PPR Maths nbk


                            MODUL 4
           SKIM TUISYEN FELDA (STF) SPM ‘ENRICHMENT’.
         TOPIC: QUADRATIC EXPRESSIONS AND EQUATIONS.
                         TIME : 2 HOURS


1. Solve the quadratic equation



         3x(x − 1)
   (a)               =x+6
               2




   (b) (w – 1)2 – 32 = 0




   (c) 2a2 = 3(1 + a) + 2




           2
         5p + 3p
   (d)             =4
          1+p
PPR Maths nbk


           2
      3t
(e)            = 7t – 4
       2




                    11x − 5
(f) x2 – 2 =
                       4




       2
      m −6
(g)               =m
           5




(h) (2x + 1)(x – 2)=7




                 p+2
(i) p + 2 =
                 p−3
PPR Maths nbk


(j) 3x(2x – 1)+ 8x = 1




      2
(k) 3y −2 = y
       5




(l) (r –1)(r + 3) = 5(r + 3)




(m) 7p – 2p2 = 2(1 + p)




            2
           x + 25
(n) 5x =
                2
PPR Maths nbk


       2
      p +5
(o)              =p
           6




                         − 3(5x − 1)
(p) 4(5x – 1) =
                             x




               7 − 6d
(q) d =
                 d




        2
      2m + 5m
(r)                     =2
       m +1




      3m(m − 1)
(s)                     =2
           m +1
PPR Maths nbk


(t) y2 + 9y – 1 = 3(y – 2)
PPR Maths nbk


                      MODULE 4 - ANSWERS
          TOPIC: QUADRATIC EXPRESSIONS AND EQUATIONS.


Answer:



          3x(x − 1)
   (a)                  =x+6
                   2
         3x2 –x – 12 = 0 ………..1

         (3x+ 4)(x – 3) =0 ……….1
                   4
         x=            x= 3 …………….1,1
                   3

  (b) (w – 1)2 – 32 = 0
         w2– 2w – 8= 0 …………..1
         (w+2)(w–4)=0 …………..1
         w=4           w= –2 ……………1,1

   (c) 2a2 = 3(1 + a) + 2
         2a2– 3a – 5 = 0 …………1
         (a+1)(2a – 5) = 0………..1
                             5
         a= –1 x =             …………..1,1
                             2
              2
         5p + 3p
   (d)                  =4
           1+p

         5p2– p – 4 = 0 …………1

         (5p– 4)(p+1) = 0…….....1
                   4
         p=             p = – 1………..1,1
                   5
               2
          3t
   (e)             = 7t – 4
           2
         3t2+ 14t – 8 = 0 ………..1

         (3t – 2)(t – 4)=0 ………..1
PPR Maths nbk


            2
      t=         t = 4 …………1,1
            3

                 11x − 5
(g) x2 – 2 =
                      4
        2
      4x – 11x – 5 = 0 ………1

      (4x+1)(x - 3) = 0 ………1
            1
      x=         x=3
            4

       2
      m −6
(g)             =m
            5
      m2– 5m – 6 = 0 ………..1

      (m - 6)(m + 1) = 0………1

      m=6         m= -1 …………1,1

(i) (2x + 1)(x – 2)=7
      2x2– 3x – 9 = 0 …………1

      (x+3)(x - 3) = 0 …………1
      x = -3 x = 3 ……………. 1,1

                p+2
(i) p + 2 =
                p−3

      p2 – 2p – 8 = 0 …………1
      (p+2)(p– 4)=0 ………….1
      p= –2      p = 4……………1,1

(k) 3x(2x – 1)+ 8x = 1
      6x2+ 5x – 1 = 0 …………1

      (x+1)(6x - 1) = 0 ………..1
                      1
      x = -1 x =        …………..1,1
                      6
PPR Maths nbk


      2
(k) 3y −2 = y
        5
        2
      3y – 5y – 2 = 0………………1
      (y+1)(y– 2)=0 ………………..1
      y= -1           y = 2 …………………1,1

(o) (r –1)(r + 3) = 5(r + 3)
      r2 – 3yr– 18 = 0 ……………..1
      (r+6)(r– 3)=0 ………………..1
      y= -6           y = 3 ……………….1,1

(p) 7p – 2p2 = 2(1 + p)
      2p2– 5p + 2 = 0 …………..1

      (2p– 1)(2p+5) = 0 ………..1
                1              −5
      p=               p=         …………1,1
                2              2

                    x 2 + 25
(q) 5x =
                        2
      x2 – 10x + 25 = 0 …………1
      (x-5)(x-5)=0……………….1
      x=5 ………………………..1

        2
      p +5
(o)                  =p
            6
      p2– 6p + 5 = 0 ………….1

      (p– 1)(p+5) = 0 …………..1
      p=1             p = -5……………..1,1

                            − 3(5x − 1)
(q) 4(5x – 1) =
                                 x
            2
      20x – 11x -3 = 0 ……….1

      (5x+ 1)(4x-3) = 0 ………..1
                1              1
      x=-               x=       ………….1,1
                5              4
PPR Maths nbk


