SlideShare a Scribd company logo
Hysteretic Mechanical Systems
and Materials
with Matlab Codes
Version 14 August 2023 Nicolò Vaiana, Ph.D.
University of Naples Federico II
Polytechnic and Basic Sciences School
Department of Structures for Engineering and Architecture
1
P2
Hysteretic Mechanical Systems and Materials
SDF Hysteretic System 1
VRM DF - RKM
NONLINEAR TIME HYSTORY ANALYSIS
P21
Introduction
This short report briefly illustrates the main ingredients required to perform Nonlinear Time History Analyses
(NLTHAs) of a Single Degree of Freedom (SDF) system having rate-independent hysteretic behavior.
The Vaiana Rosati Model - Differential Formulation (VRM DF) is adopted to simulate the behavior of the rate-
independent hysteretic element.
The second-order Ordinary Differential Equation (ODE) of motion is replaced by an equivalent system of three
coupled first-order ODEs and numerically solved by using the MATLAB® ode45 solver that is based on an
explicit fourth-fifth-order Runge Kutta Method (RKM).
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P31
Nonlinear Equilibrium Equation
The nonlinear equilibrium equation of the SDF rate-independent hysteretic system is:
𝑚 ሷ
𝑢(𝑡) + 𝑓(𝑡) = 𝑝 𝑡 ,
where ሷ
𝑢(𝑡) is the acceleration of the mass 𝑚, 𝑓(𝑡) represents the rate-independent hysteretic generalized
force, and 𝑝 𝑡 is the external generalized force.
Such a second-order ODE can be replaced by an equivalent system of coupled first-order ODEs. To this end,
the following state variables are first introduced:
𝑥1 𝑡 = 𝑢 𝑡 ,
𝑥2 𝑡 = ሶ
𝑢 𝑡 ,
𝑥3 𝑡 = 𝑓 𝑡 .
Subsequently, they are differentiated with respect to time 𝑡 thus obtaining:
ሶ
𝑥1 𝑡 = ሶ
𝑢 𝑡 = 𝑥2 𝑡 ,
ሶ
𝑥2 𝑡 = ሷ
𝑢 𝑡 = 𝑚−1
𝑝 𝑡 − 𝑥3(𝑡) ,
ሶ
𝑥3 𝑡 = ሶ
𝑓 𝑡 .
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P41
Rate-Independent Hysteretic Generalized Force
The expression of ሶ
𝑓 𝑡 is provided by the Vaiana Rosati Model - Differential Formulation (VRM DF):
ሶ
𝑓 𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + sgn ሶ
𝑢 𝑡 𝛼 𝑓
𝑒 𝑡 + 𝑘𝑏𝑢 𝑡 + sgn ሶ
𝑢 𝑡 𝑓0 − 𝑓 𝑡 ሶ
𝑢 𝑡 ,
where:
𝑘𝑒 𝑡 = 𝛽1𝛽2𝑒𝛽2𝑢(𝑡)
+
4𝛾1𝛾2 𝑒−𝛾2 𝑢(𝑡)−𝛾3
1+𝑒−𝛾2 𝑢(𝑡)−𝛾3
2 ,
𝑓
𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢(𝑡)
− 𝛽1 +
4𝛾1
1+𝑒−𝛾2 𝑢(𝑡)−𝛾3
− 2𝛾1.
The solution of the differential equation must satisfy the following initial condition:
𝑓 𝑢(𝑡𝑃) = 𝑓 𝑡𝑃 .
During the generic loading phase ( ሶ
𝑢(𝑡) > 0), the model parameters are:
𝑘𝑏 = 𝑘𝑏
+
, 𝑓0 = 𝑓0
+
, 𝛼 = 𝛼+
, 𝛽1 = 𝛽1
+
, 𝛽2 = 𝛽2
+
, 𝛾1 = 𝛾1
+
, 𝛾2 = 𝛾2
+
, 𝛾3 = 𝛾3
+
,
whereas, during the generic unloading one ( ሶ
𝑢(𝑡) < 0), they are:
𝑘𝑏 = 𝑘𝑏
−
, 𝑓0 = 𝑓0
−
, 𝛼 = 𝛼−
, 𝛽1 = 𝛽1
−
, 𝛽2 = 𝛽2
−
, 𝛾1 = 𝛾1
−
, 𝛾2 = 𝛾2
−
, 𝛾3 = 𝛾3
−
.
Note that the only conditions to be fulfilled are:
𝛼+
> 0, 𝛼−
> 0, 𝑓0
+
> 𝑓0
−
,
since the other parameters can be arbitrary real numbers.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P51
External Generalized Force
In the case of a sinusoidal harmonic generalized force (left), the expression of 𝑝 𝑡 is:
𝑝 𝑡 = 𝑝0 sin 2𝜋𝑓𝑝𝑡 ,
whereas, in the case of a cosine harmonic generalized force (right), it becomes:
𝑝 𝑡 = 𝑝0 cos 2𝜋𝑓𝑝𝑡 ,
where 𝑝0 and 𝑓𝑝 represent the force amplitude and frequency, respectively.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
The system of coupled first-order ODEs to be numerically solved is:
ሶ
𝑥1 𝑡 = 𝑥2 𝑡 ,
ሶ
𝑥2 𝑡 = 𝑚−1
𝑝 𝑡 − 𝑥3(𝑡) ,
ሶ
𝑥3 𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + sgn 𝑥2 𝑡 𝛼 𝑓
𝑒 𝑡 + 𝑘𝑏𝑥1 𝑡 + sgn 𝑥2 𝑡 𝑓0 − 𝑥3 𝑡 𝑥2 𝑡 ,
where:
𝑘𝑒 𝑡 = 𝛽1𝛽2𝑒𝛽2𝑥1 𝑡
+
