SlideShare a Scribd company logo
FACULTY OF ENGINEERING




ONGOING RESEARCH and PRELIMINARY CFD‐
     CALCULATIONS ON CAR PARK

            Nele Tilley and Bart Merci
    Department of Flow, Heat and Combustion Mechanics 
                Ghent University – UGent


             SBO‐gebruikersgroep bijeenkomst 06/02/2009 – WFR Gent
                                                                               pag. 1 
ongoing research                                                   SBO car park



outline

1. Relation between horizontal ventilation velocity and 
   backlayering distance in large closed car parks
     Research 2008
     Development of formula for velocity in car park corresponding to certain
   backlayering distance
     Presented at IAFSS – september 2008 – Karlsruhe


2.  Application of developed formula to SBO car park




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         1
          Ghent University – UGent
ongoing research                                                   SBO car park




Relation between horizontal ventilation velocity and backlayering
               distance in large closed car parks




    Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         2
    Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park




                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park




 smoke movement




                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park




 smoke movement
  • vertical rise of smoke plume




                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park




 smoke movement
  • vertical rise of smoke plume
  • horizontal movement beneath ceiling




                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park




 smoke movement
  • vertical rise of smoke plume
  • horizontal movement beneath ceiling
 most car parks: smoke control  smoke extraction at back end of car park




                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park
                                                                                                    vin




 smoke movement
  • vertical rise of smoke plume
  • horizontal movement beneath ceiling
 most car parks: smoke control  smoke extraction at back end of car park


        no backlayering allowed
 critical ventilation velocity = smallest 
inlet velocity (vin) without backlayering

                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                numerical setup                      results                    conclusion

fire in a car park

                                                            d                                       vin




 smoke movement
  • vertical rise of smoke plume
  • horizontal movement beneath ceiling
 most car parks: smoke control  smoke extraction at back end of car park


        no backlayering allowed                                    backlayering allowed
 critical ventilation velocity = smallest                 • backlayering distance (d) of 10–15 m
inlet velocity (vin) without backlayering                 • firemen able to extinguish fire

                 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                3
                 Ghent University – UGent
introduction                 numerical setup                      results               conclusion

critical ventilation velocity           defined for fire in tunnels

    1st question
    Is the formula for vcr in tunnels also valid in car parks?
         • tunnel: w ≈ h < l
         • car park: h < w ≈ l




             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                4
             Ghent University – UGent
introduction                 numerical setup                      results               conclusion

critical ventilation velocity           defined for fire in tunnels

    1st question
    Is the formula for vcr in tunnels also valid in car parks?
         • tunnel: w ≈ h < l
         • car park: h < w ≈ l



                     l

                                   h
                                        w
                                                                                     l
                                                                                                       w
                                                                                           h




             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                    4
             Ghent University – UGent
introduction                 numerical setup                      results               conclusion

critical ventilation velocity           defined for fire in tunnels

    1st question
    Is the formula for vcr in tunnels also valid in car parks?
         • tunnel: w ≈ h < l
         • car park: h < w ≈ l

most regulations in car parks: backlayering is allowed

    2nd question
    What is the required inlet velocity, when a certain backlayering
    distance is allowed?




             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                4
             Ghent University – UGent
introduction                 numerical setup                      results               conclusion

critical ventilation velocity           defined for fire in tunnels

    1st question
    Is the formula for vcr in tunnels also valid in car parks?
         • tunnel: w ≈ h < l
         • car park: h < w ≈ l

most regulations in car parks: backlayering is allowed

    2nd question
    What is the required inlet velocity, when a certain backlayering
    distance is allowed?

critical inlet velocity            car parks: smoke control based on smoke extraction

    3rd question
    How to account for the difference between inlet and outlet velocity?



             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                4
             Ghent University – UGent
introduction                 numerical setup                      results               conclusion



use CFD‐simulations as numerical experiments
 • advantage: relatively easy to vary parameters
 • simulations carried out in FDS (version 4.0.7)




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                5
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion



use CFD‐simulations as numerical experiments
 • advantage: relatively easy to vary parameters
 • simulations carried out in FDS (version 4.0.7)




variation of four key parameters




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                5
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion



use CFD‐simulations as numerical experiments
 • advantage: relatively easy to vary parameters
 • simulations carried out in FDS (version 4.0.7)




variation of four key parameters
  • car park height                                                                      h




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                5
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion



use CFD‐simulations as numerical experiments
 • advantage: relatively easy to vary parameters
 • simulations carried out in FDS (version 4.0.7)




variation of four key parameters                                                                      w
  • car park height                                                                      h
  • car park width




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                    5
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion



use CFD‐simulations as numerical experiments
 • advantage: relatively easy to vary parameters
 • simulations carried out in FDS (version 4.0.7)




                                                                              AF

variation of four key parameters                                                                      w
  • car park height                                                                      h
  • car park width
  • fire source area




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                    5
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion



use CFD‐simulations as numerical experiments
 • advantage: relatively easy to vary parameters
 • simulations carried out in FDS (version 4.0.7)


                                                                     ′′
                                                                    qc
                                                                              AF

variation of four key parameters                                                                      w
  • car park height                                                                      h
  • car park width
  • fire source area
  • convective heat release rate per unit area


            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                    5
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion




 outline
 • introduction
 • numerical setup
 • results
 • conclusion




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                6
           Ghent University – UGent
introduction                 numerical setup                      results                          conclusion

configuration
basic configuration is kept constant – variation of one parameter at a time
   • AF between 1 m2 and 26 m2                           basic: 26 m2
      ′′
   • qc between 50 kW/m2 and 1500 kW/m2                                        basic: 192 kW/m2
   • h between 1.8 m and 3 m                                                   basic: 2.4 m
   • w between 12 m and 32 m                                                   basic: 16 m
   • # cells between 115200 and 307200                                         basic: 153600
            cell size: 20cm x 20cm x 20cm
                                                                                           ′′
                                                                                          qc
                                                                                                AF
                                                                                                                  w
                                                                                                         h




             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                               7
             Ghent University – UGent
introduction                 numerical setup                      results                          conclusion

configuration
basic configuration is kept constant – variation of one parameter at a time
   • AF between 1 m2 and 26 m2                           basic: 26 m2       2 cars 
      ′′
   • qc between 50 kW/m2 and 1500 kW/m2                  basic: 192 kW/m2 on fire
   • h between 1.8 m and 3 m                                                   basic: 2.4 m
   • w between 12 m and 32 m                                                   basic: 16 m
   • # cells between 115200 and 307200                                         basic: 153600
            cell size: 20cm x 20cm x 20cm
                                                                                           ′′
                                                                                          qc
                                                                                                AF
                                                                                                                  w
                                                                                                         h




             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                               7
             Ghent University – UGent
introduction                 numerical setup                      results                          conclusion

configuration
basic configuration is kept constant – variation of one parameter at a time
   • AF between 1 m2 and 26 m2                           basic: 26 m2       2 cars 
      ′′
   • qc between 50 kW/m2 and 1500 kW/m2                  basic: 192 kW/m2 on fire
   • h between 1.8 m and 3 m                                                   basic: 2.4 m
   • w between 12 m and 32 m                                                   basic: 16 m
   • # cells between 115200 and 307200                                         basic: 153600
            cell size: 20cm x 20cm x 20cm
                                                                                           ′′
                                                                                          qc
modeling                                                                                        AF
                                                                                                                  w
outlet: constant extraction velocity over entire surface
                                                                                                         h
length is 32m          ‐ view as significant part of larger car park
                       ‐ no local effects of outlet fans on flow field



             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                               7
             Ghent University – UGent
introduction                 numerical setup                      results                conclusion


modeling (ctd.)
• source: convective heat release rate
    • radiation off        exclude insecurity of 
    • walls: adiabatic     radiation modeling
• turbulence model: standard Smagorinsky LES                                 (Cs = 0.2)




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                 8
            Ghent University – UGent
introduction                 numerical setup                      results                conclusion


modeling (ctd.)
• source: convective heat release rate
    • radiation off        exclude insecurity of 
    • walls: adiabatic     radiation modeling
• turbulence model: standard Smagorinsky LES                                 (Cs = 0.2)

measure in FDS
in each simulation: 
   • backlayering distance               temperature profile underneath ceiling
   • inlet velocity corresponding to imposed outlet velocity




