SlideShare a Scribd company logo
1 of 19
Waves and Wave PropertiesWaves and Wave Properties
Why are we able to see?
Answer: Because there is light.
And…what is light?
Answer: Light is a wave.
So…what is a wave?
Answer: A wave is a disturbance
that carries energy from place to
place.
A wave does NOT carry matter with
it! It just moves the matter as it goes
through it.
Some waves do not need matter
(called a “medium”) to be able to
move (for example, through space).
These are called electromagnetic
waves (or EM waves).
Some waves MUST have a medium
in order to move. These are called
mechanical waves.
Wave Types
1.Transverse waves: Waves in which the medium
moves at right angles to the direction of the wave
Parts of transverse waves:
Crest: the highest point of the wave
Trough: the lowest point of the wave
2. Compressional (or longitudinal) waves:
Waves in which the medium moves back and
forth in the same direction as the wave
Parts of longitudinal waves:
Compression: where the particles are close together
Rarefaction: where the particles are spread apart
Wave Properties
Wave properties depend on what
(type of energy) is making the waves.
1.Wavelength: The distance between one point
on a wave and the exact same place on the
next wave.
2. Frequency: How many waves go past a point in one
second; unit of measurement is hertz (Hz).
The higher the frequency, the more energy in the wave.
10 waves going past in 1 second = 10 Hz
1,000 waves go past in 1 second = 1,000 Hz
1 million waves going past = 1 million Hz
3. Amplitude: How far the medium moves from
rest position (where it is when not moving).
Remember that for transverse waves, the highest
point is the crest, and the lowest point is the trough.
Remember that for compressional waves, the points where the medium is
close together are called compressions and the areas where the medium is
spread apart are called rarefactions.
The closer together and further apart the particles are, the larger the amplitude.
compression
rarefaction
The energy of a wave is proportional to the
square of its amplitude. Mathematically
speaking . . .
E = CA2
Where:
E = energy (the capacity to do work)
C = a constant (depends on the medium)
A = amplitude
For example:
If the amplitude is equal to 3 units
(and we assume C = 1 for this case) . . .
E = (1) (3)2
= (1) (9) = 9 units
Note that when the amplitude of a wave is one
unit, the energy is one unit.
•When the amplitude is doubled, the energy is
quadrupled.
•When the energy is 10 times greater, the energy is 100
times greater!
Amplitude Energy
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
E = CA2
4. Wave speed: Depends on the medium in which
the wave is traveling. It varies in solids, liquids
and gases.
A mathematical way to calculate speed:
wave speed = wavelength x frequency
(in meters) (in Hz)
OR
v = f x ‫ג‬
Problem: If a wave has a wavelength of 2 m and a frequency of 500 Hz,
what is its speed?
Answer: speed = 2 m x 500 Hz = 1000 m/s
Changing Wave Direction
1.Reflection: When waves bounce off a surface.
If the surface is flat, the angle at which the wave
hits the surface will be the same as the angle at
which it leaves the surface
(angle in = angle out).
This is the law of reflection.
2. Refraction: Waves can bend.
This happens when a wave
enters a new medium and its
SPEED CHANGES.
The amount of bending depends
on the medium it is entering.
3. Diffraction: The bending of waves AROUND
an object.
The amount of bending depends on the size of
the obstacle and the size of the waves.
Large obstacle, small wavelength = low diffraction
Small obstacle, large wavelength = large diffraction
Image Sources
2004 Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052-6399 USA. All rights reserved.
Denise W. Carlson. Used with permission.
Tom Henderson, The Physics Classroom
http://www.mwit.ac.th/~physicslab/applet_04/physics_classroom/Class/sound/u11l1c.html
Kraalennest, Wikipedia http://en.wikipedia.org/wiki/File:Crest_trough.svg

More Related Content

What's hot (20)

