†
= 𝐗(1) 𝐂 ⨀ 𝐁 𝐂T 𝐂 ⊛ 𝐁T 𝐁
†
= 𝐗(2) 𝐂 ⨀ 𝐀 𝐂T 𝐂 ⊛ 𝐀T 𝐀
†
= 𝐗(3) 𝐁 ⨀ 𝐀 𝐁T 𝐁 ⊛ 𝐀T 𝐀
†
𝐀 𝑛 ≈ 𝐗(𝑛) 𝐀 𝑘
⊙ 𝑘≠𝑛
T †
= 𝐗(𝑛) 𝐀 𝑘
⊙ 𝑘≠𝑛 𝐀 𝑘
T
𝐀 𝑘
⊛ 𝑘≠𝑛
†
Sangjun Son (SNU) 22
Problem Definition
◼ Multi-Aspect Steaming Tensor Completion
❑ Given MAST sequence 𝓧(𝑇) with missing entries,
recover the missing data in current snapshot 𝓧(𝑇).
❑ Input
◼ Previously recovered MAST
𝓧(𝑇−1)
⊆ 𝓧 𝑇
❑ Output
◼ Relative complement of
𝓧(𝑇−1)
in 𝓧 𝑇
, 𝓧(𝑇)
𝓧 𝑇−1
❑ Goal
◼ Maximize the effectiveness
and efficiency
user
item
item
user
𝓧(𝑇−1)
𝓧(𝑇)
Sangjun Son (SNU) 23
Outline
◼ Introduction
◼ Preliminaries
◼ Proposed Method
◼ Experiments
◼ Conclusion
Sangjun Son (SNU) 24
Challenges
◼ Uncertainty of tensor mode changes
◼ Incompleteness: missing data problem
◼ Higher time and space complexity
Sangjun Son (SNU) 25
MAST Framework
◼ Dynamic Tensor Decomposition (DTD)
❑ Model the incremental pattern of MAST
◼ Low Rank Tensor Completion (LRTC)
❑ Track its low-rank subspace
Sangjun Son (SNU) 26
Dynamic Tensor Decomposition
◼ Given the recovered tensor in previous step,
෩𝓧
෩𝓧
𝓧
𝐼1
𝐼2
𝐼3
𝐼2 + 𝑑2
𝐼1+𝑑1
Time 𝑇 − 1 Time 𝑇
≈
෩𝐀
෨𝐂
𝐀0
𝐂0
𝐂1
𝐀1
Sangjun Son (SNU) 27
Dynamic Tensor Decomposition
Partition → Substitution → Re-decomposition
෩𝓧
𝓧
𝐼2 + 𝑑2
𝐼1+𝑑1
෩𝓧
Sangjun Son (SNU) 28
Dynamic Tensor Decomposition
Partition → Substitution → Re-decomposition
෩𝓧
𝓧
𝐼2 + 𝑑2
𝐼1+𝑑1
𝓧1,1,1
𝓧1,0,1
𝓧1,1,0
𝓧0,1,1
𝓧0,0,1
𝓧1,0,0
෩𝓧 = 𝓧0,0,0
𝓧0,1,0
Sangjun Son (SNU) 29
Dynamic Tensor Decomposition
Partition → Substitution → Re-decomposition
𝓧1,1,1
𝓧1,0,1
𝓧1,1,0
𝓧0,1,1
𝓧0,0,1
𝓧1,0,0
𝓧0,1,0
෩𝐀
෨𝐂
𝓧1,1,1
𝓧1,0,1
𝓧1,1,0
𝓧0,1,1
𝓧0,0,1
𝓧1,0,0
෩𝓧 = 𝓧0,0,0
𝓧0,1,0
Sangjun Son (SNU) 30
Dynamic Tensor Decomposition
Partition → Substitution → Re-decomposition
𝓧1,1,1
𝓧1,0,1
𝓧1,1,0
𝓧0,1,1
𝓧0,0,1
𝓧1,0,0
𝓧0,1,0
෩𝐀
෨𝐂
𝐀0
𝐂0
𝐂1
𝐀1
Sangjun Son (SNU) 31
Dynamic Tensor Decomposition
◼ Loss function
❑ 𝓛 𝐀, 𝐁, 𝐂 = 𝓧 − 𝐀, 𝐁, 𝐂 F
2
= ෍
(𝑖,𝑗,𝑘)∈Θ
𝓧𝑖,𝑗,𝑘
− 𝐀 𝑖, 𝐁𝑗, 𝐂 𝑘 F
2
= 𝓧0,0,0
− 𝐀0, 𝐁0, 𝐂0 F
2
+ 𝓛0
≈ 𝜇 ෩𝐀, ෩𝐁, ෨𝐂 − 𝐀0, 𝐁0, 𝐂0 F
2
+ 𝓛0
❑ Forgetting factor 𝜇 ∈ 0, 1
to alleviate the influence of the previous decomposition error.
𝓧1,1,1𝓧1,0,1
𝓧1,1,0
𝓧0,1,1
𝓧0,0,1
𝓧1,0,0
𝓧0,1,0
෩𝐀
෨𝐂
𝐀0
𝐂0
𝐂1
𝐀1
෩𝓧
Θ ≜ 0,1 3
𝐀
𝐁
𝐂
≈ ≈
Sangjun Son (SNU) 32
Dynamic Tensor Decomposition
◼ ALS update
❑ Static
◼ 𝓛 𝐀, 𝐁, 𝐂 = 𝓧0,0,0
− 𝐀0, 𝐁0, 𝐂0 F
2
+ 𝓛0
𝐀0 ←
σ 𝑗,𝑘 𝐗(1)
0,𝑗,𝑘
𝐂 𝑘 ⨀ 𝐁𝑗
σ 𝑘=0
1
𝐂 𝑘
T
𝐂 𝑘 ⊛ σ 𝑗=0
1
𝐁𝑗
T
𝐁𝑗
❑ DTD
◼ 𝓛 𝐀, 𝐁, 𝐂 ≈ 𝜇 ෩𝐀, ෩𝐁, ෨𝐂 − 𝐀0, 𝐁0, 𝐂0 F
2
+ 𝓛0
𝐀0 ←
𝜇෩𝐀 ෨𝐂T
𝐂0 ⊛ ෩𝐁T
𝐁0 + σ(𝑗,𝑘)≠(0,0) 𝐗(1)
0,𝑗,𝑘
𝐂 𝑘 ⨀ 𝐁𝑗
σ 𝑘=0
1
𝐂 𝑘
T
𝐂 𝑘 ⊛ σ 𝑗=0
1
𝐁𝑗
T
𝐁𝑗 − (1 − 𝜇) 𝐂 𝑘
T
𝐂 𝑘 ⊛ 𝐁𝑗
T
𝐁𝑗
Sangjun Son (SNU) 33
Dynamic Tensor Decomposition
◼ ALS update
❑ Static
◼ 𝓛 𝐀, 𝐁, 𝐂 = 𝓧0,0,0
− 𝐀0, 𝐁0, 𝐂0 F
2
+ 𝓛0
𝐀0 ←
𝐗(1)
0,0,0
𝐂0 ⨀ 𝐁0 + σ(𝑗,𝑘)≠(0,0) 𝐗(1)
0,𝑗,𝑘
𝐂 𝑘 ⨀ 𝐁𝑗
σ 𝑘=0
1
𝐂 𝑘
T
𝐂 𝑘 ⊛ σ 𝑗=0
1
𝐁𝑗
T
𝐁𝑗
❑ DTD
◼ 𝓛 𝐀, 𝐁, 𝐂 ≈ 𝜇 ෩𝐀, ෩𝐁, ෨𝐂 − 𝐀0, 𝐁0, 𝐂0 F
2
+ 𝓛0
𝐀0 ←
𝜇෩𝐀 ෨𝐂T
𝐂0 ⊛ ෩𝐁T
𝐁0 + σ(𝑗,𝑘)≠(0,0) 𝐗(1)
0,𝑗,𝑘
𝐂 𝑘 ⨀ 𝐁𝑗
σ 𝑘=0
1
𝐂 𝑘
T
𝐂 𝑘 ⊛ σ 𝑗=0
1
𝐁𝑗
T
𝐁𝑗 − (1 − 𝜇) 𝐂 𝑘
T
𝐂 𝑘 ⊛ 𝐁𝑗
T
𝐁𝑗
Reduction of time complexity, 𝒪 𝑅𝐼1 𝐼2 𝐼3 → 𝒪 𝑅2 𝐼1 + 𝐼2 + 𝐼3
Sangjun Son (SNU) 34
Low Rank Tensor Completion
◼ Generalized from matrix completion problem.
minimize
𝓧
𝑟𝑎𝑛𝑘(𝓧) subject to 𝛀 ⊛ 𝓧 = 𝓣
❑ 𝓧 is the complete tensor and
