Tugas 1
Matematika
NAMA KELOMPOK:
I GUSTI AGUNG PUTU WIDIANA PUTRA (7)
I PUTU SUKMA ARINDRA (5)
WAHYU DWIPAYANA LIMARTA (14)
I WAYAN ADI YASA (32)

SMK N 1 TABANAN
TH. PEL. 2013/2014
1. Selesaikan persamaan kuadrat dibawah ini dengan cara memfaktorkan.

a.
b.
c.
d.
e.

X2 + 5X – 50 = 0
X2 + 3X = 0
X2 – 4 = 0
2X2 + 3X + 1 = 0
3X2 + 5X – 2 = 0

2. Selesaikan persamaan kuadratberikut ini dengan melengkapkan kuadrat sempurna.

a. X2 + 5X + 4 = 0
b. 2X2 – 14X + 12 = 0
3. Selesaikan persamaan kuadrat berikut ini dengan rumus ABC.

a. X2 – 15X + 30 = 0
b. X2 + 8X – 20 = 0
c. X2 + 3X = 0
4. Tentukan P agar persamaan kuadrat (p+3) x3 + 3X – 4 = 0 → mempunyai 2 akar sama.

JAWABAN :
1.a). x2 + 5x – 50 = 0
(x - 2) (x + 25) = 0
x -2 = 0
x = -1
b). x2 + 3x = 0
(x + 1) (x + 3)

atau

x + 25 = 0
x = -25
x +1 = 0

atau

x = -1

x+3=0
x = -3

c). x2 – 4 = 0
(x - 2) (x + 2)
x -2 = 0

atau

x=2

x +2 = 0
x = -2

d). 2x2 +3x + 1 = 0
(2x + 1) (x + 2)
2x + 1 = 0

atau

2x = 1

2x + 2 = 0
2x = 2
x=2

e). 3x2 + 5x – 2 = 0
(3x - 2) (3x + 3)
3x – 3 = 0

atau

3x = 3

3x + 3 = 0
3x = -3
= -1

2.a). x2 + 5x + 4 = 0
x2 + 5x + (1)2 = (-4) + (1)2
x2 + 5x + 1

= -3

(x - 4)2

= -3

x + 16

= -3

x

= -3 + 16
x

= 13
b). 2x2 – 14x + 12 = 0
2x2 – 14x

= -12

2x2 – 14x + (1)2 = (-12) + (1)2
2x2 – 14x + 1

= -12 + 1

2x2 – 14x + 1

= -11

(2x - 14)2

= -11

2x + 196

= -11

2x

= -11 – 196

3.a). x2 – 5x + 30 = 0

a = 1, b = -15, c = 30
X1 =

=

X2 =

=

b). x2 + 8x – 20 = 0
a = 1, b = 8, c = -20

=
=
=
X1 =

=

X2 =

=2

=

c). x2 + 3x = 0
a = 1, b = 3, c = 0

=
=
X1 =

=

= -8
X2 =

=

= -3

4.) (p + 3) x3 + 3x – 4 = 0

Tugas 1

  • 1.
    Tugas 1 Matematika NAMA KELOMPOK: IGUSTI AGUNG PUTU WIDIANA PUTRA (7) I PUTU SUKMA ARINDRA (5) WAHYU DWIPAYANA LIMARTA (14) I WAYAN ADI YASA (32) SMK N 1 TABANAN TH. PEL. 2013/2014
  • 2.
    1. Selesaikan persamaankuadrat dibawah ini dengan cara memfaktorkan. a. b. c. d. e. X2 + 5X – 50 = 0 X2 + 3X = 0 X2 – 4 = 0 2X2 + 3X + 1 = 0 3X2 + 5X – 2 = 0 2. Selesaikan persamaan kuadratberikut ini dengan melengkapkan kuadrat sempurna. a. X2 + 5X + 4 = 0 b. 2X2 – 14X + 12 = 0 3. Selesaikan persamaan kuadrat berikut ini dengan rumus ABC. a. X2 – 15X + 30 = 0 b. X2 + 8X – 20 = 0 c. X2 + 3X = 0 4. Tentukan P agar persamaan kuadrat (p+3) x3 + 3X – 4 = 0 → mempunyai 2 akar sama. JAWABAN : 1.a). x2 + 5x – 50 = 0 (x - 2) (x + 25) = 0 x -2 = 0 x = -1 b). x2 + 3x = 0 (x + 1) (x + 3) atau x + 25 = 0 x = -25
  • 3.
    x +1 =0 atau x = -1 x+3=0 x = -3 c). x2 – 4 = 0 (x - 2) (x + 2) x -2 = 0 atau x=2 x +2 = 0 x = -2 d). 2x2 +3x + 1 = 0 (2x + 1) (x + 2) 2x + 1 = 0 atau 2x = 1 2x + 2 = 0 2x = 2 x=2 e). 3x2 + 5x – 2 = 0 (3x - 2) (3x + 3) 3x – 3 = 0 atau 3x = 3 3x + 3 = 0 3x = -3 = -1 2.a). x2 + 5x + 4 = 0 x2 + 5x + (1)2 = (-4) + (1)2 x2 + 5x + 1 = -3 (x - 4)2 = -3 x + 16 = -3 x = -3 + 16 x = 13
  • 4.
    b). 2x2 –14x + 12 = 0 2x2 – 14x = -12 2x2 – 14x + (1)2 = (-12) + (1)2 2x2 – 14x + 1 = -12 + 1 2x2 – 14x + 1 = -11 (2x - 14)2 = -11 2x + 196 = -11 2x = -11 – 196 3.a). x2 – 5x + 30 = 0 a = 1, b = -15, c = 30
  • 5.
    X1 = = X2 = = b).x2 + 8x – 20 = 0 a = 1, b = 8, c = -20 = = = X1 = = X2 = =2 = c). x2 + 3x = 0 a = 1, b = 3, c = 0 = = X1 = = = -8
  • 6.
    X2 = = = -3 4.)(p + 3) x3 + 3x – 4 = 0