SlideShare a Scribd company logo
Introduction Dynamics of the parabolic problem Numerical results Conclusions
On the dynamics of the parabolic restricted three
body problem
E. Barrab´es1
J.M. Cors 2
L. Garcia M. Oll´e2
1
Universitat de Girona
2
Universitat Polit`ecnica de Catalunya
XV Jornadas de Trabajo en Mec´anica Celeste
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 1 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Outline
Introduction
Dynamics of the parabolic problem
Numerical results
Conclusions
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 2 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Galactic encounters: bridges and tails (I)
10
NGC 2535/6 NGC 7752/3
astromania.deyave.com/ www.etsu.edu/physics/bsmith/research/sg/arp.html www.spiral-galaxies.com/Galaxies-Pegasus.html
NGC 3808
Bridges!
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 3 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Galactic encounters: bridges and tails (I)
9
Tails!
Arp 173
• NGC 2992/3
http://www.astrooptik.com/Bildergalerie/PolluxGallery/NGC2623.htm www.etsu.edu/physics/bsmith/research/sg/arp.html
http://www.ess.sunysb.edu/fwalter/SMARTS/findingcharts.html
NGC 2623
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 3 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Galactic encounters: bridges and tails (I)
Galaxies NGC 3808A (right) and NGC 3808B (left). Credits: NASA, Hubble
Space Telescope (2015)
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 3 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Galactic encounters: bridges and tails (II)
Toomre, A. and Toomre, J. Galactic bridges and tails, The Astrophysical
Journal, 178, 1972.
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 4 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Galactic encounters: bridges and tails (II)
Toomre, A. and Toomre, J. Galactic bridges and tails, The Astrophysical
Journal, 178, 1972.
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 4 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Motivations and Aims
Close approach of two galaxies: it cause significant modification of the
mass distribution or disc structure. One particle that initially stays in one
galaxy (or around one star), after the close encounter, it can jump to the
other galaxy or escape.
To study the mechanisms that explain that a particle remains or not
around each galaxy, considering a very simple model: the planar
parabolic restricted three-body problem.
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 5 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Outline
Introduction
Dynamics of the parabolic problem
Numerical results
Conclusions
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 6 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
The Planar Parabolic Restricted Three-Body Problem
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 7 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Equations (I)
Parabolic problem:
d2
Z
dt2
= −(1 − µ)
Z − Z1
|Z − Z1|3
− µ
Z − Z2
|Z − Z2|3
,
Z2 = −Z1 = 1
2 (σ2
− 1, 2σ), and σ = tan(f/2)
Change to a synodic frame (primaries at fixed positions) + change of time:
z1 = (−
1
2
, 0), z2 = (
1
2
, 0),
dt
ds
=
√
2 r3/2
.
Compatification to extend the flow when the primaries are at infinity
(t, s → ±∞):
sin(θ) = tanh(s).
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 8 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Equations (II)
Global system



θ = cos θ,
z = w,
w = −A(θ)w + Ω(z)
where =
d
ds
and
A(θ) =
sin θ 4 cos θ
−4 cos θ sin θ
,
Ω(z) = x2
+ y2
+ 2
1 − µ
(x − µ)2 + y2
+ 2
µ
(x − µ + 1)2 + y2
.
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 9 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Upper and Lower boundary problems
Global system Boundary problems



