SlideShare a Scribd company logo
1 of 32
3/29/2016 1
Introduction
• Gears are used to transfer motion and torque between machine components in
mechanical devices. Depending on the design and construction of the gear pair
employed, gears can change the direction of movement and/or increase the
output speed or torque.
• Let the wheel A be keyed to the rotating shaft and the wheel B to the shaft, to be
rotated.
• A little consideration will show, that when the wheel A is rotated by a rotating
shaft, it will rotate the wheel B in the opposite direction as shown in Fig. (a).
3
TYPES OF GEARS
1.According to the position of axes of the
shafts.
a. Parallel
1.Spur Gear
2.Helical Gear
3.Rack and Pinion
b. Intersecting
Bevel Gear
c. Non-intersecting and Non-parallel
worm and worm gears
3
SPUR GEAR
• Teeth is parallel to axis
of rotation
• Transmit power from
one shaft to another
parallel shaft
• Used in Electric
screwdriver, oscillating
sprinkler, windup alarm
clock, washing machine
and clothes dryer
4
External and Internal spur Gear…
5
Helical Gear
• The teeth on helical gears are cut at an angle to the face of the
gear
• This gradual engagement makes helical gears operate much
more smoothly and quietly than spur gears
• One interesting thing about helical gears is that if the angles
of the gear teeth are correct, they can be mounted on
perpendicular shafts, adjusting the rotation angle by 90
degrees
6
Herringbone gears
• To avoid axial thrust, two
helical gears of opposite
hand can be mounted side
by side, to cancel resulting
thrust forces
• Herringbone gears are
mostly used on heavy
machinery.
7
Rack and pinion
• Rack and pinion gears are used to convert rotation (From the
pinion) into linear motion (of the rack)
• Aperfect example of this is the steering system on many cars
3/29/2016 8
Bevel gears
• Bevel gears are useful when the direction of a shaft's rotation needs to
be changed
• They are usually mounted on shafts that are 90 degrees apart, but can
be designed to work at other angles as well
• The teeth on bevel gears can be straight, spiral or hypoid
• locomotives, marine applications, automobiles, printing presses,
cooling towers, power plants, steel plants, railway track inspection
machines, etc.
3/29/2016 9
Straight and Spiral Bevel Gears
10
WORM AND WORM GEAR
• Worm gears are used when large gear reductions are needed. It is common for
worm gears to have reductions of 20:1, and even up to 300:1 or greater
• Many worm gears have an interesting property that no other gear set has: the worm
can easily turn the gear, but the gear cannot turn the worm
• Worm gears are used widely in material handling and transportation machinery,
machine tools, automobiles etc
11
NOMENCLATURE OF SPUR GEARS
15
16
• Pitch circle: It is an imaginary circle which by pure rolling action
would give the same motion as the actual gear.
• Pitch circle diameter: It is the diameter of the pitch circle. The size of
the gear is usually specified by the pitch circle diameter. It is also
known as pitch diameter.
• Pitch point: It is a common point of contact between two pitch circles.
• Pressure angle or angle of obliquity: It is the angle between the
common normal to two gear teeth at the point of contact and the
common tangent at the pitch point. It is usually denoted by φ. The
standard pressure angles are 14 1/2 ° and 20°.
17
• Addendum: It is the radial distance of a tooth from the pitch circle to
the top of the tooth.
• Dedendum: It is the radial distance of a tooth from the pitch circle to
the bottom of the tooth.
• Addendum circle: It is the circle drawn through the top of the teeth
and is concentric with the pitch circle.
• Dedendum circle: It is the circle drawn through the bottom of the
teeth. It is also called root circle.
Note : Root circle diameter = Pitch circle diameter × cos φ
where φ is the pressure angle.
18
Circular pitch: It is the distance measured on the circumference of the
pitch circle from a point of one tooth to the corresponding point on
the next tooth. It is usually denoted by Pc ,Mathematically,
A little consideration will show that the two gears will mesh together
correctly, if the two wheels have the same circular pitch.
Note : If D1 and D2 are the diameters of the two meshing gears
having the teeth T1 and T2 respectively, then for them to mesh
correctly,
19
Diametral pitch: It is the ratio of number of teeth to the pitch circle