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                 8
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion




 outline
 • introduction
 • numerical setup
 • results
                                           qc′′
       • variation of four parameters: AF,     , h, w
       • difference between inlet and outlet velocity
 • conclusion




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                9
           Ghent University – UGent
introduction                  numerical setup                      results                      conclusion


         variation of one parameter at a time
                                       qc′′
         1) find a relation vcr = f(AF,    , h, w)
             and compare to the formula of Wu and Bakar1 for fire in tunnels

                           ′′                                                                              ′′
                                                                                                          qc ⋅ AF
                   vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3                  Q* < 0.2              Q* =
                                                                                                              2 ⋅w ⋅ h ⎞
                                                                                                                           5
                   vcr ∝ (1/h + 1/w)‐1/2                              Q* > 0.2                     ρ0cpT0 g ⎛
                                                                                                            ⎜          ⎟
                                                                                                            ⎝ w+h ⎠




1   Wu, Y., Bakar, M.Z.A., (2000) Fire Safety Journal 35, 363‐390

                   Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                        10
                   Ghent University – UGent
introduction                  numerical setup                      results                      conclusion


         variation of one parameter at a time
                                       qc′′
         1) find a relation vcr = f(AF,    , h, w)
             and compare to the formula of Wu and Bakar1 for fire in tunnels

                           ′′                                                                              ′′
                                                                                                          qc ⋅ AF
                   vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3                  Q* < 0.2              Q* =
                                                                                                              2 ⋅w ⋅ h ⎞
                                                                                                                           5
                   vcr ∝ (1/h + 1/w)‐1/2                              Q* > 0.2                     ρ0cpT0 g ⎛
                                                                                                            ⎜          ⎟
                                                                                                            ⎝ w+h ⎠
                                   qc′′
             basic configuration       < 241 kW/m2                           AF < 33 m2
                                    h > 2.2 m                                w > 9.2 m




1   Wu, Y., Bakar, M.Z.A., (2000) Fire Safety Journal 35, 363‐390

                   Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                        10
                   Ghent University – UGent
introduction                  numerical setup                      results                      conclusion


         variation of one parameter at a time
                                       qc′′
         1) find a relation vcr = f(AF,    , h, w)
             and compare to the formula of Wu and Bakar1 for fire in tunnels

                           ′′                                                                              ′′
                                                                                                          qc ⋅ AF
                   vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3                  Q* < 0.2              Q* =
                                                                                                              2 ⋅w ⋅ h ⎞
                                                                                                                           5
                   vcr ∝ (1/h + 1/w)‐1/2                              Q* > 0.2                     ρ0cpT0 g ⎛
                                                                                                            ⎜          ⎟
                                                                                                            ⎝ w+h ⎠
                                   qc′′
             basic configuration       < 241 kW/m2                           AF < 33 m2
                                    h > 2.2 m                                w > 9.2 m

         a linear relation is found between the difference of critical 
         and inlet velocity and the backlayering distance
                             d = a (vcr – vin)

                                     qc ′′
         2) find a relation a = f(AF,    , h, w)

1   Wu, Y., Bakar, M.Z.A., (2000) Fire Safety Journal 35, 363‐390

                   Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                        10
                   Ghent University – UGent
introduction                    numerical setup                      results               conclusion

                                                           AF = 26 m2                h = 2.4 m     w = 16 m
   variation of convective heat release rate per unit area
          critical ventilation velocity

       2.6
vcr (m/s)
       2.2


       1.8


       1.4


            1


       0.6
                0     400       800      1200       1600
                                ′′
                               qc (kW/m2)


                             ′′
                      vcr ∝ qc 0.28

                           ′′
     Wu and Bakar: vcr ∝ qc 1/3            ′′
                                        qc < 241 kW/m2
                                           ′′
                  vcr = c                    > 241 kW/m2
                                        qc
                    Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                11
                    Ghent University – UGent
introduction                    numerical setup                      results               conclusion

                                                           AF = 26 m2                h = 2.4 m     w = 16 m
   variation of convective heat release rate per unit area
          critical ventilation velocity

       2.6
vcr (m/s)
       2.2


       1.8


       1.4


            1


       0.6
                0     400       800      1200       1600
                                ′′
                               qc (kW/m2)


                             ′′
                      vcr ∝ qc 0.28

                           ′′
     Wu and Bakar: vcr ∝ qc 1/3            ′′
                                        qc < 241 kW/m2
                                           ′′
                  vcr = c                    > 241 kW/m2
                                        qc
                    Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                11
                    Ghent University – UGent
introduction                    numerical setup                        results                         conclusion

                                                           AF = 26 m2                   h = 2.4 m               w = 16 m
   variation of convective heat release rate per unit area
          critical ventilation velocity              backlayering distance
                                                                    20
       2.6
vcr (m/s)                                                      d (m)
       2.2                                                          15


       1.8
                                                                    10                                       ′′
                                                                                                            qc (kW/m2)
                                                                                                                 1500
       1.4                                                                                                       1000
                                                                                                                   500
                                                                     5                                             320
            1                                                                                                      192
                                                                                                                   100
                                                                                                                     50
       0.6                                                           0
                0     400       800      1200       1600                 0               0.2          0.4            0.6
                                ′′
                               qc (kW/m2)
                                                                                         vcr – vin (m/s)

                             ′′
                      vcr ∝ qc 0.28                                                    d = a (vcr – vin)
                                                                                             ′′
                                                                                        a ∝ qc ‐0.2
                           ′′
     Wu and Bakar: vcr ∝ qc 1/3            ′′
                                        qc < 241 kW/m2
                                           ′′
                  vcr = c                    > 241 kW/m2
                                        qc
                    Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                             11
                    Ghent University – UGent
introduction                 numerical setup                      results               conclusion


intermediate results

based on the variation of parameters in FDS

result n°1
             ′′
vcr ∝ AF0.2 qc 0.28 h0.27 w‐0.1




result n°2
d = a (vcr – vin)
      ′′
a ∝ qc ‐0.2




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                12
           Ghent University – UGent
introduction                 numerical setup                        results                         conclusion


 difference between inlet and outlet velocity
                                        v (m/s)
                                                                                             inlet velocity
                                             2                                               outlet velocity
basic configuration                                                                          outlet velocity theory
• outlet velocity imposed
                                            1.6
• inlet velocity measured 
  in FDS
                                            1.2


                                            0.8
                                                  0               5                   10      d (m)       15
simplified theory:
• conservation of mass  vin ρin = vout ρout
• ideal gas law            Tin ρin = Tout ρout
• energy balance           Qc = ΔT ρin vin w h cp,in                                             ′′
                                                                                               qc ⋅ AF
                                                                            vout   = vin +
• assumption of homogeneous              m                                                 ρin ⋅ Tin ⋅ w ⋅ h
  temperature in outlet plane

             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                               13
             Ghent University – UGent
introduction                 numerical setup                        results                         conclusion


 difference between inlet and outlet velocity
                                        v (m/s)
                                                                                             inlet velocity
                                             2                                               outlet velocity
basic configuration                                                                          outlet velocity theory
• outlet velocity imposed
                                            1.6
• inlet velocity measured 
  in FDS
                                            1.2


                                            0.8
                                                  0               5                   10      d (m)       15
simplified theory:
• conservation of mass  vin ρin = vout ρout
• ideal gas law            Tin ρin = Tout ρout
• energy balance           Qc = ΔT ρin vin w h cp,in                                             ′′
                                                                                               qc ⋅ AF
                                                                            vout   = vin +
• assumption of homogeneous              m                                                 ρin ⋅ Tin ⋅ w ⋅ h
  temperature in outlet plane

             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                               13
             Ghent University – UGent
introduction                 numerical setup                        results                         conclusion


 difference between inlet and outlet velocity
                                        v (m/s)
                                                                                             inlet velocity
                                             2                                               outlet velocity
basic configuration                                                                          outlet velocity theory
• outlet velocity imposed
                                            1.6
• inlet velocity measured 
  in FDS
                                            1.2


                                            0.8
                                                  0               5                   10      d (m)       15



 result n°3
 • calculate vin with formulae
 • apply simplified theory to obtain vout                                                        ′′
                                                                                               qc ⋅ AF
                                                                            vout   = vin +
    conservative design for smoke extraction                                               ρin ⋅ Tin ⋅ w ⋅ h