θ = cos θ,
z = w,
w = −A(θ)w + Ω(z)
−→
θ=±π/2
z = w,
w = w + Ω(z)
dim 5 dim 4
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 10 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Main properties (I)
Equilibrium points at the boundaries (as in the RTBP):
Collinear: L±
i = (xi, 0, 0, 0, ±π/2), i = 1, 2, 3
Triangular: L±
i = (µ − 1
2 , yi, 0, 0, ±π/2), i = 4, 5
Stability:
L+
1,2,3 L+
4,5
dim(Wu
) 1 2
dim(Ws
) 4 3
L−
1,2,3 L−
4,5
dim(Wu
) 4 3
dim(Ws
) 1 2
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 11 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Main properties (II)
Jacobi function: semi gradient property (no periodic orbits)
C = 2Ω(z) − |w|2
,
dC
ds
= 2 sin θ| w|2
Hill’s regions: {2Ω(z) − C ≥ 0} → C-criterium
−π/2 −→ θ −→ 0
-2
-1
0
1
2
-2 -1 0 1 2
y
x
-2
-1
0
1
2
-2 -1 0 1 2
y
x
-2
-1
0
1
2
-2 -1 0 1 2
y
x
π/2 ←− θ ←− 0
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 12 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Main properties (III)
Homothetic solutions and connections
θ = π/2
θ = −π/2
θ = 0
L+
1
L+
4
L+
3
L−
3
L−
4
L−
1
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 13 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Dynamics of the problem
In order to describe the dynamics of the parabolic problem, we will focus on
two aspects:
the final evolutions in the synodical system when time tends to infinity,
the richness in the intermediate stages due to
existence of invariant manifolds associated with the homothetic solutions
heteroclinic connections that allow the existence of orbits with passages
close to collinear and/or equilateral configurations.
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 14 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Final evolutions
Proposition (Final evolutions)
Let γ(s) = (θ(s), z(s), w(s)), s ∈ [0, ∞), be a solution
of the global system. Then, either it is a collision orbit
(lims→∞ |z(s) − zi| = 0), or lims→∞ |z(s)| = ∞ or its ω-limit is
an equilibrium point.
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 15 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Connections in the the upper boundary problem
m1 m2∞
m1 ∞ m2
L+
4
L+
5
L+
1 L+
3
L+
2
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 16 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Outline
Introduction
Dynamics of the parabolic problem
Numerical results
Conclusions
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 17 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Explorations
Role of the invariant manifolds in the sets of connecting orbits between
primaries
Equal masses (µ = 0.5):
Barrab´es, Cors, Oll´e Dynamics of the parabolic restricted three-body
problem Communications in Nonlinear Science and Numerical Simulation,
29: 400–415, 2015
Different masses (µ < 0.5):
Work in progress with L. Garc´ıa and M. Oll`e
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 18 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Connecting orbits with passages to collinear or triangular
configurations
Connection of type mi − Lk − mj:
collision orbit with mi backwards in time
collision orbit with mj forwards in time
along its trajectory it has a close passage to Lk
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 19 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Connecting orbits: examples (µ = 0.5)
-1
-0.5
0
0.5
-0.5 0 0.5 1
y
x
m2 − L3 − L2 − m2/m1
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 20 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Connecting orbits: examples (µ = 0.5)
-4
-2
0
2
4
-4 -2 0 2 4
m1
m0
m2
-3000
-1500
0
1500
3000
-3e+06 -1.5e+06 0 1.5e+06 3e+06
Y
X
m1
m2
m0
-30
-15
0
15
30
-200 -100 0 100 200
m1
m2
m0
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 20 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Symmetric connecting orbits (µ = 0.5)
Connection mi − mi: crosses the section θ = 0 such that y = x = 0
I.C. (x0, 0, 0, y0)
Connection mi − mj: crosses the section θ = 0 such that x = y = 0
I.C. (0, y0, x0, 0)
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 21 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Symmetric connecting orbits (µ = 0.5)
mi − mi
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y’
x
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-4
-3
-2
-1
0
1
2
3
4
-8 -6 -4 -2 0 2 4 6 8
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 22 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Symmetric connecting orbits (µ = 0.5)
mi − mj
-10
-8
-6
-4
-2
0
2
0 1 2 3 4 5
x’
y
capture m2
capture m1
C=C(L3)
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-4
-3
-2
-1
0
1
2
3
4
-8 -6 -4 -2 0 2 4 6 8
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 22 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Symmetric connecting orbits (µ = 0.5)
The invariant manifolds of L±
i , i = 1, 2, 3 separate the regions of capture
-3.33108
-3.33103
-3.33098
-3.33093
0.52952 0.5296 0.52968
x
’
y
a
c-b
d-e
f
-2
-1
0
1
-2 -1 0 1 2
y
x
a
b cd e f
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 22 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Symmetric connecting orbits (µ = 0.5)
The hetero/homoclinic connections of L±
i , i = 1, 2, 3 separate the regions of
capture
L−
3 → L+
3
L−
1 → L+
1
L−
2 → L+
2
L−
3 → L+
1
L−
1 → L+
3
L−
2 → L+
2
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 23 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Bridges and Tails?
We consider a bunch of initial conditions around m1 for θ = −π/4. We take a
snapshot of each particle at certain θ > 0 and classify them depending their
final evolution:
-4
-3
-2
-1
0
1
2
3
4
-4 -3 -2 -1 0 1 2 3 4
Y
X
Capture m1 Capture m2
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 24 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Bridges and Tails?
We consider a bunch of initial conditions around m1 for θ = −π/4. We take a
snapshot of each particle at certain θ > 0 and classify them depending their
final evolution:
-4
-2
0
2
4
-4 -2 0 2 4
Y
Y
Capture m1 Escape
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 24 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Evolution of sets of symmetric connecting orbits
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y
’
x
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y
’
x
µ = 0.5 µ = 0.4
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 25 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Evolution of sets of symmetric connecting orbits
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y
’
x
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y
’
x
µ = 0.3 µ = 0.2
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 25 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Evolution of sets of symmetric connecting orbits
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y
’
x
-6
-4
-2
0
2
4
6
-4 -3 -2 -1 0 1 2 3 4
y
’
x
µ = 0.2 µ = 0.1
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 25 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Outline
Introduction
Dynamics of the parabolic problem
Numerical results
Conclusions
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 26 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Conclusions
Using the invariant manifolds, the symmetries of the problem and the
C-criterium it is possible to construct connecting orbits of different types
The regions of the phase space where the test particles remain or not
around each galaxy are confined by the invariant manifolds of the
collinear equilibrium points
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 27 / 28
Introduction Dynamics of the parabolic problem Numerical results Conclusions
Further work
Bridges: close encounters of galaxies of similar sizes; tails: one galaxy
much bigger the other.
How does the mass parameter of the parabolic problem affects?
Toomre & Toomre: explorations varying the inclination (spatial problem)
Spatial parabolic problem
Hyperbolic problem
Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 28 / 28