diameter in millimetres. It is denoted by pd. Mathematically,
Module: It is the ratio of the pitch circle diameter in millimeters to the
number of teeth. It is usually denoted by m.
Mathematically,
Clearance: It is the radial distance from the top of the tooth to the
bottom of the tooth, in a meshing gear.Acircle passing
through the top of the meshing gear is known as clearance
circle.
Total depth: It is the radial distance between the addendum and the
dedendum circles of a gear. It is equal to the sum of the
addendum and dedendum.
of the teeth due to tooth errors an
Working depth: It is the radial distance from the addendum circle to the
clearance circle. It is equal to the sum of the addendum of the two
meshing gears.
Tooth thickness: It is the width of the tooth measured along the pitch
circle.
Tooth space: It is the width of space between the two adjacent teeth
measured along the pitch circle.
Backlash: It is the difference between the tooth space and the tooth
thickness, as measured along the pitch circle. Theoretically, the
backlash should be zero, but in actual practice some backlash must be
allowed to prevent jamming d
thermal expansion.
21
Face of tooth: It is the surface of the gear tooth above the pitch
surface.
Flank of tooth: It is the surface of the gear tooth below the pitch
surface.
Top land: It is the surface of the top of the tooth.
Face width: It is the width of the gear tooth measured parallel to
its axis.
Profile: It is the curve formed by the face and flank of the tooth.
Fillet radius: It is the radius that connects the root circle to the
profile of the tooth.
22
Path of contact: It is the path traced by the point of contact
of two teeth from the beginning to the end of
engagement.
Length of the path of contact: It is the length of the
common normal cut-off by the addendum circles of the
wheel and pinion.
Arc of contact: It is the path traced by a point on the pitch
circle from the beginning to the end of engagement of a
given pair of teeth. The arc of contact consists of two
parts, i.e.
(a)Arc of approach. It is the portion of the arc of contact
from the beginning of the engagement to the pitch point.
(b)Arc of recess: It is the portion of the arc of contact
from the pitch point to the end of the engagement of a
pair of teeth.
23
two types of teeth
• In actual practice following are the
commonly used
1. Cycloidal teeth ; and 2. Involute teeth.
Cycloidal Teeth
• A cycloid is the curve traced by a point on the circumference of
a circle which rolls without slipping on a fixed straight line.
• When a circle rolls without slipping on the outside of a fixed
circle, the curve traced by a point on the circumference of a
circle is known as epi-cycloid.
• On the other hand, if a circle rolls without slipping on the
inside of a fixed circle, then the curve traced by a point on the
circumference of a circle is called hypo-cycloid.
24
25
Condition for Constant Velocity Ratio of Toothed Wheels–Law of Gearing
• The law of gearing states the
condition which must be fulfilled
by the gear tooth profiles to
maintain a constant angular
velocity ratio between two gears.
• Figure shows two bodies 1 and 2
representing a portion of the two
gears in mesh.
A point C on the tooth profile of the gear 1 is in contact with a point D on the
tooth profile of the gear 2. The two curves in contact at points C or D must
have a common normal at the point. Let it be n - n.
Let,
ω1= instantaneous angular velocity of the gear 1 (CW)
ω2= instantaneous angular velocity of the gear 2 (CCW)
vc = linear velocity of C
vd = linear velocity of D
26
Each of two gears in a mesh has 48 teeth and a module of 8 mm. The
teeth are of 20° involute profile. The arc of contact is 2.25 times the
circular pitch. Determine the addendum.
29
A pinion having 30 teeth drives a gear having 80 teeth. The profile of
the gears is involute with 20° pressure angle, 12 mm module and 10
mm addendum. Find the length of path of contact, arc of contact and
the contact ratio.
30
31
Two involute gears in mesh have 20o pressure angle. The gear ratio is 3
and the number of teeth on the pinion is 24. The teeth have a module of
6 mm. The pitch line velocity is 1.5 m/s and the addendum equal to one
module. Determine the angle of action of the pinion (the angle turned by
the pinion when one pair of teeth is in the mesh) and the maximum
velocity of sliding.
32