Waves Powerpoint
Waves PowerpointWaves Powerpoint
Waves Powerpoint
 
wave motion
wave motionwave motion
wave motion
 
Wave Motion
Wave MotionWave Motion
Wave Motion
 
Transverse waves
Transverse wavesTransverse waves
Transverse waves
 
Waves
Waves Waves
Waves
 
Waves and sounds
Waves and soundsWaves and sounds
Waves and sounds
 
Waves Ppp
Waves PppWaves Ppp
Waves Ppp
 
2.3 - Work Energy & Power
2.3 - Work Energy & Power2.3 - Work Energy & Power
2.3 - Work Energy & Power
 
Nature of light (edexcel AS levels)
Nature of light (edexcel AS levels)Nature of light (edexcel AS levels)
Nature of light (edexcel AS levels)
 
waves
waveswaves
waves
 
Waves
WavesWaves
Waves
 
Sound waves
Sound wavesSound waves
Sound waves
 
Lecture 05 mechanical waves. transverse waves.
Lecture 05   mechanical waves. transverse waves.Lecture 05   mechanical waves. transverse waves.
Lecture 05 mechanical waves. transverse waves.
 
WAVES
WAVESWAVES
WAVES
 
0.1 introduction to waves
0.1 introduction to waves0.1 introduction to waves
0.1 introduction to waves
 
The nature of sound
The nature of soundThe nature of sound
The nature of sound
 
Chapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptxChapter 6 - Superposition of waves.pptx
Chapter 6 - Superposition of waves.pptx
 
Igcse physics part 2
Igcse physics part 2Igcse physics part 2
Igcse physics part 2
 
Waves Basics
Waves BasicsWaves Basics
Waves Basics
 
Mechanical vs electromagnetic waves
Mechanical vs electromagnetic wavesMechanical vs electromagnetic waves
Mechanical vs electromagnetic waves
 

Similar to Waves and Wave Properties--Teach Engineering

Similar to Waves and Wave Properties--Teach Engineering (20)

Signal
SignalSignal
Signal
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Wave properties
Wave propertiesWave properties
Wave properties
 
Introduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptxIntroduction to Waves Notes2.pptx
Introduction to Waves Notes2.pptx
 
Phy exppp chap11
Phy exppp chap11Phy exppp chap11
Phy exppp chap11
 
3.1 form 4 general wave properties
3.1 form 4 general wave properties3.1 form 4 general wave properties
3.1 form 4 general wave properties
 
Waves unit (1)
Waves unit (1)Waves unit (1)
Waves unit (1)
 
Waves basicsstuver-100518155745-phpapp02
Waves basicsstuver-100518155745-phpapp02Waves basicsstuver-100518155745-phpapp02
Waves basicsstuver-100518155745-phpapp02
 
Wave properties
Wave propertiesWave properties
Wave properties
 
3.1 form 4 general wave properties
3.1 form 4 general wave properties3.1 form 4 general wave properties
3.1 form 4 general wave properties
 
Phys12
Phys12Phys12
Phys12
 
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH... SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH...
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 
Ultrasound physics
Ultrasound physicsUltrasound physics
Ultrasound physics
 
Wave assignment
Wave assignmentWave assignment
Wave assignment
 
Unit 4 2014 ppt wave characteristics
Unit 4 2014  ppt    wave characteristicsUnit 4 2014  ppt    wave characteristics
Unit 4 2014 ppt wave characteristics
 
Wave Motion
Wave MotionWave Motion
Wave Motion
 
The Energy of Waves
The Energy of Waves The Energy of Waves
The Energy of Waves
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
Ch 16 Waves and Sound
Ch 16 Waves and Sound Ch 16 Waves and Sound
Ch 16 Waves and Sound
 
Physics
PhysicsPhysics
Physics
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 

Recently uploaded (20)