More Related Content

What's hot

CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
ijrap
 
Parabolic Restricted Three Body Problem
Parabolic Restricted Three Body ProblemParabolic Restricted Three Body Problem
Parabolic Restricted Three Body Problem
Esther Barrabés Vera
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
Lakshmikanta Satapathy
 
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopyDeciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Edmund Christian Herenz
 
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Milan Milošević
 
Talk in BayesComp 2018
Talk in BayesComp 2018Talk in BayesComp 2018
Talk in BayesComp 2018
JeremyHeng10
 
MM2020-AV
MM2020-AVMM2020-AV
MM2020-AV
ArianVezvaee
 
Chemistry (Inorganic) Chapter 1 - Atoms: Structure and Function
Chemistry (Inorganic) Chapter 1 - Atoms: Structure and FunctionChemistry (Inorganic) Chapter 1 - Atoms: Structure and Function
Chemistry (Inorganic) Chapter 1 - Atoms: Structure and Function
Don R. Mueller, Ph.D.
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Solo Hermelin
 
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSFUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
Rijo Tom
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
Christos Kallidonis
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
2 estimators
2 estimators2 estimators
2 estimators
Solo Hermelin
 
Tachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextTachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII context
Milan Milošević
 
Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
Fundación Ramón Areces
 
Fundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamicsFundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamicsSpringer
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
SEENET-MTP
 

What's hot (17)

CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
 
Parabolic Restricted Three Body Problem
Parabolic Restricted Three Body ProblemParabolic Restricted Three Body Problem
Parabolic Restricted Three Body Problem
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
 