4𝛾1𝛾2 𝑒−𝛾2 𝑥1 𝑡 −𝛾3
1+𝑒−𝛾2 𝑥1 𝑡 −𝛾3
2 ,
𝑓
𝑒 𝑡 = 𝛽1𝑒𝛽2𝑥1 𝑡
− 𝛽1 +
4𝛾1
1+𝑒−𝛾2 𝑥1 𝑡 −𝛾3
− 2𝛾1,
and:
𝑘𝑏 = 𝑘𝑏
+
, 𝑓0 = 𝑓0
+
, 𝛼 = 𝛼+
, 𝛽1 = 𝛽1
+
, 𝛽2 = 𝛽2
+
, 𝛾1 = 𝛾1
+
, 𝛾2 = 𝛾2
+
, 𝛾3 = 𝛾3
+
, if 𝑥2 𝑡 > 0,
𝑘𝑏 = 𝑘𝑏
−
, 𝑓0 = 𝑓0
−
, 𝛼 = 𝛼−
, 𝛽1 = 𝛽1
−
, 𝛽2 = 𝛽2
−
, 𝛾1 = 𝛾1
−
, 𝛾2 = 𝛾2
−
, 𝛾3 = 𝛾3
−
, if 𝑥2 𝑡 < 0.
To this end, it is adopted the MATLAB® ode45 solver that, being based on an explicit fourth-fifth-order Runge
Kutta formula, allows for the evaluation of the solution at time 𝑡 by adopting the solution at the preceding
time 𝑡𝑃 = 𝑡 − ∆𝑡.
P61
Numerical Method
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
P71
Results – Sinusoidal Generalized Force
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
mass applied force VRM parameters
𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
Ns2m−1
N Hz Nm−1
N m−1
N m−1
N m−1
m
10 14 1 + 0 1.2 80 0.01 35 2 80 0.006
− 0 1.2 80 - 0.01 - 35 2 80 - 0.006
P81
Results – Cosine Generalized Force
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
mass applied force VRM parameters
𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
Ns2m−1
N Hz Nm−1
N m−1
N m−1
N m−1
m
10 14 1 + 0 1.2 80 0.01 35 2 80 0.006
− 0 1.2 80 - 0.01 - 35 2 80 - 0.006
9
Matlab Code - NLTHA_SYSTEM_1_VRM_DF_RKM.m
% =========================================================================================
% August 2023
% Nonlinear Time History Analysis of SDF Rate-Independent Hysteretic Systems
% Nicolo' Vaiana, Assistant Professor in Structural Mechanics and Dynamics
% Department of Structures for Engineering and Architecture
% University of Naples Federico II
% via Claudio 21, 80125, Napoli, Italy
% e-mail: nicolo.vaiana@unina.it, nicolovaiana@outlook.it
% =========================================================================================
clc; clear all; close all;
%% SDF RATE-INDEPEDENT HYSTERETIC SYSTEM MASS
m = 10; % Ns^2/m
%% VAIANA ROSATI MODEL PARAMETERS
kbp = 0; kbm = 0; % N/m
f0p = 1.2; f0m = 1.2; % N
alfap = 80; alfam = 80; % 1/m
beta1p = 0.01; beta1m = -0.01; % N
beta2p = 35; beta2m = -35; % 1/m
gamma1p = 2; gamma1m = 2; % N
gamma2p = 80; gamma2m = 80; % 1/m
gamma3p = 0.006; gamma3m = -0.006; % m
parp = [kbp f0p alfap beta1p beta2p gamma1p gamma2p gamma3p]; % -
parm = [kbm f0m alfam beta1m beta2m gamma1m gamma2m gamma3m]; % -
%% EXTERNAL GENERALIZED FORCE
tv = 0:0.001:10; % s
fp = 1; % Hz
p0 = 14; % N
p = p0*sin(2*pi*fp*tv(1:length(tv))); % N
%% RUNGE-KUTTA METHOD
%% INITIAL SETTING
neq = 3; % - number of equations
IC = [0 0 0]; % - initial conditions [x1 x2 x3]
%% CALCULATIONS AT EACH TIME STEP
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[t,x] = ode45(@(t,x) ODEs(t, x, neq, m, parp, parm, p, tv), tv, IC, options);
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
10
Matlab Code - NLTHA_SYSTEM_1_VRM_DF_RKM.m
%% PLOTS
figure('Color',[0.949019610881805 0.949019610881805 0.949019610881805]);
subplot('Position',[0.05 0.58 0.2 0.4]);
grid on; box on;
xlabel('time [s]');
ylabel('applied force [N]');
axis([0 10 -20 20]);
set(gca,'XTick',[0 2 4 6 8 10]);
set(gca,'YTick',[-20 -10 0 10 20]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot1 = line(t,p,'Color','[0.584313750267029 0.168627455830574 0.294117659330368]','LineWidth',3);
subplot('Position',[0.30 0.58 0.2 0.4]);
grid on; box on;
xlabel('time [s]');
ylabel('displacement [m]');
axis([0 10 -0.2 0.2]);
set(gca,'XTick',[0 2 4 6 8 10]);