More Related Content

What's hot

Design of gears by aliyi umer
Design of gears by aliyi umerDesign of gears by aliyi umer
Design of gears by aliyi umerAliyi Umer
 
Engine type and classification.
Engine type  and classification. Engine type  and classification.
Engine type and classification. Manmeet Singh
 
Internal Combustion Engine Part - 1
Internal Combustion Engine Part - 1Internal Combustion Engine Part - 1
Internal Combustion Engine Part - 1C Ranjith
 
GAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdf
GAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdfGAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdf
GAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdfShrutiGupta3922
 
Classification of clutches, torque transmission capacity, considerations for ...
Classification of clutches, torque transmission capacity, considerations for ...Classification of clutches, torque transmission capacity, considerations for ...
Classification of clutches, torque transmission capacity, considerations for ...vaibhav tailor
 
Power Transmission Devices
Power Transmission DevicesPower Transmission Devices
Power Transmission DevicesNitin Shekapure
 
Internal combustion engine
Internal combustion engineInternal combustion engine
Internal combustion engineGaurav Bhati
 
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copyMET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copyIbrahim AboKhalil
 
Complete guide to Internal Combustion engines (IC engines)
Complete guide to Internal Combustion engines (IC engines)Complete guide to Internal Combustion engines (IC engines)
Complete guide to Internal Combustion engines (IC engines)Syed Yaseen
 
Supercharging and Turbocharging
Supercharging and TurbochargingSupercharging and Turbocharging
Supercharging and TurbochargingPankajArvikar1
 
STEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINESTEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINEDHAMMADIP KAMBLE
 
4 stroke petrol engine and 4 stroke diesel engine
4 stroke petrol engine and 4 stroke diesel engine 4 stroke petrol engine and 4 stroke diesel engine
4 stroke petrol engine and 4 stroke diesel engine Komal Kotak
 

What's hot (20)

Heat Engine Cycles
Heat Engine CyclesHeat Engine Cycles
Heat Engine Cycles
 
Design of gears by aliyi umer
Design of gears by aliyi umerDesign of gears by aliyi umer
Design of gears by aliyi umer
 
Engine type and classification.
Engine type  and classification. Engine type  and classification.
Engine type and classification.
 
Internal Combustion Engine Part - 1
Internal Combustion Engine Part - 1Internal Combustion Engine Part - 1
Internal Combustion Engine Part - 1
 
GAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdf
GAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdfGAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdf
GAS_TURBINE_POWER_PLANT_LECTURE_SLIDE_02.pdf
 
Worm gear
Worm gearWorm gear
Worm gear
 
Classification of clutches, torque transmission capacity, considerations for ...
Classification of clutches, torque transmission capacity, considerations for ...Classification of clutches, torque transmission capacity, considerations for ...
Classification of clutches, torque transmission capacity, considerations for ...
 
Power Transmission Devices
Power Transmission DevicesPower Transmission Devices
Power Transmission Devices
 
Internal combustion engine
Internal combustion engineInternal combustion engine
Internal combustion engine
 
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copyMET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
 
Complete guide to Internal Combustion engines (IC engines)
Complete guide to Internal Combustion engines (IC engines)Complete guide to Internal Combustion engines (IC engines)
Complete guide to Internal Combustion engines (IC engines)
 
Supercharging and Turbocharging
Supercharging and TurbochargingSupercharging and Turbocharging
Supercharging and Turbocharging
 
Flywheel Presentation
Flywheel PresentationFlywheel Presentation
Flywheel Presentation
 
Shaft couplings
Shaft couplings Shaft couplings
Shaft couplings
 
Gears
GearsGears
Gears
 
Rotary Engines
Rotary EnginesRotary Engines
Rotary Engines
 
Automobile material
Automobile  materialAutomobile  material
Automobile material
 
STEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINESTEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINE
 
Internal combustion engine
Internal combustion engineInternal combustion engine
Internal combustion engine
 
4 stroke petrol engine and 4 stroke diesel engine
4 stroke petrol engine and 4 stroke diesel engine 4 stroke petrol engine and 4 stroke diesel engine
4 stroke petrol engine and 4 stroke diesel engine
 

Similar to Gears & its Terminology (20)

Gear design
Gear designGear design
Gear design
 
Gear
GearGear
Gear
 
spur gear.pptx, type of gear and design of gear
spur gear.pptx, type of gear and design of gearspur gear.pptx, type of gear and design of gear
spur gear.pptx, type of gear and design of gear
 
design of Spur gear
design of  Spur gear design of  Spur gear
design of Spur gear
 
Spur gears
Spur gearsSpur gears
Spur gears
 
Helical and spur gears.pptx
Helical and spur gears.pptxHelical and spur gears.pptx
Helical and spur gears.pptx
 
Gears
GearsGears
Gears
 
Unit i
Unit   iUnit   i
Unit i
 
Gears
GearsGears
Gears
 
Elemen Mesin II - Rodagigi Lurus
Elemen Mesin II - Rodagigi LurusElemen Mesin II - Rodagigi Lurus
Elemen Mesin II - Rodagigi Lurus
 