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopyDeciphering Lyman Alpha emitting galaxies with integral field spectroscopy
Deciphering Lyman Alpha emitting galaxies with integral field spectroscopy
 
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
 
Talk in BayesComp 2018
Talk in BayesComp 2018Talk in BayesComp 2018
Talk in BayesComp 2018
 
MM2020-AV
MM2020-AVMM2020-AV
MM2020-AV
 
Chemistry (Inorganic) Chapter 1 - Atoms: Structure and Function
Chemistry (Inorganic) Chapter 1 - Atoms: Structure and FunctionChemistry (Inorganic) Chapter 1 - Atoms: Structure and Function
Chemistry (Inorganic) Chapter 1 - Atoms: Structure and Function
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSFUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
2 estimators
2 estimators2 estimators
2 estimators
 
Tachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII contextTachyon inflation in DBI and RSII context
Tachyon inflation in DBI and RSII context
 
Enric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre SolitónEnric Verdaguer-Simposio Internacional sobre Solitón
Enric Verdaguer-Simposio Internacional sobre Solitón
 
Fundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamicsFundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamics
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
 

Viewers also liked

Policing muslim communities
Policing muslim communitiesPolicing muslim communities
Policing muslim communitiesSpringer
 
The exploration of happiness
The exploration of happinessThe exploration of happiness
The exploration of happinessSpringer
 
Vortex_Sales_2016b_web
Vortex_Sales_2016b_webVortex_Sales_2016b_web
Vortex_Sales_2016b_webvortexeric
 
Music and engineering
Music and engineeringMusic and engineering
Music and engineering
Guillermo Solis
 
Financing services of general economic interest
Financing services of general economic interestFinancing services of general economic interest
Financing services of general economic interestSpringer
 
International intellectual property law and human security
International intellectual property law and human securityInternational intellectual property law and human security
International intellectual property law and human securitySpringer
 
International employer brand management
International employer brand managementInternational employer brand management
International employer brand managementSpringer
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systemsSpringer
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Francisco Gonzalez-Longatt
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Francisco Gonzalez-Longatt
 

Viewers also liked (10)

Policing muslim communities
Policing muslim communitiesPolicing muslim communities
Policing muslim communities
 
The exploration of happiness
The exploration of happinessThe exploration of happiness
The exploration of happiness
 
Vortex_Sales_2016b_web
Vortex_Sales_2016b_webVortex_Sales_2016b_web
Vortex_Sales_2016b_web
 
Music and engineering
Music and engineeringMusic and engineering
Music and engineering
 
Financing services of general economic interest
Financing services of general economic interestFinancing services of general economic interest
Financing services of general economic interest
 
International intellectual property law and human security
International intellectual property law and human securityInternational intellectual property law and human security
International intellectual property law and human security
 
International employer brand management
International employer brand managementInternational employer brand management
International employer brand management
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systems
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
 

Similar to Modelling galaxy close encounters by a parabolic problem

“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.
“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.
“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.
lccausp
 
A class of a stable order four and six linear multistep methods for stiff ini...
A class of a stable order four and six linear multistep methods for stiff ini...A class of a stable order four and six linear multistep methods for stiff ini...
A class of a stable order four and six linear multistep methods for stiff ini...
Alexander Decker
 
A Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsA Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot Products
James Smith
 
Topology for Computing: Homology
Topology for Computing: HomologyTopology for Computing: Homology
Topology for Computing: Homology
Sangwoo Mo
 
G05834551
G05834551G05834551
G05834551
IOSR-JEN
 
Bayesian Models for Astronomy
Bayesian Models for AstronomyBayesian Models for Astronomy
Bayesian Models for Astronomy
Rafael S. de Souza
 
Dialectica and Kolmogorov Problems
Dialectica and Kolmogorov ProblemsDialectica and Kolmogorov Problems
Dialectica and Kolmogorov Problems
Valeria de Paiva
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)Alexander Tsupko
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticality
Osame Kinouchi
 
Ejection-collision orbits
Ejection-collision orbits Ejection-collision orbits
Ejection-collision orbits
Esther Barrabés Vera
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
SYRTO Project
 