             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                               13
             Ghent University – UGent
introduction                 numerical setup                      results               conclusion




 outline
 • introduction
 • numerical setup
 • results
 • conclusion




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                14
           Ghent University – UGent
introduction                 numerical setup                      results                   conclusion


1st question
Is the formula for vcr in tunnels also valid in car parks?
                                                                                         l
result n°1
             ′′
vcr ∝ AF0.2 qc 0.28 h0.27 w‐0.1                                                                           h
                                                                                                              w


Wu and Bakar for fire in tunnels
        ′′
vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3                 Q* < 0.2                               l
                                                                                                              w
vcr ∝ (1/h + 1/w)‐1/2                             Q* > 0.2
                                                                                                   h




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                        15
            Ghent University – UGent
introduction                 numerical setup                      results                   conclusion


1st question
Is the formula for vcr in tunnels also valid in car parks?
                                                                                         l
result n°1
             ′′
vcr ∝ AF0.2 qc 0.28 h0.27 w‐0.1                                                                           h
                                                                                                              w


Wu and Bakar for fire in tunnels
        ′′
vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3                 Q* < 0.2                               l
                                                                                                              w
vcr ∝ (1/h + 1/w)‐1/2                             Q* > 0.2
                                                                                                   h
answer Formula for tunnels is not valid in car parks!
                                ′′
  new formula: vcr = 0.2 AF0.2 qc 0.28 h0.27 w‐0.1
                                                 within the range of configurations studied
Main differences: ‐ no threshold value observed
                  ‐ inverse influence of height

            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                        15
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion


2nd question
What is the required inlet velocity, when a certain backlayering
distance is allowed?


result n°2
d = a (vcr – vin)
      ′′
a ∝ qc ‐0.2




            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                16
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion


2nd question
What is the required inlet velocity, when a certain backlayering
distance is allowed?


result n°2
d = a (vcr – vin)
      ′′
a ∝ qc ‐0.2



answer A linear relation was found between the difference of critical 
and inlet velocity, and the backlayering distance. Of the four studied 
parameters, the coefficient in this linear relation only depends on the 
convective heat release rate per unit area.
                             ′′
The relation is: d = 111     ‐0.2 (vcr – vin)
                           qc

            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                16
            Ghent University – UGent
introduction                 numerical setup                      results               conclusion


3rd question
How to account for the difference between inlet and outlet velocity?

result n°3
• calculate vin with formulae
• apply simplified theory to obtain vout
   conservative design for smoke extraction




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                17
           Ghent University – UGent
introduction                 numerical setup                      results               conclusion


3rd question
How to account for the difference between inlet and outlet velocity?

result n°3
• calculate vin with formulae
• apply simplified theory to obtain vout
   conservative design for smoke extraction


answer The difference between inlet and outlet velocity can be substantial. 
It is therefore extremely important to recall that a smoke extraction system 
design in car parks is based on outlet velocity! 
Calculating the inlet velocity with the suggested formulae, and applying the 
simplified theoretical relation to obtain the outlet velocity is a conservative 
way of designing the smoke extraction system.

            Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                17
            Ghent University – UGent
ongoing research                                                   SBO car park




     Application of developed formula to SBO car park




Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         18
Ghent University – UGent
ongoing research                                                   SBO car park



SBO car park

• 28 m x 28 m x 2.4 m
• maximum convective HRR: 4 MW  – 3 m x 3 m




         Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         19
         Ghent University – UGent
ongoing research                                                 SBO car park



SBO car park

• 28 m x 28 m x 2.4 m
• maximum convective HRR: 4 MW  – 3 m x 3 m

  h = 2.4 m          w = 28 m               ′′
                                           qc = 444.44 kW/m2                            AF = 9 m2

                   ′′
  vcr = 0.2 AF0.2 qc 0.28 h0.27 w‐0.1  = 1.55 m/s




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be               19
           Ghent University – UGent
ongoing research                                                  SBO car park



SBO car park

• 28 m x 28 m x 2.4 m
• maximum convective HRR: 4 MW  – 3 m x 3 m

  h = 2.4 m            w = 28 m               ′′
                                             qc = 444.44 kW/m2                            AF = 9 m2

                   ′′
  vcr = 0.2 AF0.2 qc 0.28 h0.27 w‐0.1  = 1.55 m/s

                             ′′
                           qc ⋅ AF
    vout   ≈ vin + 0.6                   = 1.65 m/s
                       ρin ⋅ Tin ⋅ w ⋅ h




             Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be               19
             Ghent University – UGent
ongoing research                                                   SBO car park



FDS‐simulations of car park with vout = 1.65 m/s

V = 399168 m3/h                     2 extraction ventilators, each ± 200000 m3/h




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         20
          Ghent University – UGent
ongoing research                                                   SBO car park



FDS‐simulations of car park with vout = 1.65 m/s

V = 399168 m3/h                     2 extraction ventilators, each ± 200000 m3/h




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         20
          Ghent University – UGent
ongoing research                                                   SBO car park



FDS‐simulations of car park with vout = 1.65 m/s

V = 399168 m3/h                     2 extraction ventilators, each ± 200000 m3/h




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         20
          Ghent University – UGent
ongoing research                                                  SBO car park



FDS‐simulations of car park with vout = 1.65 m/s

V = 399168 m3/h                     2 extraction ventilators, each ± 200000 m3/h




closed walls and ceiling




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         20
          Ghent University – UGent
ongoing research                                                  SBO car park



FDS‐simulations of car park with vout = 1.65 m/s

V = 399168 m3/h                     2 extraction ventilators, each ± 200000 m3/h




closed walls and ceiling




     open wall (air inlet)



          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         20
          Ghent University – UGent
ongoing research                                                  SBO car park



FDS‐simulations of car park with vout = 1.65 m/s

V = 399168 m3/h                     2 extraction ventilators, each ± 200000 m3/h




closed walls and ceiling




     open wall (air inlet)
                                                        car fire: 4 MW conv.   – 3 m x 3 m


          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         20
          Ghent University – UGent
ongoing research                                                   SBO car park
some simulation pictures ...




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         21
           Ghent University – UGent
ongoing research                                                 SBO car park
some simulation pictures ...



smoke layer




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         21
           Ghent University – UGent
ongoing research                                                   SBO car park
some simulation pictures ...



temperature slice
at height 2 m




           Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         21
           Ghent University – UGent
ongoing research                                                   SBO car park



from similar temperature slices

     • derive maximum temperatures at ceiling
     • find out the position of these temperatures
     • decide where to put thermocouples
     • ...




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         22
          Ghent University – UGent
ongoing research                                                   SBO car park



from similar temperature slices

     • derive maximum temperatures at ceiling
     • find out the position of these temperatures
     • decide where to put thermocouples
     • ...



    Useful to know where to look and what to look for, in the experiments!




          Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         22
          Ghent University – UGent
ongoing research                                                   SBO car park




            Thank you for your attention!




Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be         23
Ghent University – UGent
introduction                            numerical setup                results               conclusion

                                                              ′′
                                                             qc = 192 kW/m2             h = 2.4 m     w = 16 m
    variation of fire source area
                critical ventilation velocity
        2.6
vcr (m/s)
        2.2


        1.8


        1.4


            1


        0.6
                0       5     10        15       20    25    30
                                   AF   (m2)

                            vcr ∝ AF0.2

                    Wu and Bakar: vcr ∝ AF1/3


                       Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                9
                       Ghent University – UGent
introduction                           numerical setup                   results                       conclusion

                                                             ′′
                                                            qc = 192 kW/m2                h = 2.4 m             w = 16 m
    variation of fire source area
                critical ventilation velocity                                     backlayering distance
        2.6                                                            20
vcr (m/s)
                                                                  d (m)
        2.2
                                                                       15

        1.8
                                                                       10
                                                                                                              AF (m2)
        1.4
                                                                                                                 26
                                                                                                                 15.2
                                                                        5
            1                                                                                                    10.2
                                                                                                                   4.8
                                                                                                                   1
        0.6                                                             0
                0      5     10        15       20     25   30              0              0.2          0.4              0.6
                                  AF   (m2)
                                                                                            vcr – vin (m/s)