𝓣 denotes the practical observations of 𝓧.
𝛀 is a binary tensor indicating whether
each corresponding entry is observed or not.
❑ Rank Calculation is NP-hard!
Sangjun Son (SNU) 35
Low Rank Tensor Completion
◼ Relaxation objective function
minimize
𝓧
𝑟𝑎𝑛𝑘(𝓧) subject to 𝛀 ⊛ 𝓧 = 𝓣
minimize
𝓧, 𝐀1,𝐀2,… ,𝐀 𝑁
෍
𝑛=1
𝑁
𝛼 𝑛 𝐀 𝑛 ∗ subject to 𝛀 ⊛ 𝓧 = 𝓣
where 𝛼 𝑛 are trade-offs to balance the significance of each mode
and ∙ ∗ is a nuclear norm of a matrix.
Sangjun Son (SNU) 36
MAST Framework
◼ Loss function
❑ 𝓛DTD = 𝜇 ෪𝐀1, ෪𝐀2, … , ෪𝐀 𝑁 − 𝐀1
(0)
, 𝐀2
(0)
, … , 𝐀 𝑁
(0)
F
2
+ 𝓛0
❑ 𝓛LRTC = σ 𝑛=1
𝑁
𝛼 𝑛 𝐀 𝑛 ∗
❑ 𝓛 = 𝓛DTD + 𝓛LRTC
◼ Optimization method
❑ Alternating Direction Method of Multipliers
❑ Recover missing entries with an EM-like approach.
Sangjun Son (SNU) 37
MAST Framework
Auxiliary variables for ADMM
Termination Criterion
← 𝓣 + 𝛀C ⊛ 𝐀1, … , 𝐀 𝑁
Sangjun Son (SNU) 38
T-MAST vs MAST
user
𝑡 + 2
𝑡 + 1
𝑡
item
user
𝑡 + 2
𝑡 + 1
𝑡
𝑶
𝑶
𝑶
item
𝐀3
(𝑡)
𝐀1
(𝑡)
𝐀1
(𝑡+1)
𝐀3
(𝑡+1)
𝐀3
(𝑡)
𝐀1
(𝑡+1)
𝐀3
(𝑡+1)
𝐀3
(𝑡)
𝐀1
(𝑡)
◼ T-MAST alleviates the substitution on missing entries.
Sangjun Son (SNU) 39
T-MAST
user
𝑡 + 2
𝑡 + 1
𝑡
item
𝐀3
(𝑡)
𝐀1
(𝑡+1)
𝐀3
(𝑡+1)
𝐀3
(𝑡)
𝐀1
(𝑡)
Given recovered slices 𝓧(1:𝑇−1) ,
update current CPD at time step 𝑇.
𝓧(𝑇) ≈ { 𝐀1
(𝑇)
,
𝐀2
(1)
⋮
𝐀2
(𝑇)
, … ,
𝐀 𝑁
(1)
⋮
𝐀 𝑁
(𝑇)
}
Optimize w. ADMM
𝓛 = 𝓧(𝑇)
− 𝐀1
(𝑇)
, 𝐀2, 𝐀3, … , 𝐀 𝑁
F
2
+ ෍
𝑛=1
𝑁
𝛼 𝑛 𝐀 𝑛 ∗
+ ෍
𝑡=1
𝑇−1
𝜇 𝑡
෩𝐀1
(𝑡)
,
෩𝐀2
(1)
⋮
෩𝐀2
(𝑡)
, … ,
෩𝐀 𝑁
(1)
⋮
෩𝐀 𝑁
(𝑡)
− 𝐀1
(𝑡)
,
𝐀2
(1)
⋮
𝐀2
(𝑡)
, … ,
𝐀 𝑁
(1)
⋮
𝐀 𝑁
(𝑡)
F
2
Sangjun Son (SNU) 40
Outline
◼ Introduction
◼ Preliminaries
◼ Proposed Method
◼ Experiments
◼ Conclusion
Sangjun Son (SNU) 41
Experimental Setup
◼ Datasets
◼ Baselines
❑ Static CP-ALS: CPD with ALS
❑ TNCP: trace norm based CPD using ADMM
❑ OLSTEC: online CPD with recursive least square
Sangjun Son (SNU) 42
Evaluation Metric
◼ How effective?
❑ Running Average Area Under Curve, RA-AUC
❑
1
𝑇
σ 𝑡=1
𝑇
AUC 𝑡
◼ How efficient?
❑ Average Running Time
❑
1
𝑇
σ 𝑡=1
𝑇
RT𝑡
Figure from GLASS BOX
Machine Learning and Medicine,
by Rachel Lea Ballantyne Draelos
Sangjun Son (SNU) 43
Evaluation of Effectiveness
◼ MAST has commensurate performance w. static CPD
method.
◼ T-MAST outperforms MAST on temporal tensor
completion.
Sangjun Son (SNU) 44
Evaluation of Efficiency
◼ MAST outperforms all the others.
◼ Computation of T-MAST is faster than static methods,
but slower than MAST.
Sangjun Son (SNU) 45
Outline
◼ Introduction
◼ Preliminaries
◼ Proposed Method
◼ Experiments
◼ Conclusion
Sangjun Son (SNU) 46
Conclusion
◼ Define the problem of MAST completion.
❑ Propose a CP-based general algorithm MAST.
❑ Propose a modified model T-MAST for a special case.
◼ Empirically validate the effectiveness
and efficiency on real-world datasets.
❑ MAST, T-MAST outperforms in speed,
maintaining decomposition accuracy.
Sangjun Son (SNU) 47
Relevance to My Research
◼ This is the first work on streaming analysis
which solved multi-aspect streaming problem.
◼ I’m also working on streaming tensor.
❑ Online tensor analysis when drastic data incomes.
◼ I will implement this approach.
❑ Get intuitions to improve my model.
❑ Experiment with real world streaming datasets.
Sangjun Son (SNU) 48
Thank you !