Gears ppt.pptx
Gears ppt.pptxGears ppt.pptx
Gears ppt.pptx
 
Gears
GearsGears
Gears
 
Jagtam sharan
Jagtam sharanJagtam sharan
Jagtam sharan
 
Spur gear
Spur gearSpur gear
Spur gear
 
Introduction to gears
Introduction to gearsIntroduction to gears
Introduction to gears
 
Introduction to Gears
Introduction to GearsIntroduction to Gears
Introduction to Gears
 
Types of gears and its functions, design
Types of gears and its functions, designTypes of gears and its functions, design
Types of gears and its functions, design
 
Gear.pptx
Gear.pptxGear.pptx
Gear.pptx
 
Spur GEAR Class notes
Spur GEAR Class notesSpur GEAR Class notes
Spur GEAR Class notes
 
Module 4 gears
Module 4 gearsModule 4 gears
Module 4 gears
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 

Gears & its Terminology

  • 2. Introduction • Gears are used to transfer motion and torque between machine components in mechanical devices. Depending on the design and construction of the gear pair employed, gears can change the direction of movement and/or increase the output speed or torque. • Let the wheel A be keyed to the rotating shaft and the wheel B to the shaft, to be rotated. • A little consideration will show, that when the wheel A is rotated by a rotating shaft, it will rotate the wheel B in the opposite direction as shown in Fig. (a). 3
  • 3. TYPES OF GEARS 1.According to the position of axes of the shafts. a. Parallel 1.Spur Gear 2.Helical Gear 3.Rack and Pinion b. Intersecting Bevel Gear c. Non-intersecting and Non-parallel worm and worm gears 3
  • 4. SPUR GEAR • Teeth is parallel to axis of rotation • Transmit power from one shaft to another parallel shaft • Used in Electric screwdriver, oscillating sprinkler, windup alarm clock, washing machine and clothes dryer 4
  • 5. External and Internal spur Gear… 5
  • 6. Helical Gear • The teeth on helical gears are cut at an angle to the face of the gear • This gradual engagement makes helical gears operate much more smoothly and quietly than spur gears • One interesting thing about helical gears is that if the angles of the gear teeth are correct, they can be mounted on perpendicular shafts, adjusting the rotation angle by 90 degrees 6
  • 7. Herringbone gears • To avoid axial thrust, two helical gears of opposite hand can be mounted side by side, to cancel resulting thrust forces • Herringbone gears are mostly used on heavy machinery. 7
  • 8. Rack and pinion • Rack and pinion gears are used to convert rotation (From the pinion) into linear motion (of the rack) • Aperfect example of this is the steering system on many cars 3/29/2016 8
  • 9. Bevel gears • Bevel gears are useful when the direction of a shaft's rotation needs to be changed • They are usually mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well • The teeth on bevel gears can be straight, spiral or hypoid • locomotives, marine applications, automobiles, printing presses, cooling towers, power plants, steel plants, railway track inspection machines, etc. 3/29/2016 9
  • 10. Straight and Spiral Bevel Gears 10
  • 11. WORM AND WORM GEAR • Worm gears are used when large gear reductions are needed. It is common for worm gears to have reductions of 20:1, and even up to 300:1 or greater • Many worm gears have an interesting property that no other gear set has: the worm can easily turn the gear, but the gear cannot turn the worm • Worm gears are used widely in material handling and transportation machinery, machine tools, automobiles etc 11
  • 12.
  • 13.
  • 14.
  • 16. 16
  • 17. • Pitch circle: It is an imaginary circle which by pure rolling action would give the same motion as the actual gear. • Pitch circle diameter: It is the diameter of the pitch circle. The size of the gear is usually specified by the pitch circle diameter. It is also known as pitch diameter. • Pitch point: It is a common point of contact between two pitch circles. • Pressure angle or angle of obliquity: It is the angle between the common normal to two gear teeth at the point of contact and the common tangent at the pitch point. It is usually denoted by φ. The standard pressure angles are 14 1/2 ° and 20°. 17
  • 18. • Addendum: It is the radial distance of a tooth from the pitch circle to the top of the tooth. • Dedendum: It is the radial distance of a tooth from the pitch circle to the bottom of the tooth. • Addendum circle: It is the circle drawn through the top of the teeth and is concentric with the pitch circle. • Dedendum circle: It is the circle drawn through the bottom of the teeth. It is also called root circle. Note : Root circle diameter = Pitch circle diameter × cos φ where φ is the pressure angle. 18