                           vcr ∝ AF0.2                                                    d = a (vcr – vin)
                                                                                 a independent of AF
                    Wu and Bakar: vcr ∝ AF           1/3




                       Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                              9
                       Ghent University – UGent
introduction                      numerical setup                     results               conclusion

                                                             AF = 26 m2          ′′
                                                                                qc = 192 kW/m2       w = 16 m
    variation of car park height
                 critical ventilation velocity
        2.6
vcr (m/s)
        2.2


        1.8


        1.4


            1


        0.6
                1.6      2         2.4       2.8       3.2
                               h (m)

                         vcr ∝ h0.27

      Wu and Bakar: vcr ∝ (1+ w/h)‐1/2                 h < 2.2 m
                    vcr ∝ (1+ w/h) 1/3                 h > 2.2 m
                      Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                11
                      Ghent University – UGent
introduction                      numerical setup                     results               conclusion

                                                             AF = 26 m2          ′′
                                                                                qc = 192 kW/m2       w = 16 m
    variation of car park height
                 critical ventilation velocity
        2.6
vcr (m/s)
        2.2


        1.8


        1.4


            1


        0.6
                1.6      2         2.4       2.8       3.2
                               h (m)

                         vcr ∝ h0.27

      Wu and Bakar: vcr ∝ (1+ w/h)‐1/2                 h < 2.2 m
                    vcr ∝ (1+ w/h) 1/3                 h > 2.2 m
                      Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                11
                      Ghent University – UGent
introduction                      numerical setup                       results                        conclusion

                                                             AF = 26 m2            ′′
                                                                                  qc = 192 kW/m2                w = 16 m
    variation of car park height
                 critical ventilation velocity                                   backlayering distance
        2.6                                                           20
vcr (m/s)
                                                                 d (m)
        2.2
                                                                      15

        1.8
                                                                      10                                       h (m)
        1.4                                                                                                       3.0
                                                                                                                  2.6
                                                                       5                                          2.4
            1                                                                                                     2.2
                                                                                                                  2.0
                                                                                                                  1.8
        0.6                                                            0
                1.6      2         2.4       2.8       3.2                 0               0.2          0.4             0.6
                               h (m)
                                                                                           vcr – vin (m/s)

                         vcr ∝ h0.27                                                     d = a (vcr – vin)
                                                                                 a independent of h
      Wu and Bakar: vcr ∝           (1+ w/h)‐1/2       h < 2.2 m
                    vcr ∝ (1+ w/h) 1/3                 h > 2.2 m
                      Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                              11
                      Ghent University – UGent
introduction                      numerical setup                    results               conclusion

                                                            AF = 26 m2          ′′
                                                                               qc = 192 kW/m2       h = 2.4 m
    variation of car park width
                 critical ventilation velocity
        2.6
vcr (m/s)
        2.2


        1.8


        1.4


            1


        0.6
                10   14     18     22      26    30    34
                                 w (m)

                          vcr ∝ w‐0.1

                 Wu and Bakar: vcr ∝ (1+ h/w)1/3


                     Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                 12
                     Ghent University – UGent
introduction                      numerical setup                      results                        conclusion

                                                            AF = 26 m2            ′′
                                                                                 qc = 192 kW/m2                h = 2.4 m
    variation of car park width
                 critical ventilation velocity                                  backlayering distance
        2.6                                                          20
vcr (m/s)
                                                                d (m)
        2.2
                                                                     15

        1.8
                                                                                                             w (m)
                                                                     10
                                                                                                                 32
        1.4                                                                                                      28
                                                                                                                 24
                                                                      5                                          20
            1
                                                                                                                 16
                                                                                                                 12
        0.6                                                           0
                10   14     18     22      26    30    34                 0               0.2          0.4            0.6
                                 w (m)
                                                                                          vcr – vin (m/s)

                          vcr ∝ w‐0.1                                                   d = a (vcr – vin)
                                                                                a independent of w
                 Wu and Bakar: vcr ∝        (1+ h/w)1/3


                     Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be                             12
                     Ghent University – UGent

More Related Content

Viewers also liked

Solutions
SolutionsSolutions
Solutions
Mohamed Nouri
 
Emulation constructive "Mixité bois-béton" - Présentation d'ICM Structure
Emulation constructive "Mixité bois-béton" - Présentation d'ICM StructureEmulation constructive "Mixité bois-béton" - Présentation d'ICM Structure
Emulation constructive "Mixité bois-béton" - Présentation d'ICM Structure
Novabuild
 
Béton prêt à l'emploi
Béton prêt à l'emploiBéton prêt à l'emploi
Béton prêt à l'emploiSami Sahli
 
site plans1
site plans1site plans1
site plans1
DemiWrenn
 
In-Game Advertising 2010
In-Game Advertising 2010In-Game Advertising 2010
In-Game Advertising 2010
BrightEdge
 
Math in the News: 10/3/11
Math in the News: 10/3/11Math in the News: 10/3/11
Math in the News: 10/3/11
Media4math
 
Los Colores.
Los Colores.Los Colores.
Los Colores.
beki2009
 
CarParkFireSafety_UG_20091208
CarParkFireSafety_UG_20091208CarParkFireSafety_UG_20091208
CarParkFireSafety_UG_20091208
Bart Merci
 
New Products Or New Markets
New Products Or New MarketsNew Products Or New Markets
New Products Or New Markets
Pico Lantini
 
Session 5
Session 5Session 5
UG_20090206_Taerwe
UG_20090206_TaerweUG_20090206_Taerwe
UG_20090206_Taerwe
Bart Merci
 
The Product Manager Should Be CEO
The Product Manager Should Be CEOThe Product Manager Should Be CEO
The Product Manager Should Be CEO
Pico Lantini
 
Session 6
Session 6Session 6
Bideo-Jolasak
Bideo-JolasakBideo-Jolasak
Bideo-Jolasakolatzucin
 
UG_20090206_vanBeeck
UG_20090206_vanBeeckUG_20090206_vanBeeck
UG_20090206_vanBeeck
Bart Merci
 
Power Facts from the Tesla roadster
Power Facts from the Tesla roadsterPower Facts from the Tesla roadster
Power Facts from the Tesla roadster
Pico Lantini
 
Arval guide-des-planchers-juillet-2007
Arval guide-des-planchers-juillet-2007Arval guide-des-planchers-juillet-2007
Arval guide-des-planchers-juillet-2007
Ahmed Frikha
 
Session 4
Session 4Session 4

Viewers also liked (18)

Solutions
SolutionsSolutions
Solutions
 
Emulation constructive "Mixité bois-béton" - Présentation d'ICM Structure
Emulation constructive "Mixité bois-béton" - Présentation d'ICM StructureEmulation constructive "Mixité bois-béton" - Présentation d'ICM Structure
Emulation constructive "Mixité bois-béton" - Présentation d'ICM Structure
 
Béton prêt à l'emploi
Béton prêt à l'emploiBéton prêt à l'emploi
Béton prêt à l'emploi
 
site plans1
site plans1site plans1
site plans1
 
In-Game Advertising 2010
In-Game Advertising 2010In-Game Advertising 2010
In-Game Advertising 2010
 
Math in the News: 10/3/11
Math in the News: 10/3/11Math in the News: 10/3/11
Math in the News: 10/3/11
 
Los Colores.
Los Colores.Los Colores.
Los Colores.
 