More Related Content

What's hot

The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020
foxtrot jp R
 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updts
foxtrot jp R
 
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
Zheng Mengdi
 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020
foxtrot jp R
 
final poster
final posterfinal poster
final poster
Neal Woo
 

What's hot (20)

Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
 
Dynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualDynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manual
 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020
 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updts
 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
Finite Set Control Transcription for Optimal Control Applications
Finite Set Control Transcription for Optimal Control ApplicationsFinite Set Control Transcription for Optimal Control Applications
Finite Set Control Transcription for Optimal Control Applications
 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
 
Proje kt report
Proje kt reportProje kt report
Proje kt report
 
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)2014 spring crunch seminar (SDE/levy/fractional/spectral method)
2014 spring crunch seminar (SDE/levy/fractional/spectral method)
 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020
 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
 
The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-display
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
final poster
final posterfinal poster
final poster
 
Parameter estimation
Parameter estimationParameter estimation
Parameter estimation
 

Similar to Summary of MAST

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 

Similar to Summary of MAST (20)

Formulario 1
Formulario 1Formulario 1
Formulario 1
 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...
 
Restricted boltzmann machine
Restricted boltzmann machineRestricted boltzmann machine
Restricted boltzmann machine
 
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
 
18 me54 turbo machines module 03 question no 6a & 6b
18 me54 turbo machines module 03 question no 6a & 6b18 me54 turbo machines module 03 question no 6a & 6b
18 me54 turbo machines module 03 question no 6a & 6b
 
lec27.ppt
lec27.pptlec27.ppt
lec27.ppt
 
Stochastic Optimization
Stochastic OptimizationStochastic Optimization
Stochastic Optimization
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
Presentation
PresentationPresentation
Presentation
 
Photophysics of dendrimers
Photophysics of dendrimersPhotophysics of dendrimers
Photophysics of dendrimers
 
Lash
LashLash
Lash
 
Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulator
 
cinematica de particulas
cinematica de particulascinematica de particulas
cinematica de particulas
 
PR 103: t-SNE
PR 103: t-SNEPR 103: t-SNE
PR 103: t-SNE
 
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdfA Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
 
Distributional RL via Moment Matching
Distributional RL via Moment MatchingDistributional RL via Moment Matching
Distributional RL via Moment Matching
 