set(gca,'YTick',[-0.2 -0.1 0 0.1 0.2]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot2 = line(t,x(:,1),'Color','[0.204, 0.302, 0.494]','LineWidth',3);
subplot('Position',[0.05 0.08 0.2 0.4]);
grid on; box on;
xlabel('time [s]');
ylabel('velocity [m/s]');
axis([0 10 -0.8 0.8]);
set(gca,'XTick',[0 2 4 6 8 10]);
set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot3 = line(t,x(:,2),'Color','[0.204, 0.302, 0.494]','LineWidth',3);
subplot('Position',[0.30 0.08 0.2 0.4]);
grid on; box on;
xlabel('displacement [m]');
ylabel('force [N]');
axis([-0.2 0.2 -8 8]);
set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]);
set(gca,'YTick',[-8.0 -4.0 0 4.0 8.0]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
plot4 = line(x(:,1),x(:,3),'Color','[0.204, 0.302, 0.494]','LineWidth',3);
subplot('Position',[0.56 0.12 0.4 0.8]);
grid on; box on;
xlabel('d [m]');
ylabel('v [m/s]');
zlabel('f [N]');
axis([-0.2 0.2 -0.8 0.8 -8 8]);
set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]);
set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]);
set(gca,'ZTick',[-8.0 -4.0 0 4.0 8.0]);
set(gca,'GridLineStyle','--');
set(gca,'FontName','Times New Roman');
set(gca,'FontSize',16);
set(gca,'BoxStyle','full');
view([229.572533907569 40.0908387200157]);
plot5 = line(x(:,1),x(:,2),x(:,3),'Color','[0.204, 0.302, 0.494]','Linewidth',3);
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
11
Matlab Code - ODEs.m
function xd = ODEs(t, x, neq, m, parp, parm, pv, tv)
%% EXTERNAL GENERALIZED FORCE
p = interp1(tv,pv,t); % N
%% STATE VARIABLES
u = x(1); % m displacement
ud = x(2); % m/s velocity
f = x(3); % N hysteretic force
%% VAIANA ROSATI MODEL PARAMETERS
if ud > 0
kb = parp(1); f0 = parp(2); alfa = parp(3); beta1 = parp(4);
beta2 = parp(5); gamma1 = parp(6); gamma2 = parp(7); gamma3 = parp(8);
else
kb = parm(1); f0 = parm(2); alfa = parm(3); beta1 = parm(4);
beta2 = parm(5); gamma1 = parm(6); gamma2 = parm(7); gamma3 = parm(8);
end
%% SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS
xd = zeros(neq,1);
xd(1) = ud;
xd(2) = (p-f)/m;
fe = beta1*exp(beta2*u)-beta1+(4*gamma1/(1+exp(-gamma2*(u-gamma3))))-2*gamma1;
ke = beta1*beta2*exp(beta2*u)+(4*gamma1*gamma2*exp(-gamma2*(u-gamma3)))/(1+exp(-gamma2*(u-gamma3)))^2;
xd(3) = (ke+kb+sign(ud)*alfa*(fe+kb*u+sign(ud)*f0-f))*ud;
end
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS
12
References
[1] Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic
phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93(3): 1647-1669.
[2] Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for
steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196-212.
[3] Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a
novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98(4): 2879-2901.
[4] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric
mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 146: 106984.
[5] Vaiana N, Rosati L (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent
hysteretic responses. Mechanical Systems and Signal Processing 182: 109539.
[6] Vaiana N, Capuano R, Rosati L (2023) Evaluation of path-dependent work and internal energy change for hysteretic
mechanical systems. Mechanical Systems and Signal Processing 186: 109862.
[7] Vaiana N, Rosati L (2023) Analytical and differential reformulations of the Vaiana–Rosati model for complex rate-independent
mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 199: 110448.
Hysteretic Mechanical Systems and Materials
P2
NONLINEAR TIME HYSTORY ANALYSIS