Implicit two step adam moulton hybrid block method with two off step points f...
Implicit two step adam moulton hybrid block method with two off step points f...Implicit two step adam moulton hybrid block method with two off step points f...
Implicit two step adam moulton hybrid block method with two off step points f...
Alexander Decker
 
CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...
CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...
CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...
The Statistical and Applied Mathematical Sciences Institute
 
Bayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved imagesBayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved images
Julián Tachella
 
NJD_87.pdf
NJD_87.pdfNJD_87.pdf
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Crimsonpublishers-Mechanicalengineering
 
Dialectica and Kolmogorov Problems
Dialectica and Kolmogorov ProblemsDialectica and Kolmogorov Problems
Dialectica and Kolmogorov Problems
Valeria de Paiva
 
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current SheetsComisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Luca Comisso
 

Similar to Modelling galaxy close encounters by a parabolic problem (20)

“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.
“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.
“Solving QCD: from BG/P to BG/Q”. Prof. Dr. Attilio Cucchieri – IFSC/USP.
 
A class of a stable order four and six linear multistep methods for stiff ini...
A class of a stable order four and six linear multistep methods for stiff ini...A class of a stable order four and six linear multistep methods for stiff ini...
A class of a stable order four and six linear multistep methods for stiff ini...
 
A Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsA Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot Products
 
Topology for Computing: Homology
Topology for Computing: HomologyTopology for Computing: Homology
Topology for Computing: Homology
 
G05834551
G05834551G05834551
G05834551
 
ProjectAndersSchreiber
ProjectAndersSchreiberProjectAndersSchreiber
ProjectAndersSchreiber
 
Bayesian Models for Astronomy
Bayesian Models for AstronomyBayesian Models for Astronomy
Bayesian Models for Astronomy
 
Dialectica and Kolmogorov Problems
Dialectica and Kolmogorov ProblemsDialectica and Kolmogorov Problems
Dialectica and Kolmogorov Problems
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticality
 
Ejection-collision orbits
Ejection-collision orbits Ejection-collision orbits
Ejection-collision orbits
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
Implicit two step adam moulton hybrid block method with two off step points f...
Implicit two step adam moulton hybrid block method with two off step points f...Implicit two step adam moulton hybrid block method with two off step points f...
Implicit two step adam moulton hybrid block method with two off step points f...
 
CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...
CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...
CLIM: Transition Workshop - Overview and New Modeling Directions - Dorit Hamm...
 
Bayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved imagesBayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved images
 
NJD_87.pdf
NJD_87.pdfNJD_87.pdf
NJD_87.pdf
 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
 
Coueete project
Coueete projectCoueete project
Coueete project
 
Dialectica and Kolmogorov Problems
Dialectica and Kolmogorov ProblemsDialectica and Kolmogorov Problems
Dialectica and Kolmogorov Problems
 
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current SheetsComisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
 

Recently uploaded

3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 

Recently uploaded (20)