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 

Recently uploaded

NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
Amil baba
 
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
yulianti213969
 
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxAudience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Stephen266013
 
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
yulianti213969
 
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
siskavia95
 
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
pwgnohujw
 
edited gordis ebook sixth edition david d.pdf
edited gordis ebook sixth edition david d.pdfedited gordis ebook sixth edition david d.pdf
edited gordis ebook sixth edition david d.pdf
great91
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
ppy8zfkfm
 
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
zifhagzkk
 
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotecAbortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
obat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di Bontang
obat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di  Bontangobat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di  Bontang
obat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di Bontang
siskavia95
 
sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444
saurabvyas476
 

Recently uploaded (20)

NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
 
How to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data AnalyticsHow to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data Analytics
 
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
 
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxAudience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptx
 
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
obat aborsi Tarakan wa 081336238223 jual obat aborsi cytotec asli di Tarakan9...
 
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
 
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
 
社内勉強会資料_Object Recognition as Next Token Prediction
社内勉強会資料_Object Recognition as Next Token Prediction社内勉強会資料_Object Recognition as Next Token Prediction
社内勉強会資料_Object Recognition as Next Token Prediction
 
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
 
Bios of leading Astrologers & Researchers
Bios of leading Astrologers & ResearchersBios of leading Astrologers & Researchers
Bios of leading Astrologers & Researchers
 
edited gordis ebook sixth edition david d.pdf
edited gordis ebook sixth edition david d.pdfedited gordis ebook sixth edition david d.pdf
edited gordis ebook sixth edition david d.pdf
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
 
Identify Customer Segments to Create Customer Offers for Each Segment - Appli...
Identify Customer Segments to Create Customer Offers for Each Segment - Appli...Identify Customer Segments to Create Customer Offers for Each Segment - Appli...
Identify Customer Segments to Create Customer Offers for Each Segment - Appli...
 
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
 
Northern New England Tableau User Group (TUG) May 2024
Northern New England Tableau User Group (TUG) May 2024Northern New England Tableau User Group (TUG) May 2024
Northern New England Tableau User Group (TUG) May 2024
 
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotecAbortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
 
obat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di Bontang
obat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di  Bontangobat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di  Bontang
obat aborsi Bontang wa 082135199655 jual obat aborsi cytotec asli di Bontang
 
MATERI MANAJEMEN OF PENYAKIT TETANUS.ppt
MATERI  MANAJEMEN OF PENYAKIT TETANUS.pptMATERI  MANAJEMEN OF PENYAKIT TETANUS.ppt
MATERI MANAJEMEN OF PENYAKIT TETANUS.ppt
 
sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444sourabh vyas1222222222222222222244444444
sourabh vyas1222222222222222222244444444
 
Jual Obat Aborsi Bandung (Asli No.1) Wa 082134680322 Klinik Obat Penggugur Ka...
Jual Obat Aborsi Bandung (Asli No.1) Wa 082134680322 Klinik Obat Penggugur Ka...Jual Obat Aborsi Bandung (Asli No.1) Wa 082134680322 Klinik Obat Penggugur Ka...
Jual Obat Aborsi Bandung (Asli No.1) Wa 082134680322 Klinik Obat Penggugur Ka...
 