More Related Content

Similar to SDF Hysteretic System 1 - Differential Vaiana Rosati Model

Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
Ashutosh Kumar
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
ijtsrd
 
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
IJECEIAES
 
ELEG 421 Control Systems Transient and Steady State .docx
ELEG 421 Control Systems  Transient and Steady State .docxELEG 421 Control Systems  Transient and Steady State .docx
ELEG 421 Control Systems Transient and Steady State .docx
toltonkendal
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
ijcsitcejournal
 
Design of Quadratic Optimal Regulator for DC Motor
Design of Quadratic Optimal Regulator for DC Motor Design of Quadratic Optimal Regulator for DC Motor
Design of Quadratic Optimal Regulator for DC Motor
International Journal of Research and Discovery(IJRD)
 
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero DynamicsAdaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Syed Aseem Ul Islam
 
Economia01
Economia01Economia01
Economia01
Crist Oviedo
 
Economia01
Economia01Economia01
Economia01
Crist Oviedo
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
Alexander Decker
 
On the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic systemOn the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic system
ijfcstjournal
 
Finite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S formFinite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S form
International Journal of Power Electronics and Drive Systems
 
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm SystemsA Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
Koorosh Aslansefat
 
Lecture 1
Lecture 1Lecture 1
Lecture 1butest
 
Stochastic augmentation by generalized minimum variance control with rst loop...
Stochastic augmentation by generalized minimum variance control with rst loop...Stochastic augmentation by generalized minimum variance control with rst loop...
Stochastic augmentation by generalized minimum variance control with rst loop...
UFPA
 
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
IJECEIAES
 
Paper id 25201479
Paper id 25201479Paper id 25201479
Paper id 25201479IJRAT
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filternozomuhamada
 