3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 

Modelling galaxy close encounters by a parabolic problem

  • 1. Introduction Dynamics of the parabolic problem Numerical results Conclusions On the dynamics of the parabolic restricted three body problem E. Barrab´es1 J.M. Cors 2 L. Garcia M. Oll´e2 1 Universitat de Girona 2 Universitat Polit`ecnica de Catalunya XV Jornadas de Trabajo en Mec´anica Celeste Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 1 / 28
  • 2. Introduction Dynamics of the parabolic problem Numerical results Conclusions Outline Introduction Dynamics of the parabolic problem Numerical results Conclusions Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 2 / 28
  • 3. Introduction Dynamics of the parabolic problem Numerical results Conclusions Galactic encounters: bridges and tails (I) 10 NGC 2535/6 NGC 7752/3 astromania.deyave.com/ www.etsu.edu/physics/bsmith/research/sg/arp.html www.spiral-galaxies.com/Galaxies-Pegasus.html NGC 3808 Bridges! Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 3 / 28
  • 4. Introduction Dynamics of the parabolic problem Numerical results Conclusions Galactic encounters: bridges and tails (I) 9 Tails! Arp 173 • NGC 2992/3 http://www.astrooptik.com/Bildergalerie/PolluxGallery/NGC2623.htm www.etsu.edu/physics/bsmith/research/sg/arp.html http://www.ess.sunysb.edu/fwalter/SMARTS/findingcharts.html NGC 2623 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 3 / 28
  • 5. Introduction Dynamics of the parabolic problem Numerical results Conclusions Galactic encounters: bridges and tails (I) Galaxies NGC 3808A (right) and NGC 3808B (left). Credits: NASA, Hubble Space Telescope (2015) Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 3 / 28
  • 6. Introduction Dynamics of the parabolic problem Numerical results Conclusions Galactic encounters: bridges and tails (II) Toomre, A. and Toomre, J. Galactic bridges and tails, The Astrophysical Journal, 178, 1972. Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 4 / 28
  • 7. Introduction Dynamics of the parabolic problem Numerical results Conclusions Galactic encounters: bridges and tails (II) Toomre, A. and Toomre, J. Galactic bridges and tails, The Astrophysical Journal, 178, 1972. Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 4 / 28
  • 8. Introduction Dynamics of the parabolic problem Numerical results Conclusions Motivations and Aims Close approach of two galaxies: it cause significant modification of the mass distribution or disc structure. One particle that initially stays in one galaxy (or around one star), after the close encounter, it can jump to the other galaxy or escape. To study the mechanisms that explain that a particle remains or not around each galaxy, considering a very simple model: the planar parabolic restricted three-body problem. Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 5 / 28
  • 9. Introduction Dynamics of the parabolic problem Numerical results Conclusions Outline Introduction Dynamics of the parabolic problem Numerical results Conclusions Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 6 / 28
  • 10. Introduction Dynamics of the parabolic problem Numerical results Conclusions The Planar Parabolic Restricted Three-Body Problem Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 7 / 28
  • 11. Introduction Dynamics of the parabolic problem Numerical results Conclusions Equations (I) Parabolic problem: d2 Z dt2 = −(1 − µ) Z − Z1 |Z − Z1|3 − µ Z − Z2 |Z − Z2|3 , Z2 = −Z1 = 1 2 (σ2 − 1, 2σ), and σ = tan(f/2) Change to a synodic frame (primaries at fixed positions) + change of time: z1 = (− 1 2 , 0), z2 = ( 1 2 , 0), dt ds = √ 2 r3/2 . Compatification to extend the flow when the primaries are at infinity (t, s → ±∞): sin(θ) = tanh(s). Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 8 / 28
  • 12. Introduction Dynamics of the parabolic problem Numerical results Conclusions Equations (II) Global system    θ = cos θ, z = w, w = −A(θ)w + Ω(z) where = d ds and A(θ) = sin θ 4 cos θ −4 cos θ sin θ , Ω(z) = x2 + y2 + 2 1 − µ (x − µ)2 + y2 + 2 µ (x − µ + 1)2 + y2 . Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 9 / 28
  • 13. Introduction Dynamics of the parabolic problem Numerical results Conclusions Upper and Lower boundary problems Global system Boundary problems    θ = cos θ, z = w, w = −A(θ)w + Ω(z) −→ θ=±π/2 z = w, w = w + Ω(z) dim 5 dim 4 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 10 / 28