Summary of MAST

  • 1. Sangjun Son (SNU) 1 Multi-Aspect Streaming Tensor Completion (Qingquan Song et al., KDD 2017) Sangjun Son Data Mining Lab Dept. of CSE Seoul National University
  • 2. Sangjun Son (SNU) 2 Keywords ◼ Multi-Aspect Streaming Tensor (MAST) ❑ Incomplete, Multiple-mode streaming ◼ MAST Completion ❑ Dynamic Tensor Decomposition (DTD) ❑ Low Rank Tensor Completion (LRTC) ◼ Temporal MAST (T-MAST)
  • 3. Sangjun Son (SNU) 3 Outline ◼ Introduction ◼ Preliminaries ◼ Proposed Method ◼ Experiments ◼ Conclusion
  • 4. Sangjun Son (SNU) 4 Tensor ◼ An N-way array which is a generalization of vectors and matrices.
  • 5. Sangjun Son (SNU) 5 Real-world Tensor ◼ Recommendation ❑ A 3rd order tensor Index: (user, movie, time) ❑ Value: movie rating ◼ Link Prediction ❑ A 3rd order tensor Index: (user, user, interaction) ❑ Value: connectivity Missing entries of partially observed tensors
  • 6. Sangjun Son (SNU) 6 Tensor Completion (1/2) ◼ Real-world tensors are often incomplete. ❑ Due to missing at random, limited permissions and maloperations. ◼ Tensor Decomposition (CP) user topic 𝒖𝑖 ≈ ෍ 𝑖=1 𝑅 𝒕𝑖 = 𝐔 𝐓 𝐄 𝓣 ෍ 𝑖=1 𝑅 𝒖𝑖 ∘ 𝒕𝑖 ∘ 𝒆𝑖≈ = 𝐔, 𝐄, 𝐓
  • 7. Sangjun Son (SNU) 7 Tensor Completion (2/2) user topic ≈ 𝐔 𝐓 𝐄 user topic =
  • 8. Sangjun Son (SNU) 8 Tensor Completion (2/2) user topic ≈ 𝐔 𝐓 𝐄 user topic =
  • 9. Sangjun Son (SNU) 9 Tensor Completion (2/2) user topic ≈ 𝐔 𝐓 𝐄 user topic =
  • 10. Sangjun Son (SNU) 10 Tensor Completion (2/2) user topic ≈ 𝐔 𝐓 𝐄 user topic = ◼ Fill missing entries of partially observed tensors. ❑ Recommender systems ❑ Image recovery ❑ Clinical data analysis
  • 11. Sangjun Son (SNU) 11 Streaming Tensor ◼ High velocity streaming tensors in real world. ❑ Due to popularity of online information systems. ❑ Develop in one temporal mode. user item 𝓣 𝑡 user item user item 𝓣 𝑡+1 𝓣 𝑡+2
  • 12. Sangjun Son (SNU) 12 Multi-Aspect Streaming Tensor ◼ Existing methods ignore that, ❑ A tensor may develop in multiple dimensions. user item 𝓣 𝑡 𝓣 𝑡+1 𝓣 𝑡+2 item user item user
  • 13. Sangjun Son (SNU) 13 Multi-Aspect Streaming Tensor ◼ Existing methods ignore that, ❑ A tensor may develop in multiple dimensions. user item 𝓣 𝑡 𝓣 𝑡+1 𝓣 𝑡+2 item user item user ⊆ ⊆
  • 14. Sangjun Son (SNU) 14 Outline ◼ Introduction ◼ Preliminaries ◼ Proposed Method ◼ Experiments ◼ Conclusion
  • 15. Sangjun Son (SNU) 15 Notation for Tensor
  • 16. Sangjun Son (SNU) 16 Khatri-Rao Product ⨀ ◼ Given matrices 𝐀 ∈ ℝ𝐼×𝐾 and 𝐁 ∈ ℝ 𝐽×𝐾, Khatri–Rao product is denoted by 𝐀 ⨀ 𝐁. ❑ 𝐀 ⨀ 𝐁 = [𝐚1 ⊗ 𝐛1, ⋯ , 𝐚 𝐾 ⊗ 𝐛 𝐾] ∈ ℝ𝐼𝐽×𝐾 ◼ where ⊗ is Kronecker product 𝐚 ⊗ 𝐛 = 𝑎1 ⋮ 𝑎𝐼 ⊗ 𝑏1 ⋮ 𝑏𝐽 = 𝑎1 𝐛 𝑎2 𝐛 ⋮ 𝑎𝐼 𝐛 = 𝑎1 𝑏1 𝑎1 𝑏2 ⋮ 𝑎𝐼 𝑏𝐽 ◼ while ∘ is outer product 𝐚 ∘ 𝐛 = 𝐚 ⊗ 𝐛T = 𝑎1 ⋮ 𝑎𝐼 ⊗ 𝑏1 ⋯ 𝑏𝐽 = 𝑎1 𝐛T 𝑎2 𝐛T ⋮ 𝑎𝐼 𝐛T = 𝑎1 𝑏1 𝑎2 𝑏1 ⋮ 𝑎𝐼 𝑏1 ⋯ 𝑎1 𝑏𝐽 𝑎2 𝑏𝐽 ⋮ 𝑎𝐼 𝑏𝐽