Similar to SDF Hysteretic System 1 - Differential Vaiana Rosati Model (20)

Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
 
ELEG 421 Control Systems Transient and Steady State .docx
ELEG 421 Control Systems  Transient and Steady State .docxELEG 421 Control Systems  Transient and Steady State .docx
ELEG 421 Control Systems Transient and Steady State .docx
 
Article 1
Article 1Article 1
Article 1
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
 
Design of Quadratic Optimal Regulator for DC Motor
Design of Quadratic Optimal Regulator for DC Motor Design of Quadratic Optimal Regulator for DC Motor
Design of Quadratic Optimal Regulator for DC Motor
 
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero DynamicsAdaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
Adaptive Flight-Control with Unknown Time-Varying Unstable Zero Dynamics
 
Economia01
Economia01Economia01
Economia01
 
Economia01
Economia01Economia01
Economia01
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
 
On the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic systemOn the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic system
 
Finite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S formFinite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S form
 
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm SystemsA Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Stochastic augmentation by generalized minimum variance control with rst loop...
Stochastic augmentation by generalized minimum variance control with rst loop...Stochastic augmentation by generalized minimum variance control with rst loop...
Stochastic augmentation by generalized minimum variance control with rst loop...
 
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
 
Paper id 25201479
Paper id 25201479Paper id 25201479
Paper id 25201479
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 

Recently uploaded

Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
top1002
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
veerababupersonal22
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 

Recently uploaded (20)

Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 

SDF Hysteretic System 1 - Differential Vaiana Rosati Model

  • 1. Hysteretic Mechanical Systems and Materials with Matlab Codes Version 14 August 2023 Nicolò Vaiana, Ph.D. University of Naples Federico II Polytechnic and Basic Sciences School Department of Structures for Engineering and Architecture
  • 2. 1 P2 Hysteretic Mechanical Systems and Materials SDF Hysteretic System 1 VRM DF - RKM NONLINEAR TIME HYSTORY ANALYSIS
  • 3. P21 Introduction This short report briefly illustrates the main ingredients required to perform Nonlinear Time History Analyses (NLTHAs) of a Single Degree of Freedom (SDF) system having rate-independent hysteretic behavior. The Vaiana Rosati Model - Differential Formulation (VRM DF) is adopted to simulate the behavior of the rate- independent hysteretic element. The second-order Ordinary Differential Equation (ODE) of motion is replaced by an equivalent system of three coupled first-order ODEs and numerically solved by using the MATLAB® ode45 solver that is based on an explicit fourth-fifth-order Runge Kutta Method (RKM). Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 4. P31 Nonlinear Equilibrium Equation The nonlinear equilibrium equation of the SDF rate-independent hysteretic system is: 𝑚 ሷ 𝑢(𝑡) + 𝑓(𝑡) = 𝑝 𝑡 , where ሷ 𝑢(𝑡) is the acceleration of the mass 𝑚, 𝑓(𝑡) represents the rate-independent hysteretic generalized force, and 𝑝 𝑡 is the external generalized force. Such a second-order ODE can be replaced by an equivalent system of coupled first-order ODEs. To this end, the following state variables are first introduced: 𝑥1 𝑡 = 𝑢 𝑡 , 𝑥2 𝑡 = ሶ 𝑢 𝑡 , 𝑥3 𝑡 = 𝑓 𝑡 . Subsequently, they are differentiated with respect to time 𝑡 thus obtaining: ሶ 𝑥1 𝑡 = ሶ 𝑢 𝑡 = 𝑥2 𝑡 , ሶ 𝑥2 𝑡 = ሷ 𝑢 𝑡 = 𝑚−1 𝑝 𝑡 − 𝑥3(𝑡) , ሶ 𝑥3 𝑡 = ሶ 𝑓 𝑡 . Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 5. P41 Rate-Independent Hysteretic Generalized Force The expression of ሶ 𝑓 𝑡 is provided by the Vaiana Rosati Model - Differential Formulation (VRM DF): ሶ 𝑓 𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + sgn ሶ 𝑢 𝑡 𝛼 𝑓 𝑒 𝑡 + 𝑘𝑏𝑢 𝑡 + sgn ሶ 𝑢 𝑡 𝑓0 − 𝑓 𝑡 ሶ 𝑢 𝑡 , where: 𝑘𝑒 𝑡 = 𝛽1𝛽2𝑒𝛽2𝑢(𝑡) + 4𝛾1𝛾2 𝑒−𝛾2 𝑢(𝑡)−𝛾3 1+𝑒−𝛾2 𝑢(𝑡)−𝛾3 2 , 𝑓 𝑒 𝑡 = 𝛽1𝑒𝛽2𝑢(𝑡) − 𝛽1 + 4𝛾1 1+𝑒−𝛾2 𝑢(𝑡)−𝛾3 − 2𝛾1. The solution of the differential equation must satisfy the following initial condition: 𝑓 𝑢(𝑡𝑃) = 𝑓 𝑡𝑃 . During the generic loading phase ( ሶ 𝑢(𝑡) > 0), the model parameters are: 𝑘𝑏 = 𝑘𝑏 + , 𝑓0 = 𝑓0 + , 𝛼 = 𝛼+ , 𝛽1 = 𝛽1 + , 𝛽2 = 𝛽2 + , 𝛾1 = 𝛾1 + , 𝛾2 = 𝛾2 + , 𝛾3 = 𝛾3 + , whereas, during the generic unloading one ( ሶ 𝑢(𝑡) < 0), they are: 𝑘𝑏 = 𝑘𝑏 − , 𝑓0 = 𝑓0 − , 𝛼 = 𝛼− , 𝛽1 = 𝛽1 − , 𝛽2 = 𝛽2 − , 𝛾1 = 𝛾1 − , 𝛾2 = 𝛾2 − , 𝛾3 = 𝛾3 − . Note that the only conditions to be fulfilled are: 𝛼+ > 0, 𝛼− > 0, 𝑓0 + > 𝑓0 − , since the other parameters can be arbitrary real numbers. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 6. P51 External Generalized Force In the case of a sinusoidal harmonic generalized force (left), the expression of 𝑝 𝑡 is: 𝑝 𝑡 = 𝑝0 sin 2𝜋𝑓𝑝𝑡 , whereas, in the case of a cosine harmonic generalized force (right), it becomes: 𝑝 𝑡 = 𝑝0 cos 2𝜋𝑓𝑝𝑡 , where 𝑝0 and 𝑓𝑝 represent the force amplitude and frequency, respectively. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 7. The system of coupled first-order ODEs to be numerically solved is: ሶ 𝑥1 𝑡 = 𝑥2 𝑡 , ሶ 𝑥2 𝑡 = 𝑚−1 𝑝 𝑡 − 𝑥3(𝑡) , ሶ 𝑥3 𝑡 = 𝑘𝑒 𝑡 + 𝑘𝑏 + sgn 𝑥2 𝑡 𝛼 𝑓 𝑒 𝑡 + 𝑘𝑏𝑥1 𝑡 + sgn 𝑥2 𝑡 𝑓0 − 𝑥3 𝑡 𝑥2 𝑡 , where: 𝑘𝑒 𝑡 = 𝛽1𝛽2𝑒𝛽2𝑥1 𝑡 + 4𝛾1𝛾2 𝑒−𝛾2 𝑥1 𝑡 −𝛾3 1+𝑒−𝛾2 𝑥1 𝑡 −𝛾3 2 , 𝑓 𝑒 𝑡 = 𝛽1𝑒𝛽2𝑥1 𝑡 − 𝛽1 + 4𝛾1 1+𝑒−𝛾2 𝑥1 𝑡 −𝛾3 − 2𝛾1, and: 𝑘𝑏 = 𝑘𝑏 + , 𝑓0 = 𝑓0 + , 𝛼 = 𝛼+ , 𝛽1 = 𝛽1 + , 𝛽2 = 𝛽2 + , 𝛾1 = 𝛾1 + , 𝛾2 = 𝛾2 + , 𝛾3 = 𝛾3 + , if 𝑥2 𝑡 > 0, 𝑘𝑏 = 𝑘𝑏 − , 𝑓0 = 𝑓0 − , 𝛼 = 𝛼− , 𝛽1 = 𝛽1 − , 𝛽2 = 𝛽2 − , 𝛾1 = 𝛾1 − , 𝛾2 = 𝛾2 − , 𝛾3 = 𝛾3 − , if 𝑥2 𝑡 < 0. To this end, it is adopted the MATLAB® ode45 solver that, being based on an explicit fourth-fifth-order Runge Kutta formula, allows for the evaluation of the solution at time 𝑡 by adopting the solution at the preceding time 𝑡𝑃 = 𝑡 − ∆𝑡. P61 Numerical Method Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 8. P71 Results – Sinusoidal Generalized Force Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS mass applied force VRM parameters 𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 Ns2m−1 N Hz Nm−1 N m−1 N m−1 N m−1 m 10 14 1 + 0 1.2 80 0.01 35 2 80 0.006 − 0 1.2 80 - 0.01 - 35 2 80 - 0.006
  • 9. P81 Results – Cosine Generalized Force Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS mass applied force VRM parameters 𝑚 𝑝0 𝑓𝑝 𝑘𝑏 𝑓0 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3 Ns2m−1 N Hz Nm−1 N m−1 N m−1 N m−1 m 10 14 1 + 0 1.2 80 0.01 35 2 80 0.006 − 0 1.2 80 - 0.01 - 35 2 80 - 0.006
  • 10. 9 Matlab Code - NLTHA_SYSTEM_1_VRM_DF_RKM.m % ========================================================================================= % August 2023 % Nonlinear Time History Analysis of SDF Rate-Independent Hysteretic Systems % Nicolo' Vaiana, Assistant Professor in Structural Mechanics and Dynamics % Department of Structures for Engineering and Architecture % University of Naples Federico II % via Claudio 21, 80125, Napoli, Italy % e-mail: nicolo.vaiana@unina.it, nicolovaiana@outlook.it % ========================================================================================= clc; clear all; close all; %% SDF RATE-INDEPEDENT HYSTERETIC SYSTEM MASS m = 10; % Ns^2/m %% VAIANA ROSATI MODEL PARAMETERS kbp = 0; kbm = 0; % N/m f0p = 1.2; f0m = 1.2; % N alfap = 80; alfam = 80; % 1/m beta1p = 0.01; beta1m = -0.01; % N beta2p = 35; beta2m = -35; % 1/m gamma1p = 2; gamma1m = 2; % N gamma2p = 80; gamma2m = 80; % 1/m gamma3p = 0.006; gamma3m = -0.006; % m parp = [kbp f0p alfap beta1p beta2p gamma1p gamma2p gamma3p]; % - parm = [kbm f0m alfam beta1m beta2m gamma1m gamma2m gamma3m]; % - %% EXTERNAL GENERALIZED FORCE tv = 0:0.001:10; % s fp = 1; % Hz p0 = 14; % N p = p0*sin(2*pi*fp*tv(1:length(tv))); % N %% RUNGE-KUTTA METHOD %% INITIAL SETTING neq = 3; % - number of equations IC = [0 0 0]; % - initial conditions [x1 x2 x3] %% CALCULATIONS AT EACH TIME STEP options = odeset('RelTol',1e-10,'AbsTol',1e-10); [t,x] = ode45(@(t,x) ODEs(t, x, neq, m, parp, parm, p, tv), tv, IC, options); Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 11. 10 Matlab Code - NLTHA_SYSTEM_1_VRM_DF_RKM.m %% PLOTS figure('Color',[0.949019610881805 0.949019610881805 0.949019610881805]); subplot('Position',[0.05 0.58 0.2 0.4]); grid on; box on; xlabel('time [s]'); ylabel('applied force [N]'); axis([0 10 -20 20]); set(gca,'XTick',[0 2 4 6 8 10]); set(gca,'YTick',[-20 -10 0 10 20]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot1 = line(t,p,'Color','[0.584313750267029 0.168627455830574 0.294117659330368]','LineWidth',3); subplot('Position',[0.30 0.58 0.2 0.4]); grid on; box on; xlabel('time [s]'); ylabel('displacement [m]'); axis([0 10 -0.2 0.2]); set(gca,'XTick',[0 2 4 6 8 10]); set(gca,'YTick',[-0.2 -0.1 0 0.1 0.2]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot2 = line(t,x(:,1),'Color','[0.204, 0.302, 0.494]','LineWidth',3); subplot('Position',[0.05 0.08 0.2 0.4]); grid on; box on; xlabel('time [s]'); ylabel('velocity [m/s]'); axis([0 10 -0.8 0.8]); set(gca,'XTick',[0 2 4 6 8 10]); set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot3 = line(t,x(:,2),'Color','[0.204, 0.302, 0.494]','LineWidth',3); subplot('Position',[0.30 0.08 0.2 0.4]); grid on; box on; xlabel('displacement [m]'); ylabel('force [N]'); axis([-0.2 0.2 -8 8]); set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]); set(gca,'YTick',[-8.0 -4.0 0 4.0 8.0]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); plot4 = line(x(:,1),x(:,3),'Color','[0.204, 0.302, 0.494]','LineWidth',3); subplot('Position',[0.56 0.12 0.4 0.8]); grid on; box on; xlabel('d [m]'); ylabel('v [m/s]'); zlabel('f [N]'); axis([-0.2 0.2 -0.8 0.8 -8 8]); set(gca,'XTick',[-0.2 -0.1 0 0.1 0.2]); set(gca,'YTick',[-0.8 -0.4 0 0.4 0.8]); set(gca,'ZTick',[-8.0 -4.0 0 4.0 8.0]); set(gca,'GridLineStyle','--'); set(gca,'FontName','Times New Roman'); set(gca,'FontSize',16); set(gca,'BoxStyle','full'); view([229.572533907569 40.0908387200157]); plot5 = line(x(:,1),x(:,2),x(:,3),'Color','[0.204, 0.302, 0.494]','Linewidth',3); Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 12. 11 Matlab Code - ODEs.m function xd = ODEs(t, x, neq, m, parp, parm, pv, tv) %% EXTERNAL GENERALIZED FORCE p = interp1(tv,pv,t); % N %% STATE VARIABLES u = x(1); % m displacement ud = x(2); % m/s velocity f = x(3); % N hysteretic force %% VAIANA ROSATI MODEL PARAMETERS if ud > 0 kb = parp(1); f0 = parp(2); alfa = parp(3); beta1 = parp(4); beta2 = parp(5); gamma1 = parp(6); gamma2 = parp(7); gamma3 = parp(8); else kb = parm(1); f0 = parm(2); alfa = parm(3); beta1 = parm(4); beta2 = parm(5); gamma1 = parm(6); gamma2 = parm(7); gamma3 = parm(8); end %% SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS xd = zeros(neq,1); xd(1) = ud; xd(2) = (p-f)/m; fe = beta1*exp(beta2*u)-beta1+(4*gamma1/(1+exp(-gamma2*(u-gamma3))))-2*gamma1; ke = beta1*beta2*exp(beta2*u)+(4*gamma1*gamma2*exp(-gamma2*(u-gamma3)))/(1+exp(-gamma2*(u-gamma3)))^2; xd(3) = (ke+kb+sign(ud)*alfa*(fe+kb*u+sign(ud)*f0-f))*ud; end Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS
  • 13. 12 References [1] Vaiana N, Sessa S, Marmo F, Rosati L (2018) A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics 93(3): 1647-1669. [2] Vaiana N, Sessa S, Marmo F, Rosati L (2019) An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Composite Structures 211: 196-212. [3] Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dynamics 98(4): 2879-2901. [4] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 146: 106984. [5] Vaiana N, Rosati L (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing 182: 109539. [6] Vaiana N, Capuano R, Rosati L (2023) Evaluation of path-dependent work and internal energy change for hysteretic mechanical systems. Mechanical Systems and Signal Processing 186: 109862. [7] Vaiana N, Rosati L (2023) Analytical and differential reformulations of the Vaiana–Rosati model for complex rate-independent mechanical hysteresis phenomena. Mechanical Systems and Signal Processing 199: 110448. Hysteretic Mechanical Systems and Materials P2 NONLINEAR TIME HYSTORY ANALYSIS