CarParkFireSafety_UG_20091208
CarParkFireSafety_UG_20091208CarParkFireSafety_UG_20091208
CarParkFireSafety_UG_20091208
 
New Products Or New Markets
New Products Or New MarketsNew Products Or New Markets
New Products Or New Markets
 
Session 5
Session 5Session 5
Session 5
 
UG_20090206_Taerwe
UG_20090206_TaerweUG_20090206_Taerwe
UG_20090206_Taerwe
 
The Product Manager Should Be CEO
The Product Manager Should Be CEOThe Product Manager Should Be CEO
The Product Manager Should Be CEO
 
Session 6
Session 6Session 6
Session 6
 
Bideo-Jolasak
Bideo-JolasakBideo-Jolasak
Bideo-Jolasak
 
UG_20090206_vanBeeck
UG_20090206_vanBeeckUG_20090206_vanBeeck
UG_20090206_vanBeeck
 
Power Facts from the Tesla roadster
Power Facts from the Tesla roadsterPower Facts from the Tesla roadster
Power Facts from the Tesla roadster
 
Arval guide-des-planchers-juillet-2007
Arval guide-des-planchers-juillet-2007Arval guide-des-planchers-juillet-2007
Arval guide-des-planchers-juillet-2007
 
Session 4
Session 4Session 4
Session 4
 

Similar to UG_20090206_Tilley

Resume Hatem GACEM
Resume Hatem GACEMResume Hatem GACEM
Resume Hatem GACEM
Hatem Gacem
 
Introduction To Process Simulation
Introduction To Process SimulationIntroduction To Process Simulation
Introduction To Process Simulation
Karl Kolmetz
 
EOMYS case studies in EV HEV applications.pdf
EOMYS case studies in EV HEV applications.pdfEOMYS case studies in EV HEV applications.pdf
EOMYS case studies in EV HEV applications.pdf
ssuser75cfce
 
Simcenter engineering solutions for intake and exhaust
Simcenter engineering solutions for intake and exhaustSimcenter engineering solutions for intake and exhaust
Simcenter engineering solutions for intake and exhaust
Alfredo De Seta
 
Cast In Channels B_13-E
Cast In Channels B_13-ECast In Channels B_13-E
Cast In Channels B_13-E
Khairul Amri
 
BOOK OF TRAINING UK 2012
BOOK OF TRAINING   UK 2012BOOK OF TRAINING   UK 2012
BOOK OF TRAINING UK 2012
Sotiris Alexiou
 
My Updated CV
My  Updated CVMy  Updated CV
My Updated CV
ibrahim hammad
 
Streamline Solutions - Elements Vehicle CAE Suite
Streamline Solutions - Elements Vehicle CAE SuiteStreamline Solutions - Elements Vehicle CAE Suite
Streamline Solutions - Elements Vehicle CAE Suite
Angus Lock
 
COMPL OF WORKS1
COMPL OF WORKS1COMPL OF WORKS1
COMPL OF WORKS1
Jose Verghese Bijoy
 
Recommend pract cng_
Recommend pract cng_Recommend pract cng_
Recommend pract cng_
Eko Hadi Kesuma
 
HPC on Cloud for SMEs. The case of bolt tightening.
HPC on Cloud for SMEs. The case of bolt tightening.HPC on Cloud for SMEs. The case of bolt tightening.
HPC on Cloud for SMEs. The case of bolt tightening.
Andrés Gómez
 
Strategies to deal with monitored exceedances when AERMOD can’t be used
Strategies to deal with monitored exceedances when AERMOD can’t be usedStrategies to deal with monitored exceedances when AERMOD can’t be used
Strategies to deal with monitored exceedances when AERMOD can’t be used
Ron Petersen, PhD, CCM, FASHRAE
 
Hvac Electronic Diagnostics
Hvac Electronic DiagnosticsHvac Electronic Diagnostics
Hvac Electronic Diagnostics
foklop
 
Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...
Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...
Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...
Société Française d'Energie Nucléaire
 
Czero Engineering - Feb 2017
Czero Engineering  - Feb 2017Czero Engineering  - Feb 2017
Czero Engineering - Feb 2017
Czero
 
ashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdf
ashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdfashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdf
ashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdf
MarcGajudo
 
CFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdfCFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdf
Syfy2
 
Jornada convocatoria experimentos H2020 FORTISSIMO2
Jornada convocatoria experimentos H2020 FORTISSIMO2Jornada convocatoria experimentos H2020 FORTISSIMO2
Jornada convocatoria experimentos H2020 FORTISSIMO2
CESGA Centro de Supercomputación de Galicia
 
Thesis_presentation1
Thesis_presentation1Thesis_presentation1
Thesis_presentation1
Bhushan Velis
 
Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)
Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)
Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)
Esther Petrilli-Massey
 

Similar to UG_20090206_Tilley (20)

Resume Hatem GACEM
Resume Hatem GACEMResume Hatem GACEM
Resume Hatem GACEM
 
Introduction To Process Simulation
Introduction To Process SimulationIntroduction To Process Simulation
Introduction To Process Simulation
 
EOMYS case studies in EV HEV applications.pdf
EOMYS case studies in EV HEV applications.pdfEOMYS case studies in EV HEV applications.pdf
EOMYS case studies in EV HEV applications.pdf
 
Simcenter engineering solutions for intake and exhaust
Simcenter engineering solutions for intake and exhaustSimcenter engineering solutions for intake and exhaust
Simcenter engineering solutions for intake and exhaust
 
Cast In Channels B_13-E
Cast In Channels B_13-ECast In Channels B_13-E
Cast In Channels B_13-E
 
BOOK OF TRAINING UK 2012
BOOK OF TRAINING   UK 2012BOOK OF TRAINING   UK 2012
BOOK OF TRAINING UK 2012
 
My Updated CV
My  Updated CVMy  Updated CV
My Updated CV
 
Streamline Solutions - Elements Vehicle CAE Suite
Streamline Solutions - Elements Vehicle CAE SuiteStreamline Solutions - Elements Vehicle CAE Suite
Streamline Solutions - Elements Vehicle CAE Suite
 
COMPL OF WORKS1
COMPL OF WORKS1COMPL OF WORKS1
COMPL OF WORKS1
 
Recommend pract cng_
Recommend pract cng_Recommend pract cng_
Recommend pract cng_
 
HPC on Cloud for SMEs. The case of bolt tightening.
HPC on Cloud for SMEs. The case of bolt tightening.HPC on Cloud for SMEs. The case of bolt tightening.
HPC on Cloud for SMEs. The case of bolt tightening.
 
Strategies to deal with monitored exceedances when AERMOD can’t be used
Strategies to deal with monitored exceedances when AERMOD can’t be usedStrategies to deal with monitored exceedances when AERMOD can’t be used
Strategies to deal with monitored exceedances when AERMOD can’t be used
 
Hvac Electronic Diagnostics
Hvac Electronic DiagnosticsHvac Electronic Diagnostics
Hvac Electronic Diagnostics
 
Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...
Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...
Anne-Marie Choho the Senior Executive VP in charge of Engineering & Projects ...
 
Czero Engineering - Feb 2017
Czero Engineering  - Feb 2017Czero Engineering  - Feb 2017
Czero Engineering - Feb 2017
 
ashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdf
ashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdfashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdf
ashraeqatar_16.04.09_s_p_introduction_to_car_park_jetfan_ventilation_1.pdf
 
CFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdfCFD-CH01-Rao-2021-1.pdf
CFD-CH01-Rao-2021-1.pdf
 
Jornada convocatoria experimentos H2020 FORTISSIMO2
Jornada convocatoria experimentos H2020 FORTISSIMO2Jornada convocatoria experimentos H2020 FORTISSIMO2
Jornada convocatoria experimentos H2020 FORTISSIMO2
 
Thesis_presentation1
Thesis_presentation1Thesis_presentation1
Thesis_presentation1
 
Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)
Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)
Flare reduction projects - issues underlying limited uptake - Steve Ross (SGS)
 

Recently uploaded

哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
qo1as76n
 
Getting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by NeontribeGetting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by Neontribe
Harry Harrold
 
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
9lq7ultg
 
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
hw2xf1m
 
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdfAHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
talaatahm
 
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
k7nm6tk
 
Introduction to User experience design for beginner
Introduction to User experience design for beginnerIntroduction to User experience design for beginner
Introduction to User experience design for beginner
ellemjani
 
一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样
一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样
一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样
881evgn0
 
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
kuapy
 
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHINHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NishantRathi18
 
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
3vgr39kx
 
Practical eLearning Makeovers for Everyone
Practical eLearning Makeovers for EveryonePractical eLearning Makeovers for Everyone
Practical eLearning Makeovers for Everyone
Bianca Woods
 
Divertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8djDivertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8dj
lunaemel03
 
定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样
qo1as76n
 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
Virtual Real Design
 
一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样
k4krdgxx
 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
Knight Moves
 
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
bo44ban1
 
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
wkip62b
 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
Jaime Brown
 

Recently uploaded (20)

哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
 
Getting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by NeontribeGetting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by Neontribe
 
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
 
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
 
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdfAHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
 
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
 
Introduction to User experience design for beginner
Introduction to User experience design for beginnerIntroduction to User experience design for beginner
Introduction to User experience design for beginner
 