  • 17. Sangjun Son (SNU) 17 Hadamard Product ⊛ ◼ Given matrices in the same dimension 𝐀, 𝐁 ∈ ℝ𝐼×𝐽 , Hadamard product is denoted by 𝐀 ⊛ 𝐁 ∈ ℝ𝐼×𝐽 . ❑ 𝐀 ⊛ 𝐁 𝑖𝑗 = 𝐀 𝑖𝑗 𝐁 𝑖𝑗 ❑ 𝐀 ⊛ 𝐁 = 𝑎11 𝑏11 𝑎21 𝑏22 ⋮ 𝑎𝐼1 𝑏𝐼1 ⋯ 𝑎1𝐽 𝑏1𝐽 𝑎2𝐽 𝑏2𝐽 ⋮ 𝑎𝐼𝐽 𝑏𝐼𝐽
  • 18. Sangjun Son (SNU) 18 Unfolding Figure from Lieven De Lathauwer et al, A Multi-Linear Singular Value Decomposition, 𝓧 𝓧 𝓧 𝐗(1) 𝐗(2) 𝐗(3) 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3 ❑ 𝐗(1) ∈ ℝ𝐼1×𝐼2 𝐼3 ❑ 𝐗(2) ∈ ℝ𝐼2×𝐼3 𝐼1 ❑ 𝐗(3) ∈ ℝ𝐼3×𝐼1 𝐼2 Given a tensor 𝓧 ∈ ℝ𝐼1×⋯×𝐼 𝑁, its mode-𝑛 unfolding matrix 𝐗(𝑛) ∈ ℝ𝐼 𝑛×ς 𝑖≠𝑛 𝑁 𝐼 𝑖.
  • 19. Sangjun Son (SNU) 19 CP Decomposition (CPD) ◼ Given a 𝑁th order tensor 𝓧 ∈ ℝ𝐼1×⋯×𝐼 𝑁, CPD is an approximation form of 𝑁 matrices 𝐀 𝑛 ∈ ℝ𝐼 𝑛×𝑅 . ❑ where 𝑛 = 1, … , 𝑁 and 𝑅 is the rank of 𝓧. ◼ 𝓧 ≈ 𝐀1, … , 𝐀 𝑁 ❑ 𝓧 unfold 𝐗(𝑛) ≈ 𝐀 𝑛 𝐀 𝑁 ⨀ … 𝐀 𝑛+1 ⨀ 𝐀 𝑛−1 … ⨀ 𝐀1 T = 𝐀 𝑛 𝐀 𝑘 ⊙ 𝑘≠𝑛 T 𝓧 ≈ 𝐀, 𝐁, 𝐂 𝐗(1) ≈ 𝐀 𝐂 ⨀ 𝐁 T 𝐗(2) ≈ 𝐁 𝐂 ⨀ 𝐀 T 𝐗(3) ≈ 𝐂 𝐁 ⨀ 𝐀 T 𝐀 𝐁 𝐂
  • 20. Sangjun Son (SNU) 20 Alternating Least Square Update 𝐀 ≈ 𝐗(1) 𝐂 ⨀ 𝐁 T † 𝐁 ≈ 𝐗(2) 𝐂 ⨀ 𝐀 T † 𝐂 ≈ 𝐗(3) 𝐁 ⨀ 𝐀 T † = 𝐗(1) 𝐂 ⨀ 𝐁 𝐂T 𝐂 ⊛ 𝐁T 𝐁 † = 𝐗(2) 𝐂 ⨀ 𝐀 𝐂T 𝐂 ⊛ 𝐀T 𝐀 † = 𝐗(3) 𝐁 ⨀ 𝐀 𝐁T 𝐁 ⊛ 𝐀T 𝐀 † ◼ Find factor sequence 𝐀 𝑛 that minimizes 𝓛 𝐀1, … , 𝐀 𝑁 = 𝓧 − 𝐀1, … , 𝐀 𝑁 F 2 ❑ Optimize factor matrix 𝐀 𝑛 while others 𝐀 𝑘≠𝑛 are fixed. ❑ And repeat until convergence.
  • 21. Sangjun Son (SNU) 21 ◼ Find factor sequence 𝐀 𝑛 that minimizes 𝓛 𝐀1, … , 𝐀 𝑁 = 𝓧 − 𝐀1, … , 𝐀 𝑁 F 2 ❑ Optimize factor matrix 𝐀 𝑛 while others 𝐀 𝑘≠𝑛 are fixed. ❑ And repeat until convergence. Alternating Least Square Update 𝐀 ≈ 𝐗(1) 𝐂 ⨀ 𝐁 T † 𝐁 ≈ 𝐗(2) 𝐂 ⨀ 𝐀 T † 𝐂 ≈ 𝐗(3) 𝐁 ⨀ 𝐀 T † = 𝐗(1) 𝐂 ⨀ 𝐁 𝐂T 𝐂 ⊛ 𝐁T 𝐁 † = 𝐗(2) 𝐂 ⨀ 𝐀 𝐂T 𝐂 ⊛ 𝐀T 𝐀 † = 𝐗(3) 𝐁 ⨀ 𝐀 𝐁T 𝐁 ⊛ 𝐀T 𝐀 † 𝐀 𝑛 ≈ 𝐗(𝑛) 𝐀 𝑘 ⊙ 𝑘≠𝑛 T † = 𝐗(𝑛) 𝐀 𝑘 ⊙ 𝑘≠𝑛 𝐀 𝑘 T 𝐀 𝑘 ⊛ 𝑘≠𝑛 †
  • 22. Sangjun Son (SNU) 22 Problem Definition ◼ Multi-Aspect Steaming Tensor Completion ❑ Given MAST sequence 𝓧(𝑇) with missing entries, recover the missing data in current snapshot 𝓧(𝑇). ❑ Input ◼ Previously recovered MAST 𝓧(𝑇−1) ⊆ 𝓧 𝑇 ❑ Output ◼ Relative complement of 𝓧(𝑇−1) in 𝓧 𝑇 , 𝓧(𝑇) 𝓧 𝑇−1 ❑ Goal ◼ Maximize the effectiveness and efficiency user item item user 𝓧(𝑇−1) 𝓧(𝑇)
  • 23. Sangjun Son (SNU) 23 Outline ◼ Introduction ◼ Preliminaries ◼ Proposed Method ◼ Experiments ◼ Conclusion
  • 24. Sangjun Son (SNU) 24 Challenges ◼ Uncertainty of tensor mode changes ◼ Incompleteness: missing data problem ◼ Higher time and space complexity
  • 25. Sangjun Son (SNU) 25 MAST Framework ◼ Dynamic Tensor Decomposition (DTD) ❑ Model the incremental pattern of MAST ◼ Low Rank Tensor Completion (LRTC) ❑ Track its low-rank subspace
  • 26. Sangjun Son (SNU) 26 Dynamic Tensor Decomposition ◼ Given the recovered tensor in previous step, ෩𝓧 ෩𝓧 𝓧 𝐼1 𝐼2 𝐼3 𝐼2 + 𝑑2 𝐼1+𝑑1 Time 𝑇 − 1 Time 𝑇 ≈ ෩𝐀 ෨𝐂 𝐀0 𝐂0 𝐂1 𝐀1