  • 14. Introduction Dynamics of the parabolic problem Numerical results Conclusions Main properties (I) Equilibrium points at the boundaries (as in the RTBP): Collinear: L± i = (xi, 0, 0, 0, ±π/2), i = 1, 2, 3 Triangular: L± i = (µ − 1 2 , yi, 0, 0, ±π/2), i = 4, 5 Stability: L+ 1,2,3 L+ 4,5 dim(Wu ) 1 2 dim(Ws ) 4 3 L− 1,2,3 L− 4,5 dim(Wu ) 4 3 dim(Ws ) 1 2 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 11 / 28
  • 15. Introduction Dynamics of the parabolic problem Numerical results Conclusions Main properties (II) Jacobi function: semi gradient property (no periodic orbits) C = 2Ω(z) − |w|2 , dC ds = 2 sin θ| w|2 Hill’s regions: {2Ω(z) − C ≥ 0} → C-criterium −π/2 −→ θ −→ 0 -2 -1 0 1 2 -2 -1 0 1 2 y x -2 -1 0 1 2 -2 -1 0 1 2 y x -2 -1 0 1 2 -2 -1 0 1 2 y x π/2 ←− θ ←− 0 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 12 / 28
  • 16. Introduction Dynamics of the parabolic problem Numerical results Conclusions Main properties (III) Homothetic solutions and connections θ = π/2 θ = −π/2 θ = 0 L+ 1 L+ 4 L+ 3 L− 3 L− 4 L− 1 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 13 / 28
  • 17. Introduction Dynamics of the parabolic problem Numerical results Conclusions Dynamics of the problem In order to describe the dynamics of the parabolic problem, we will focus on two aspects: the final evolutions in the synodical system when time tends to infinity, the richness in the intermediate stages due to existence of invariant manifolds associated with the homothetic solutions heteroclinic connections that allow the existence of orbits with passages close to collinear and/or equilateral configurations. Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 14 / 28
  • 18. Introduction Dynamics of the parabolic problem Numerical results Conclusions Final evolutions Proposition (Final evolutions) Let γ(s) = (θ(s), z(s), w(s)), s ∈ [0, ∞), be a solution of the global system. Then, either it is a collision orbit (lims→∞ |z(s) − zi| = 0), or lims→∞ |z(s)| = ∞ or its ω-limit is an equilibrium point. Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 15 / 28
  • 19. Introduction Dynamics of the parabolic problem Numerical results Conclusions Connections in the the upper boundary problem m1 m2∞ m1 ∞ m2 L+ 4 L+ 5 L+ 1 L+ 3 L+ 2 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 16 / 28
  • 20. Introduction Dynamics of the parabolic problem Numerical results Conclusions Outline Introduction Dynamics of the parabolic problem Numerical results Conclusions Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 17 / 28
  • 21. Introduction Dynamics of the parabolic problem Numerical results Conclusions Explorations Role of the invariant manifolds in the sets of connecting orbits between primaries Equal masses (µ = 0.5): Barrab´es, Cors, Oll´e Dynamics of the parabolic restricted three-body problem Communications in Nonlinear Science and Numerical Simulation, 29: 400–415, 2015 Different masses (µ < 0.5): Work in progress with L. Garc´ıa and M. Oll`e Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 18 / 28
  • 22. Introduction Dynamics of the parabolic problem Numerical results Conclusions Connecting orbits with passages to collinear or triangular configurations Connection of type mi − Lk − mj: collision orbit with mi backwards in time collision orbit with mj forwards in time along its trajectory it has a close passage to Lk Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 19 / 28
  • 23. Introduction Dynamics of the parabolic problem Numerical results Conclusions Connecting orbits: examples (µ = 0.5) -1 -0.5 0 0.5 -0.5 0 0.5 1 y x m2 − L3 − L2 − m2/m1 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 20 / 28
  • 24. Introduction Dynamics of the parabolic problem Numerical results Conclusions Connecting orbits: examples (µ = 0.5) -4 -2 0 2 4 -4 -2 0 2 4 m1 m0 m2 -3000 -1500 0 1500 3000 -3e+06 -1.5e+06 0 1.5e+06 3e+06 Y X m1 m2 m0 -30 -15 0 15 30 -200 -100 0 100 200 m1 m2 m0 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 20 / 28
  • 25. Introduction Dynamics of the parabolic problem Numerical results Conclusions Symmetric connecting orbits (µ = 0.5) Connection mi − mi: crosses the section θ = 0 such that y = x = 0 I.C. (x0, 0, 0, y0) Connection mi − mj: crosses the section θ = 0 such that x = y = 0 I.C. (0, y0, x0, 0) Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 21 / 28