一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样
一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样
一比一原版美国哥伦比亚大学毕业证Columbia成绩单一模一样
 
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
 
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHINHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
 
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
 
Practical eLearning Makeovers for Everyone
Practical eLearning Makeovers for EveryonePractical eLearning Makeovers for Everyone
Practical eLearning Makeovers for Everyone
 
Divertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8djDivertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8dj
 
定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样
 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
 
一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样
 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
 
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
 
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
 

UG_20090206_Tilley

  • 1. FACULTY OF ENGINEERING ONGOING RESEARCH and PRELIMINARY CFD‐ CALCULATIONS ON CAR PARK Nele Tilley and Bart Merci Department of Flow, Heat and Combustion Mechanics  Ghent University – UGent SBO‐gebruikersgroep bijeenkomst 06/02/2009 – WFR Gent pag. 1 
  • 2. ongoing research SBO car park outline 1. Relation between horizontal ventilation velocity and  backlayering distance in large closed car parks Research 2008 Development of formula for velocity in car park corresponding to certain backlayering distance Presented at IAFSS – september 2008 – Karlsruhe 2.  Application of developed formula to SBO car park Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 1 Ghent University – UGent
  • 3. ongoing research SBO car park Relation between horizontal ventilation velocity and backlayering distance in large closed car parks Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 2 Ghent University – UGent
  • 4. introduction numerical setup results conclusion fire in a car park Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 5. introduction numerical setup results conclusion fire in a car park smoke movement Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 6. introduction numerical setup results conclusion fire in a car park smoke movement • vertical rise of smoke plume Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 7. introduction numerical setup results conclusion fire in a car park smoke movement • vertical rise of smoke plume • horizontal movement beneath ceiling Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 8. introduction numerical setup results conclusion fire in a car park smoke movement • vertical rise of smoke plume • horizontal movement beneath ceiling most car parks: smoke control  smoke extraction at back end of car park Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 9. introduction numerical setup results conclusion fire in a car park vin smoke movement • vertical rise of smoke plume • horizontal movement beneath ceiling most car parks: smoke control  smoke extraction at back end of car park no backlayering allowed critical ventilation velocity = smallest  inlet velocity (vin) without backlayering Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 10. introduction numerical setup results conclusion fire in a car park d vin smoke movement • vertical rise of smoke plume • horizontal movement beneath ceiling most car parks: smoke control  smoke extraction at back end of car park no backlayering allowed backlayering allowed critical ventilation velocity = smallest  • backlayering distance (d) of 10–15 m inlet velocity (vin) without backlayering • firemen able to extinguish fire Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 3 Ghent University – UGent
  • 11. introduction numerical setup results conclusion critical ventilation velocity  defined for fire in tunnels 1st question Is the formula for vcr in tunnels also valid in car parks? • tunnel: w ≈ h < l • car park: h < w ≈ l Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 4 Ghent University – UGent
  • 12. introduction numerical setup results conclusion critical ventilation velocity  defined for fire in tunnels 1st question Is the formula for vcr in tunnels also valid in car parks? • tunnel: w ≈ h < l • car park: h < w ≈ l l h w l w h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 4 Ghent University – UGent
  • 13. introduction numerical setup results conclusion critical ventilation velocity  defined for fire in tunnels 1st question Is the formula for vcr in tunnels also valid in car parks? • tunnel: w ≈ h < l • car park: h < w ≈ l most regulations in car parks: backlayering is allowed 2nd question What is the required inlet velocity, when a certain backlayering distance is allowed? Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 4 Ghent University – UGent
  • 14. introduction numerical setup results conclusion critical ventilation velocity  defined for fire in tunnels 1st question Is the formula for vcr in tunnels also valid in car parks? • tunnel: w ≈ h < l • car park: h < w ≈ l most regulations in car parks: backlayering is allowed 2nd question What is the required inlet velocity, when a certain backlayering distance is allowed? critical inlet velocity  car parks: smoke control based on smoke extraction 3rd question How to account for the difference between inlet and outlet velocity? Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 4 Ghent University – UGent
  • 15. introduction numerical setup results conclusion use CFD‐simulations as numerical experiments • advantage: relatively easy to vary parameters • simulations carried out in FDS (version 4.0.7) Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 5 Ghent University – UGent
  • 16. introduction numerical setup results conclusion use CFD‐simulations as numerical experiments • advantage: relatively easy to vary parameters • simulations carried out in FDS (version 4.0.7) variation of four key parameters Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 5 Ghent University – UGent
  • 17. introduction numerical setup results conclusion use CFD‐simulations as numerical experiments • advantage: relatively easy to vary parameters • simulations carried out in FDS (version 4.0.7) variation of four key parameters • car park height h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 5 Ghent University – UGent
  • 18. introduction numerical setup results conclusion use CFD‐simulations as numerical experiments • advantage: relatively easy to vary parameters • simulations carried out in FDS (version 4.0.7) variation of four key parameters w • car park height h • car park width Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 5 Ghent University – UGent
  • 19. introduction numerical setup results conclusion use CFD‐simulations as numerical experiments • advantage: relatively easy to vary parameters • simulations carried out in FDS (version 4.0.7) AF variation of four key parameters w • car park height h • car park width • fire source area Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 5 Ghent University – UGent
  • 20. introduction numerical setup results conclusion use CFD‐simulations as numerical experiments • advantage: relatively easy to vary parameters • simulations carried out in FDS (version 4.0.7) ′′ qc AF variation of four key parameters w • car park height h • car park width • fire source area • convective heat release rate per unit area Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 5 Ghent University – UGent
  • 21. introduction numerical setup results conclusion outline • introduction • numerical setup • results • conclusion Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 6 Ghent University – UGent
  • 22. introduction numerical setup results conclusion configuration basic configuration is kept constant – variation of one parameter at a time • AF between 1 m2 and 26 m2 basic: 26 m2 ′′ • qc between 50 kW/m2 and 1500 kW/m2 basic: 192 kW/m2 • h between 1.8 m and 3 m  basic: 2.4 m • w between 12 m and 32 m basic: 16 m • # cells between 115200 and 307200 basic: 153600 cell size: 20cm x 20cm x 20cm ′′ qc AF w h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 7 Ghent University – UGent
  • 23. introduction numerical setup results conclusion configuration basic configuration is kept constant – variation of one parameter at a time • AF between 1 m2 and 26 m2 basic: 26 m2 2 cars  ′′ • qc between 50 kW/m2 and 1500 kW/m2 basic: 192 kW/m2 on fire • h between 1.8 m and 3 m  basic: 2.4 m • w between 12 m and 32 m basic: 16 m • # cells between 115200 and 307200 basic: 153600 cell size: 20cm x 20cm x 20cm ′′ qc AF w h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 7 Ghent University – UGent