  • 27. Sangjun Son (SNU) 27 Dynamic Tensor Decomposition Partition → Substitution → Re-decomposition ෩𝓧 𝓧 𝐼2 + 𝑑2 𝐼1+𝑑1 ෩𝓧
  • 28. Sangjun Son (SNU) 28 Dynamic Tensor Decomposition Partition → Substitution → Re-decomposition ෩𝓧 𝓧 𝐼2 + 𝑑2 𝐼1+𝑑1 𝓧1,1,1 𝓧1,0,1 𝓧1,1,0 𝓧0,1,1 𝓧0,0,1 𝓧1,0,0 ෩𝓧 = 𝓧0,0,0 𝓧0,1,0
  • 29. Sangjun Son (SNU) 29 Dynamic Tensor Decomposition Partition → Substitution → Re-decomposition 𝓧1,1,1 𝓧1,0,1 𝓧1,1,0 𝓧0,1,1 𝓧0,0,1 𝓧1,0,0 𝓧0,1,0 ෩𝐀 ෨𝐂 𝓧1,1,1 𝓧1,0,1 𝓧1,1,0 𝓧0,1,1 𝓧0,0,1 𝓧1,0,0 ෩𝓧 = 𝓧0,0,0 𝓧0,1,0
  • 30. Sangjun Son (SNU) 30 Dynamic Tensor Decomposition Partition → Substitution → Re-decomposition 𝓧1,1,1 𝓧1,0,1 𝓧1,1,0 𝓧0,1,1 𝓧0,0,1 𝓧1,0,0 𝓧0,1,0 ෩𝐀 ෨𝐂 𝐀0 𝐂0 𝐂1 𝐀1
  • 31. Sangjun Son (SNU) 31 Dynamic Tensor Decomposition ◼ Loss function ❑ 𝓛 𝐀, 𝐁, 𝐂 = 𝓧 − 𝐀, 𝐁, 𝐂 F 2 = ෍ (𝑖,𝑗,𝑘)∈Θ 𝓧𝑖,𝑗,𝑘 − 𝐀 𝑖, 𝐁𝑗, 𝐂 𝑘 F 2 = 𝓧0,0,0 − 𝐀0, 𝐁0, 𝐂0 F 2 + 𝓛0 ≈ 𝜇 ෩𝐀, ෩𝐁, ෨𝐂 − 𝐀0, 𝐁0, 𝐂0 F 2 + 𝓛0 ❑ Forgetting factor 𝜇 ∈ 0, 1 to alleviate the influence of the previous decomposition error. 𝓧1,1,1𝓧1,0,1 𝓧1,1,0 𝓧0,1,1 𝓧0,0,1 𝓧1,0,0 𝓧0,1,0 ෩𝐀 ෨𝐂 𝐀0 𝐂0 𝐂1 𝐀1 ෩𝓧 Θ ≜ 0,1 3 𝐀 𝐁 𝐂 ≈ ≈
  • 32. Sangjun Son (SNU) 32 Dynamic Tensor Decomposition ◼ ALS update ❑ Static ◼ 𝓛 𝐀, 𝐁, 𝐂 = 𝓧0,0,0 − 𝐀0, 𝐁0, 𝐂0 F 2 + 𝓛0 𝐀0 ← σ 𝑗,𝑘 𝐗(1) 0,𝑗,𝑘 𝐂 𝑘 ⨀ 𝐁𝑗 σ 𝑘=0 1 𝐂 𝑘 T 𝐂 𝑘 ⊛ σ 𝑗=0 1 𝐁𝑗 T 𝐁𝑗 ❑ DTD ◼ 𝓛 𝐀, 𝐁, 𝐂 ≈ 𝜇 ෩𝐀, ෩𝐁, ෨𝐂 − 𝐀0, 𝐁0, 𝐂0 F 2 + 𝓛0 𝐀0 ← 𝜇෩𝐀 ෨𝐂T 𝐂0 ⊛ ෩𝐁T 𝐁0 + σ(𝑗,𝑘)≠(0,0) 𝐗(1) 0,𝑗,𝑘 𝐂 𝑘 ⨀ 𝐁𝑗 σ 𝑘=0 1 𝐂 𝑘 T 𝐂 𝑘 ⊛ σ 𝑗=0 1 𝐁𝑗 T 𝐁𝑗 − (1 − 𝜇) 𝐂 𝑘 T 𝐂 𝑘 ⊛ 𝐁𝑗 T 𝐁𝑗
  • 33. Sangjun Son (SNU) 33 Dynamic Tensor Decomposition ◼ ALS update ❑ Static ◼ 𝓛 𝐀, 𝐁, 𝐂 = 𝓧0,0,0 − 𝐀0, 𝐁0, 𝐂0 F 2 + 𝓛0 𝐀0 ← 𝐗(1) 0,0,0 𝐂0 ⨀ 𝐁0 + σ(𝑗,𝑘)≠(0,0) 𝐗(1) 0,𝑗,𝑘 𝐂 𝑘 ⨀ 𝐁𝑗 σ 𝑘=0 1 𝐂 𝑘 T 𝐂 𝑘 ⊛ σ 𝑗=0 1 𝐁𝑗 T 𝐁𝑗 ❑ DTD ◼ 𝓛 𝐀, 𝐁, 𝐂 ≈ 𝜇 ෩𝐀, ෩𝐁, ෨𝐂 − 𝐀0, 𝐁0, 𝐂0 F 2 + 𝓛0 𝐀0 ← 𝜇෩𝐀 ෨𝐂T 𝐂0 ⊛ ෩𝐁T 𝐁0 + σ(𝑗,𝑘)≠(0,0) 𝐗(1) 0,𝑗,𝑘 𝐂 𝑘 ⨀ 𝐁𝑗 σ 𝑘=0 1 𝐂 𝑘 T 𝐂 𝑘 ⊛ σ 𝑗=0 1 𝐁𝑗 T 𝐁𝑗 − (1 − 𝜇) 𝐂 𝑘 T 𝐂 𝑘 ⊛ 𝐁𝑗 T 𝐁𝑗 Reduction of time complexity, 𝒪 𝑅𝐼1 𝐼2 𝐼3 → 𝒪 𝑅2 𝐼1 + 𝐼2 + 𝐼3
  • 34. Sangjun Son (SNU) 34 Low Rank Tensor Completion ◼ Generalized from matrix completion problem. minimize 𝓧 𝑟𝑎𝑛𝑘(𝓧) subject to 𝛀 ⊛ 𝓧 = 𝓣 ❑ 𝓧 is the complete tensor and 𝓣 denotes the practical observations of 𝓧. 𝛀 is a binary tensor indicating whether each corresponding entry is observed or not. ❑ Rank Calculation is NP-hard!
  • 35. Sangjun Son (SNU) 35 Low Rank Tensor Completion ◼ Relaxation objective function minimize 𝓧 𝑟𝑎𝑛𝑘(𝓧) subject to 𝛀 ⊛ 𝓧 = 𝓣 minimize 𝓧, 𝐀1,𝐀2,… ,𝐀 𝑁 ෍ 𝑛=1 𝑁 𝛼 𝑛 𝐀 𝑛 ∗ subject to 𝛀 ⊛ 𝓧 = 𝓣 where 𝛼 𝑛 are trade-offs to balance the significance of each mode and ∙ ∗ is a nuclear norm of a matrix.