  • 19. Circular pitch: It is the distance measured on the circumference of the pitch circle from a point of one tooth to the corresponding point on the next tooth. It is usually denoted by Pc ,Mathematically, A little consideration will show that the two gears will mesh together correctly, if the two wheels have the same circular pitch. Note : If D1 and D2 are the diameters of the two meshing gears having the teeth T1 and T2 respectively, then for them to mesh correctly, 19
  • 20. Diametral pitch: It is the ratio of number of teeth to the pitch circle diameter in millimetres. It is denoted by pd. Mathematically, Module: It is the ratio of the pitch circle diameter in millimeters to the number of teeth. It is usually denoted by m. Mathematically, Clearance: It is the radial distance from the top of the tooth to the bottom of the tooth, in a meshing gear.Acircle passing through the top of the meshing gear is known as clearance circle. Total depth: It is the radial distance between the addendum and the dedendum circles of a gear. It is equal to the sum of the addendum and dedendum.
  • 21. of the teeth due to tooth errors an Working depth: It is the radial distance from the addendum circle to the clearance circle. It is equal to the sum of the addendum of the two meshing gears. Tooth thickness: It is the width of the tooth measured along the pitch circle. Tooth space: It is the width of space between the two adjacent teeth measured along the pitch circle. Backlash: It is the difference between the tooth space and the tooth thickness, as measured along the pitch circle. Theoretically, the backlash should be zero, but in actual practice some backlash must be allowed to prevent jamming d thermal expansion. 21
  • 22. Face of tooth: It is the surface of the gear tooth above the pitch surface. Flank of tooth: It is the surface of the gear tooth below the pitch surface. Top land: It is the surface of the top of the tooth. Face width: It is the width of the gear tooth measured parallel to its axis. Profile: It is the curve formed by the face and flank of the tooth. Fillet radius: It is the radius that connects the root circle to the profile of the tooth. 22
  • 23. Path of contact: It is the path traced by the point of contact of two teeth from the beginning to the end of engagement. Length of the path of contact: It is the length of the common normal cut-off by the addendum circles of the wheel and pinion. Arc of contact: It is the path traced by a point on the pitch circle from the beginning to the end of engagement of a given pair of teeth. The arc of contact consists of two parts, i.e. (a)Arc of approach. It is the portion of the arc of contact from the beginning of the engagement to the pitch point. (b)Arc of recess: It is the portion of the arc of contact from the pitch point to the end of the engagement of a pair of teeth. 23
  • 24. two types of teeth • In actual practice following are the commonly used 1. Cycloidal teeth ; and 2. Involute teeth. Cycloidal Teeth • A cycloid is the curve traced by a point on the circumference of a circle which rolls without slipping on a fixed straight line. • When a circle rolls without slipping on the outside of a fixed circle, the curve traced by a point on the circumference of a circle is known as epi-cycloid. • On the other hand, if a circle rolls without slipping on the inside of a fixed circle, then the curve traced by a point on the circumference of a circle is called hypo-cycloid. 24
  • 25. 25
  • 26. Condition for Constant Velocity Ratio of Toothed Wheels–Law of Gearing • The law of gearing states the condition which must be fulfilled by the gear tooth profiles to maintain a constant angular velocity ratio between two gears. • Figure shows two bodies 1 and 2 representing a portion of the two gears in mesh. A point C on the tooth profile of the gear 1 is in contact with a point D on the tooth profile of the gear 2. The two curves in contact at points C or D must have a common normal at the point. Let it be n - n. Let, ω1= instantaneous angular velocity of the gear 1 (CW) ω2= instantaneous angular velocity of the gear 2 (CCW) vc = linear velocity of C vd = linear velocity of D 26
  • 27.
  • 28.
  • 29. Each of two gears in a mesh has 48 teeth and a module of 8 mm. The teeth are of 20° involute profile. The arc of contact is 2.25 times the circular pitch. Determine the addendum. 29
  • 30. A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with 20° pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact and the contact ratio. 30
  • 31. 31
  • 32. Two involute gears in mesh have 20o pressure angle. The gear ratio is 3 and the number of teeth on the pinion is 24. The teeth have a module of 6 mm. The pitch line velocity is 1.5 m/s and the addendum equal to one module. Determine the angle of action of the pinion (the angle turned by the pinion when one pair of teeth is in the mesh) and the maximum velocity of sliding. 32