  • 24. introduction numerical setup results conclusion configuration basic configuration is kept constant – variation of one parameter at a time • AF between 1 m2 and 26 m2 basic: 26 m2 2 cars  ′′ • qc between 50 kW/m2 and 1500 kW/m2 basic: 192 kW/m2 on fire • h between 1.8 m and 3 m  basic: 2.4 m • w between 12 m and 32 m basic: 16 m • # cells between 115200 and 307200 basic: 153600 cell size: 20cm x 20cm x 20cm ′′ qc modeling AF w outlet: constant extraction velocity over entire surface h length is 32m  ‐ view as significant part of larger car park ‐ no local effects of outlet fans on flow field Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 7 Ghent University – UGent
  • 25. introduction numerical setup results conclusion modeling (ctd.) • source: convective heat release rate • radiation off exclude insecurity of  • walls: adiabatic radiation modeling • turbulence model: standard Smagorinsky LES  (Cs = 0.2) Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 8 Ghent University – UGent
  • 26. introduction numerical setup results conclusion modeling (ctd.) • source: convective heat release rate • radiation off exclude insecurity of  • walls: adiabatic radiation modeling • turbulence model: standard Smagorinsky LES  (Cs = 0.2) measure in FDS in each simulation:  • backlayering distance  temperature profile underneath ceiling • inlet velocity corresponding to imposed outlet velocity Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 8 Ghent University – UGent
  • 27. introduction numerical setup results conclusion outline • introduction • numerical setup • results qc′′ • variation of four parameters: AF,     , h, w • difference between inlet and outlet velocity • conclusion Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 9 Ghent University – UGent
  • 28. introduction numerical setup results conclusion variation of one parameter at a time qc′′ 1) find a relation vcr = f(AF,    , h, w) and compare to the formula of Wu and Bakar1 for fire in tunnels ′′ ′′ qc ⋅ AF vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3 Q* < 0.2 Q* = 2 ⋅w ⋅ h ⎞ 5 vcr ∝ (1/h + 1/w)‐1/2 Q* > 0.2 ρ0cpT0 g ⎛ ⎜ ⎟ ⎝ w+h ⎠ 1 Wu, Y., Bakar, M.Z.A., (2000) Fire Safety Journal 35, 363‐390 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 10 Ghent University – UGent
  • 29. introduction numerical setup results conclusion variation of one parameter at a time qc′′ 1) find a relation vcr = f(AF,    , h, w) and compare to the formula of Wu and Bakar1 for fire in tunnels ′′ ′′ qc ⋅ AF vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3 Q* < 0.2 Q* = 2 ⋅w ⋅ h ⎞ 5 vcr ∝ (1/h + 1/w)‐1/2 Q* > 0.2 ρ0cpT0 g ⎛ ⎜ ⎟ ⎝ w+h ⎠ qc′′ basic configuration       < 241 kW/m2 AF < 33 m2 h > 2.2 m w > 9.2 m 1 Wu, Y., Bakar, M.Z.A., (2000) Fire Safety Journal 35, 363‐390 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 10 Ghent University – UGent
  • 30. introduction numerical setup results conclusion variation of one parameter at a time qc′′ 1) find a relation vcr = f(AF,    , h, w) and compare to the formula of Wu and Bakar1 for fire in tunnels ′′ ′′ qc ⋅ AF vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3 Q* < 0.2 Q* = 2 ⋅w ⋅ h ⎞ 5 vcr ∝ (1/h + 1/w)‐1/2 Q* > 0.2 ρ0cpT0 g ⎛ ⎜ ⎟ ⎝ w+h ⎠ qc′′ basic configuration       < 241 kW/m2 AF < 33 m2 h > 2.2 m w > 9.2 m a linear relation is found between the difference of critical  and inlet velocity and the backlayering distance d = a (vcr – vin) qc ′′ 2) find a relation a = f(AF,    , h, w) 1 Wu, Y., Bakar, M.Z.A., (2000) Fire Safety Journal 35, 363‐390 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 10 Ghent University – UGent
  • 31. introduction numerical setup results conclusion AF = 26 m2 h = 2.4 m w = 16 m variation of convective heat release rate per unit area critical ventilation velocity 2.6 vcr (m/s) 2.2 1.8 1.4 1 0.6 0 400 800 1200 1600 ′′ qc (kW/m2) ′′ vcr ∝ qc 0.28 ′′ Wu and Bakar: vcr ∝ qc 1/3 ′′ qc < 241 kW/m2 ′′ vcr = c                    > 241 kW/m2 qc Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 11 Ghent University – UGent
  • 32. introduction numerical setup results conclusion AF = 26 m2 h = 2.4 m w = 16 m variation of convective heat release rate per unit area critical ventilation velocity 2.6 vcr (m/s) 2.2 1.8 1.4 1 0.6 0 400 800 1200 1600 ′′ qc (kW/m2) ′′ vcr ∝ qc 0.28 ′′ Wu and Bakar: vcr ∝ qc 1/3 ′′ qc < 241 kW/m2 ′′ vcr = c                    > 241 kW/m2 qc Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 11 Ghent University – UGent
  • 33. introduction numerical setup results conclusion AF = 26 m2 h = 2.4 m w = 16 m variation of convective heat release rate per unit area critical ventilation velocity backlayering distance 20 2.6 vcr (m/s) d (m) 2.2 15 1.8 10 ′′ qc (kW/m2) 1500 1.4 1000   500 5   320 1   192   100    50 0.6 0 0 400 800 1200 1600 0 0.2 0.4 0.6 ′′ qc (kW/m2) vcr – vin (m/s) ′′ vcr ∝ qc 0.28 d = a (vcr – vin) ′′ a ∝ qc ‐0.2 ′′ Wu and Bakar: vcr ∝ qc 1/3 ′′ qc < 241 kW/m2 ′′ vcr = c                    > 241 kW/m2 qc Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 11 Ghent University – UGent
  • 34. introduction numerical setup results conclusion intermediate results based on the variation of parameters in FDS result n°1 ′′ vcr ∝ AF0.2 qc 0.28 h0.27 w‐0.1 result n°2 d = a (vcr – vin) ′′ a ∝ qc ‐0.2 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 12 Ghent University – UGent
  • 35. introduction numerical setup results conclusion difference between inlet and outlet velocity v (m/s) inlet velocity 2 outlet velocity basic configuration outlet velocity theory • outlet velocity imposed 1.6 • inlet velocity measured  in FDS 1.2 0.8 0 5 10 d (m) 15 simplified theory: • conservation of mass  vin ρin = vout ρout • ideal gas law Tin ρin = Tout ρout • energy balance Qc = ΔT ρin vin w h cp,in ′′ qc ⋅ AF vout = vin + • assumption of homogeneous  m ρin ⋅ Tin ⋅ w ⋅ h temperature in outlet plane Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 13 Ghent University – UGent
  • 36. introduction numerical setup results conclusion difference between inlet and outlet velocity v (m/s) inlet velocity 2 outlet velocity basic configuration outlet velocity theory • outlet velocity imposed 1.6 • inlet velocity measured  in FDS 1.2 0.8 0 5 10 d (m) 15 simplified theory: • conservation of mass  vin ρin = vout ρout • ideal gas law Tin ρin = Tout ρout • energy balance Qc = ΔT ρin vin w h cp,in ′′ qc ⋅ AF vout = vin + • assumption of homogeneous  m ρin ⋅ Tin ⋅ w ⋅ h temperature in outlet plane Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 13 Ghent University – UGent
  • 37. introduction numerical setup results conclusion difference between inlet and outlet velocity v (m/s) inlet velocity 2 outlet velocity basic configuration outlet velocity theory • outlet velocity imposed 1.6 • inlet velocity measured  in FDS 1.2 0.8 0 5 10 d (m) 15 result n°3 • calculate vin with formulae • apply simplified theory to obtain vout ′′ qc ⋅ AF vout = vin + conservative design for smoke extraction ρin ⋅ Tin ⋅ w ⋅ h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 13 Ghent University – UGent
  • 38. introduction numerical setup results conclusion outline • introduction • numerical setup • results • conclusion Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 14 Ghent University – UGent
  • 39. introduction numerical setup results conclusion 1st question Is the formula for vcr in tunnels also valid in car parks? l result n°1 ′′ vcr ∝ AF0.2 qc 0.28 h0.27 w‐0.1 h w Wu and Bakar for fire in tunnels ′′ vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3 Q* < 0.2 l w vcr ∝ (1/h + 1/w)‐1/2 Q* > 0.2 h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 15 Ghent University – UGent
  • 40. introduction numerical setup results conclusion 1st question Is the formula for vcr in tunnels also valid in car parks? l result n°1 ′′ vcr ∝ AF0.2 qc 0.28 h0.27 w‐0.1 h w Wu and Bakar for fire in tunnels ′′ vcr ∝ qc 1/3 AF1/3 (1/h + 1/w)1/3 Q* < 0.2 l w vcr ∝ (1/h + 1/w)‐1/2 Q* > 0.2 h answer Formula for tunnels is not valid in car parks! ′′ new formula: vcr = 0.2 AF0.2 qc 0.28 h0.27 w‐0.1 within the range of configurations studied Main differences: ‐ no threshold value observed ‐ inverse influence of height Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 15 Ghent University – UGent