  • 36. Sangjun Son (SNU) 36 MAST Framework ◼ Loss function ❑ 𝓛DTD = 𝜇 ෪𝐀1, ෪𝐀2, … , ෪𝐀 𝑁 − 𝐀1 (0) , 𝐀2 (0) , … , 𝐀 𝑁 (0) F 2 + 𝓛0 ❑ 𝓛LRTC = σ 𝑛=1 𝑁 𝛼 𝑛 𝐀 𝑛 ∗ ❑ 𝓛 = 𝓛DTD + 𝓛LRTC ◼ Optimization method ❑ Alternating Direction Method of Multipliers ❑ Recover missing entries with an EM-like approach.
  • 37. Sangjun Son (SNU) 37 MAST Framework Auxiliary variables for ADMM Termination Criterion ← 𝓣 + 𝛀C ⊛ 𝐀1, … , 𝐀 𝑁
  • 38. Sangjun Son (SNU) 38 T-MAST vs MAST user 𝑡 + 2 𝑡 + 1 𝑡 item user 𝑡 + 2 𝑡 + 1 𝑡 𝑶 𝑶 𝑶 item 𝐀3 (𝑡) 𝐀1 (𝑡) 𝐀1 (𝑡+1) 𝐀3 (𝑡+1) 𝐀3 (𝑡) 𝐀1 (𝑡+1) 𝐀3 (𝑡+1) 𝐀3 (𝑡) 𝐀1 (𝑡) ◼ T-MAST alleviates the substitution on missing entries.
  • 39. Sangjun Son (SNU) 39 T-MAST user 𝑡 + 2 𝑡 + 1 𝑡 item 𝐀3 (𝑡) 𝐀1 (𝑡+1) 𝐀3 (𝑡+1) 𝐀3 (𝑡) 𝐀1 (𝑡) Given recovered slices 𝓧(1:𝑇−1) , update current CPD at time step 𝑇. 𝓧(𝑇) ≈ { 𝐀1 (𝑇) , 𝐀2 (1) ⋮ 𝐀2 (𝑇) , … , 𝐀 𝑁 (1) ⋮ 𝐀 𝑁 (𝑇) } Optimize w. ADMM 𝓛 = 𝓧(𝑇) − 𝐀1 (𝑇) , 𝐀2, 𝐀3, … , 𝐀 𝑁 F 2 + ෍ 𝑛=1 𝑁 𝛼 𝑛 𝐀 𝑛 ∗ + ෍ 𝑡=1 𝑇−1 𝜇 𝑡 ෩𝐀1 (𝑡) , ෩𝐀2 (1) ⋮ ෩𝐀2 (𝑡) , … , ෩𝐀 𝑁 (1) ⋮ ෩𝐀 𝑁 (𝑡) − 𝐀1 (𝑡) , 𝐀2 (1) ⋮ 𝐀2 (𝑡) , … , 𝐀 𝑁 (1) ⋮ 𝐀 𝑁 (𝑡) F 2
  • 40. Sangjun Son (SNU) 40 Outline ◼ Introduction ◼ Preliminaries ◼ Proposed Method ◼ Experiments ◼ Conclusion
  • 41. Sangjun Son (SNU) 41 Experimental Setup ◼ Datasets ◼ Baselines ❑ Static CP-ALS: CPD with ALS ❑ TNCP: trace norm based CPD using ADMM ❑ OLSTEC: online CPD with recursive least square
  • 42. Sangjun Son (SNU) 42 Evaluation Metric ◼ How effective? ❑ Running Average Area Under Curve, RA-AUC ❑ 1 𝑇 σ 𝑡=1 𝑇 AUC 𝑡 ◼ How efficient? ❑ Average Running Time ❑ 1 𝑇 σ 𝑡=1 𝑇 RT𝑡 Figure from GLASS BOX Machine Learning and Medicine, by Rachel Lea Ballantyne Draelos
  • 43. Sangjun Son (SNU) 43 Evaluation of Effectiveness ◼ MAST has commensurate performance w. static CPD method. ◼ T-MAST outperforms MAST on temporal tensor completion.
  • 44. Sangjun Son (SNU) 44 Evaluation of Efficiency ◼ MAST outperforms all the others. ◼ Computation of T-MAST is faster than static methods, but slower than MAST.
  • 45. Sangjun Son (SNU) 45 Outline ◼ Introduction ◼ Preliminaries ◼ Proposed Method ◼ Experiments ◼ Conclusion
  • 46. Sangjun Son (SNU) 46 Conclusion ◼ Define the problem of MAST completion. ❑ Propose a CP-based general algorithm MAST. ❑ Propose a modified model T-MAST for a special case. ◼ Empirically validate the effectiveness and efficiency on real-world datasets. ❑ MAST, T-MAST outperforms in speed, maintaining decomposition accuracy.
  • 47. Sangjun Son (SNU) 47 Relevance to My Research ◼ This is the first work on streaming analysis which solved multi-aspect streaming problem. ◼ I’m also working on streaming tensor. ❑ Online tensor analysis when drastic data incomes. ◼ I will implement this approach. ❑ Get intuitions to improve my model. ❑ Experiment with real world streaming datasets.
  • 48. Sangjun Son (SNU) 48 Thank you !