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 

Waves and Wave Properties--Teach Engineering

  • 1. Waves and Wave PropertiesWaves and Wave Properties
  • 2. Why are we able to see? Answer: Because there is light. And…what is light? Answer: Light is a wave. So…what is a wave?
  • 3. Answer: A wave is a disturbance that carries energy from place to place. A wave does NOT carry matter with it! It just moves the matter as it goes through it.
  • 4. Some waves do not need matter (called a “medium”) to be able to move (for example, through space). These are called electromagnetic waves (or EM waves). Some waves MUST have a medium in order to move. These are called mechanical waves.
  • 5. Wave Types 1.Transverse waves: Waves in which the medium moves at right angles to the direction of the wave
  • 6. Parts of transverse waves: Crest: the highest point of the wave Trough: the lowest point of the wave
  • 7. 2. Compressional (or longitudinal) waves: Waves in which the medium moves back and forth in the same direction as the wave
  • 8. Parts of longitudinal waves: Compression: where the particles are close together Rarefaction: where the particles are spread apart
  • 9. Wave Properties Wave properties depend on what (type of energy) is making the waves. 1.Wavelength: The distance between one point on a wave and the exact same place on the next wave.
  • 10. 2. Frequency: How many waves go past a point in one second; unit of measurement is hertz (Hz). The higher the frequency, the more energy in the wave. 10 waves going past in 1 second = 10 Hz 1,000 waves go past in 1 second = 1,000 Hz 1 million waves going past = 1 million Hz
  • 11. 3. Amplitude: How far the medium moves from rest position (where it is when not moving). Remember that for transverse waves, the highest point is the crest, and the lowest point is the trough.
  • 12. Remember that for compressional waves, the points where the medium is close together are called compressions and the areas where the medium is spread apart are called rarefactions. The closer together and further apart the particles are, the larger the amplitude. compression rarefaction
  • 13. The energy of a wave is proportional to the square of its amplitude. Mathematically speaking . . . E = CA2 Where: E = energy (the capacity to do work) C = a constant (depends on the medium) A = amplitude For example: If the amplitude is equal to 3 units (and we assume C = 1 for this case) . . . E = (1) (3)2 = (1) (9) = 9 units
  • 14. Note that when the amplitude of a wave is one unit, the energy is one unit. •When the amplitude is doubled, the energy is quadrupled. •When the energy is 10 times greater, the energy is 100 times greater! Amplitude Energy 1 1 2 4 3 9 4 16 5 25 6 36 7 49 8 64 9 81 10 100 E = CA2
  • 15. 4. Wave speed: Depends on the medium in which the wave is traveling. It varies in solids, liquids and gases. A mathematical way to calculate speed: wave speed = wavelength x frequency (in meters) (in Hz) OR v = f x ‫ג‬ Problem: If a wave has a wavelength of 2 m and a frequency of 500 Hz, what is its speed?
  • 16. Answer: speed = 2 m x 500 Hz = 1000 m/s Changing Wave Direction 1.Reflection: When waves bounce off a surface. If the surface is flat, the angle at which the wave hits the surface will be the same as the angle at which it leaves the surface (angle in = angle out). This is the law of reflection.
  • 17. 2. Refraction: Waves can bend. This happens when a wave enters a new medium and its SPEED CHANGES. The amount of bending depends on the medium it is entering.
  • 18. 3. Diffraction: The bending of waves AROUND an object. The amount of bending depends on the size of the obstacle and the size of the waves. Large obstacle, small wavelength = low diffraction Small obstacle, large wavelength = large diffraction
  • 19. Image Sources 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved. Denise W. Carlson. Used with permission. Tom Henderson, The Physics Classroom http://www.mwit.ac.th/~physicslab/applet_04/physics_classroom/Class/sound/u11l1c.html Kraalennest, Wikipedia http://en.wikipedia.org/wiki/File:Crest_trough.svg

Editor's Notes

  1. Presentation for lesson 2: Waves and Wave Properties, in the Waves: The Three Color Mystery unit The slides are animated so you can click (space bar, mouse, etc.) to show the next item when the class is ready.
  2. Think of a stadium wave: the people are moving up and down, but the wave goes around the stadium
  3. Answer: speed = 2 m x 500 Hz = 1000 m/s
  4. For example, think of a pool ball striking the side of the pool table: The angle it hits the side is the same angle it bounces off the side.