  • 26. Introduction Dynamics of the parabolic problem Numerical results Conclusions Symmetric connecting orbits (µ = 0.5) mi − mi -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y’ x -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 -4 -3 -2 -1 0 1 2 3 4 -8 -6 -4 -2 0 2 4 6 8 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 22 / 28
  • 27. Introduction Dynamics of the parabolic problem Numerical results Conclusions Symmetric connecting orbits (µ = 0.5) mi − mj -10 -8 -6 -4 -2 0 2 0 1 2 3 4 5 x’ y capture m2 capture m1 C=C(L3) -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -4 -3 -2 -1 0 1 2 3 4 -8 -6 -4 -2 0 2 4 6 8 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 22 / 28
  • 28. Introduction Dynamics of the parabolic problem Numerical results Conclusions Symmetric connecting orbits (µ = 0.5) The invariant manifolds of L± i , i = 1, 2, 3 separate the regions of capture -3.33108 -3.33103 -3.33098 -3.33093 0.52952 0.5296 0.52968 x ’ y a c-b d-e f -2 -1 0 1 -2 -1 0 1 2 y x a b cd e f Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 22 / 28
  • 29. Introduction Dynamics of the parabolic problem Numerical results Conclusions Symmetric connecting orbits (µ = 0.5) The hetero/homoclinic connections of L± i , i = 1, 2, 3 separate the regions of capture L− 3 → L+ 3 L− 1 → L+ 1 L− 2 → L+ 2 L− 3 → L+ 1 L− 1 → L+ 3 L− 2 → L+ 2 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 23 / 28
  • 30. Introduction Dynamics of the parabolic problem Numerical results Conclusions Bridges and Tails? We consider a bunch of initial conditions around m1 for θ = −π/4. We take a snapshot of each particle at certain θ > 0 and classify them depending their final evolution: -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 Y X Capture m1 Capture m2 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 24 / 28
  • 31. Introduction Dynamics of the parabolic problem Numerical results Conclusions Bridges and Tails? We consider a bunch of initial conditions around m1 for θ = −π/4. We take a snapshot of each particle at certain θ > 0 and classify them depending their final evolution: -4 -2 0 2 4 -4 -2 0 2 4 Y Y Capture m1 Escape Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 24 / 28
  • 32. Introduction Dynamics of the parabolic problem Numerical results Conclusions Evolution of sets of symmetric connecting orbits -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y ’ x -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y ’ x µ = 0.5 µ = 0.4 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 25 / 28
  • 33. Introduction Dynamics of the parabolic problem Numerical results Conclusions Evolution of sets of symmetric connecting orbits -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y ’ x -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y ’ x µ = 0.3 µ = 0.2 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 25 / 28
  • 34. Introduction Dynamics of the parabolic problem Numerical results Conclusions Evolution of sets of symmetric connecting orbits -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y ’ x -6 -4 -2 0 2 4 6 -4 -3 -2 -1 0 1 2 3 4 y ’ x µ = 0.2 µ = 0.1 Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 25 / 28
  • 35. Introduction Dynamics of the parabolic problem Numerical results Conclusions Outline Introduction Dynamics of the parabolic problem Numerical results Conclusions Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 26 / 28
  • 36. Introduction Dynamics of the parabolic problem Numerical results Conclusions Conclusions Using the invariant manifolds, the symmetries of the problem and the C-criterium it is possible to construct connecting orbits of different types The regions of the phase space where the test particles remain or not around each galaxy are confined by the invariant manifolds of the collinear equilibrium points Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 27 / 28
  • 37. Introduction Dynamics of the parabolic problem Numerical results Conclusions Further work Bridges: close encounters of galaxies of similar sizes; tails: one galaxy much bigger the other. How does the mass parameter of the parabolic problem affects? Toomre & Toomre: explorations varying the inclination (spatial problem) Spatial parabolic problem Hyperbolic problem Barrab´es, Cors, Oll´e (July 15, 2016) Parabolic problem 30/5/2016 28 / 28