  • 41. introduction numerical setup results conclusion 2nd question What is the required inlet velocity, when a certain backlayering distance is allowed? result n°2 d = a (vcr – vin) ′′ a ∝ qc ‐0.2 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 16 Ghent University – UGent
  • 42. introduction numerical setup results conclusion 2nd question What is the required inlet velocity, when a certain backlayering distance is allowed? result n°2 d = a (vcr – vin) ′′ a ∝ qc ‐0.2 answer A linear relation was found between the difference of critical  and inlet velocity, and the backlayering distance. Of the four studied  parameters, the coefficient in this linear relation only depends on the  convective heat release rate per unit area. ′′ The relation is: d = 111     ‐0.2 (vcr – vin) qc Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 16 Ghent University – UGent
  • 43. introduction numerical setup results conclusion 3rd question How to account for the difference between inlet and outlet velocity? result n°3 • calculate vin with formulae • apply simplified theory to obtain vout conservative design for smoke extraction Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 17 Ghent University – UGent
  • 44. introduction numerical setup results conclusion 3rd question How to account for the difference between inlet and outlet velocity? result n°3 • calculate vin with formulae • apply simplified theory to obtain vout conservative design for smoke extraction answer The difference between inlet and outlet velocity can be substantial.  It is therefore extremely important to recall that a smoke extraction system  design in car parks is based on outlet velocity!  Calculating the inlet velocity with the suggested formulae, and applying the  simplified theoretical relation to obtain the outlet velocity is a conservative  way of designing the smoke extraction system. Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 17 Ghent University – UGent
  • 45. ongoing research SBO car park Application of developed formula to SBO car park Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 18 Ghent University – UGent
  • 46. ongoing research SBO car park SBO car park • 28 m x 28 m x 2.4 m • maximum convective HRR: 4 MW  – 3 m x 3 m Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 19 Ghent University – UGent
  • 47. ongoing research SBO car park SBO car park • 28 m x 28 m x 2.4 m • maximum convective HRR: 4 MW  – 3 m x 3 m h = 2.4 m w = 28 m ′′ qc = 444.44 kW/m2 AF = 9 m2 ′′ vcr = 0.2 AF0.2 qc 0.28 h0.27 w‐0.1  = 1.55 m/s Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 19 Ghent University – UGent
  • 48. ongoing research SBO car park SBO car park • 28 m x 28 m x 2.4 m • maximum convective HRR: 4 MW  – 3 m x 3 m h = 2.4 m w = 28 m ′′ qc = 444.44 kW/m2 AF = 9 m2 ′′ vcr = 0.2 AF0.2 qc 0.28 h0.27 w‐0.1  = 1.55 m/s ′′ qc ⋅ AF vout ≈ vin + 0.6 = 1.65 m/s ρin ⋅ Tin ⋅ w ⋅ h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 19 Ghent University – UGent
  • 49. ongoing research SBO car park FDS‐simulations of car park with vout = 1.65 m/s V = 399168 m3/h   2 extraction ventilators, each ± 200000 m3/h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 20 Ghent University – UGent
  • 50. ongoing research SBO car park FDS‐simulations of car park with vout = 1.65 m/s V = 399168 m3/h   2 extraction ventilators, each ± 200000 m3/h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 20 Ghent University – UGent
  • 51. ongoing research SBO car park FDS‐simulations of car park with vout = 1.65 m/s V = 399168 m3/h   2 extraction ventilators, each ± 200000 m3/h Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 20 Ghent University – UGent
  • 52. ongoing research SBO car park FDS‐simulations of car park with vout = 1.65 m/s V = 399168 m3/h   2 extraction ventilators, each ± 200000 m3/h closed walls and ceiling Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 20 Ghent University – UGent
  • 53. ongoing research SBO car park FDS‐simulations of car park with vout = 1.65 m/s V = 399168 m3/h   2 extraction ventilators, each ± 200000 m3/h closed walls and ceiling open wall (air inlet) Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 20 Ghent University – UGent
  • 54. ongoing research SBO car park FDS‐simulations of car park with vout = 1.65 m/s V = 399168 m3/h   2 extraction ventilators, each ± 200000 m3/h closed walls and ceiling open wall (air inlet) car fire: 4 MW conv.   – 3 m x 3 m Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 20 Ghent University – UGent
  • 55. ongoing research SBO car park some simulation pictures ... Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 21 Ghent University – UGent
  • 56. ongoing research SBO car park some simulation pictures ... smoke layer Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 21 Ghent University – UGent
  • 57. ongoing research SBO car park some simulation pictures ... temperature slice at height 2 m Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 21 Ghent University – UGent
  • 58. ongoing research SBO car park from similar temperature slices • derive maximum temperatures at ceiling • find out the position of these temperatures • decide where to put thermocouples • ... Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 22 Ghent University – UGent
  • 59. ongoing research SBO car park from similar temperature slices • derive maximum temperatures at ceiling • find out the position of these temperatures • decide where to put thermocouples • ... Useful to know where to look and what to look for, in the experiments! Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 22 Ghent University – UGent
  • 60. ongoing research SBO car park Thank you for your attention! Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 23 Ghent University – UGent
  • 61. introduction numerical setup results conclusion ′′ qc = 192 kW/m2 h = 2.4 m w = 16 m variation of fire source area critical ventilation velocity 2.6 vcr (m/s) 2.2 1.8 1.4 1 0.6 0 5 10 15 20 25 30 AF (m2) vcr ∝ AF0.2 Wu and Bakar: vcr ∝ AF1/3 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 9 Ghent University – UGent
  • 62. introduction numerical setup results conclusion ′′ qc = 192 kW/m2 h = 2.4 m w = 16 m variation of fire source area critical ventilation velocity backlayering distance 2.6 20 vcr (m/s) d (m) 2.2 15 1.8 10 AF (m2) 1.4 26 15.2 5 1 10.2   4.8  1 0.6 0 0 5 10 15 20 25 30 0 0.2 0.4 0.6 AF (m2) vcr – vin (m/s) vcr ∝ AF0.2 d = a (vcr – vin) a independent of AF Wu and Bakar: vcr ∝ AF 1/3 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 9 Ghent University – UGent
  • 63. introduction numerical setup results conclusion AF = 26 m2 ′′ qc = 192 kW/m2 w = 16 m variation of car park height critical ventilation velocity 2.6 vcr (m/s) 2.2 1.8 1.4 1 0.6 1.6 2 2.4 2.8 3.2 h (m) vcr ∝ h0.27 Wu and Bakar: vcr ∝ (1+ w/h)‐1/2 h < 2.2 m vcr ∝ (1+ w/h) 1/3 h > 2.2 m Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 11 Ghent University – UGent
  • 64. introduction numerical setup results conclusion AF = 26 m2 ′′ qc = 192 kW/m2 w = 16 m variation of car park height critical ventilation velocity 2.6 vcr (m/s) 2.2 1.8 1.4 1 0.6 1.6 2 2.4 2.8 3.2 h (m) vcr ∝ h0.27 Wu and Bakar: vcr ∝ (1+ w/h)‐1/2 h < 2.2 m vcr ∝ (1+ w/h) 1/3 h > 2.2 m Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 11 Ghent University – UGent
  • 65. introduction numerical setup results conclusion AF = 26 m2 ′′ qc = 192 kW/m2 w = 16 m variation of car park height critical ventilation velocity backlayering distance 2.6 20 vcr (m/s) d (m) 2.2 15 1.8 10 h (m) 1.4 3.0 2.6 5 2.4 1 2.2 2.0 1.8 0.6 0 1.6 2 2.4 2.8 3.2 0 0.2 0.4 0.6 h (m) vcr – vin (m/s) vcr ∝ h0.27 d = a (vcr – vin) a independent of h Wu and Bakar: vcr ∝ (1+ w/h)‐1/2 h < 2.2 m vcr ∝ (1+ w/h) 1/3 h > 2.2 m Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 11 Ghent University – UGent
  • 66. introduction numerical setup results conclusion AF = 26 m2 ′′ qc = 192 kW/m2 h = 2.4 m variation of car park width critical ventilation velocity 2.6 vcr (m/s) 2.2 1.8 1.4 1 0.6 10 14 18 22 26 30 34 w (m) vcr ∝ w‐0.1 Wu and Bakar: vcr ∝ (1+ h/w)1/3 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 12 Ghent University – UGent
  • 67. introduction numerical setup results conclusion AF = 26 m2 ′′ qc = 192 kW/m2 h = 2.4 m variation of car park width critical ventilation velocity backlayering distance 2.6 20 vcr (m/s) d (m) 2.2 15 1.8 w (m) 10 32 1.4 28 24 5 20 1 16 12 0.6 0 10 14 18 22 26 30 34 0 0.2 0.4 0.6 w (m) vcr – vin (m/s) vcr ∝ w‐0.1 d = a (vcr – vin) a independent of w Wu and Bakar: vcr ∝ (1+ h/w)1/3 Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be 12 Ghent University – UGent