          7 − 6d
(q) d =
               d
      d2+ 6d -7 = 0 ………..1

      (d– 1)(d+7) = 0 ………1
      x=1          x = -7 ……….1,1

        2
      2m + 5m
(r)                  =2
        m +1
      2m2+ 3m -2 = 0 ……….1

      (2m– 1)(m+1) = 0………1
                         1
      x = -2       x=      ………….1,1
                         2

      3m(m − 1)
(s)                  =2
         m +1
      3m2- 5m -2 = 0 …………..1

      (3m+1)(m-2) = 0 ………….1
                          1
      x=2          x=-      …………1,1
                          3

(u) y2 + 9y – 1 = 3(y – 2)
      y2+ 6y+5 = 0 ……………1

      (y+1)(y+5) = 0 ………….1
      x = -1       x = -5 ………….1,1

Module 4 Quadratic Expression And Equations

  • 1.
    PPR Maths nbk MODUL 4 SKIM TUISYEN FELDA (STF) SPM ‘ENRICHMENT’. TOPIC: QUADRATIC EXPRESSIONS AND EQUATIONS. TIME : 2 HOURS 1. Solve the quadratic equation 3x(x − 1) (a) =x+6 2 (b) (w – 1)2 – 32 = 0 (c) 2a2 = 3(1 + a) + 2 2 5p + 3p (d) =4 1+p
  • 2.
    PPR Maths nbk 2 3t (e) = 7t – 4 2 11x − 5 (f) x2 – 2 = 4 2 m −6 (g) =m 5 (h) (2x + 1)(x – 2)=7 p+2 (i) p + 2 = p−3
  • 3.
    PPR Maths nbk (j)3x(2x – 1)+ 8x = 1 2 (k) 3y −2 = y 5 (l) (r –1)(r + 3) = 5(r + 3) (m) 7p – 2p2 = 2(1 + p) 2 x + 25 (n) 5x = 2
  • 4.
    PPR Maths nbk 2 p +5 (o) =p 6 − 3(5x − 1) (p) 4(5x – 1) = x 7 − 6d (q) d = d 2 2m + 5m (r) =2 m +1 3m(m − 1) (s) =2 m +1
  • 5.
    PPR Maths nbk (t)y2 + 9y – 1 = 3(y – 2)
  • 6.
    PPR Maths nbk MODULE 4 - ANSWERS TOPIC: QUADRATIC EXPRESSIONS AND EQUATIONS. Answer: 3x(x − 1) (a) =x+6 2 3x2 –x – 12 = 0 ………..1 (3x+ 4)(x – 3) =0 ……….1 4 x= x= 3 …………….1,1 3 (b) (w – 1)2 – 32 = 0 w2– 2w – 8= 0 …………..1 (w+2)(w–4)=0 …………..1 w=4 w= –2 ……………1,1 (c) 2a2 = 3(1 + a) + 2 2a2– 3a – 5 = 0 …………1 (a+1)(2a – 5) = 0………..1 5 a= –1 x = …………..1,1 2 2 5p + 3p (d) =4 1+p 5p2– p – 4 = 0 …………1 (5p– 4)(p+1) = 0…….....1 4 p= p = – 1………..1,1 5 2 3t (e) = 7t – 4 2 3t2+ 14t – 8 = 0 ………..1 (3t – 2)(t – 4)=0 ………..1
  • 7.
    PPR Maths nbk 2 t= t = 4 …………1,1 3 11x − 5 (g) x2 – 2 = 4 2 4x – 11x – 5 = 0 ………1 (4x+1)(x - 3) = 0 ………1 1 x= x=3 4 2 m −6 (g) =m 5 m2– 5m – 6 = 0 ………..1 (m - 6)(m + 1) = 0………1 m=6 m= -1 …………1,1 (i) (2x + 1)(x – 2)=7 2x2– 3x – 9 = 0 …………1 (x+3)(x - 3) = 0 …………1 x = -3 x = 3 ……………. 1,1 p+2 (i) p + 2 = p−3 p2 – 2p – 8 = 0 …………1 (p+2)(p– 4)=0 ………….1 p= –2 p = 4……………1,1 (k) 3x(2x – 1)+ 8x = 1 6x2+ 5x – 1 = 0 …………1 (x+1)(6x - 1) = 0 ………..1 1 x = -1 x = …………..1,1 6
  • 8.
    PPR Maths nbk 2 (k) 3y −2 = y 5 2 3y – 5y – 2 = 0………………1 (y+1)(y– 2)=0 ………………..1 y= -1 y = 2 …………………1,1 (o) (r –1)(r + 3) = 5(r + 3) r2 – 3yr– 18 = 0 ……………..1 (r+6)(r– 3)=0 ………………..1 y= -6 y = 3 ……………….1,1 (p) 7p – 2p2 = 2(1 + p) 2p2– 5p + 2 = 0 …………..1 (2p– 1)(2p+5) = 0 ………..1 1 −5 p= p= …………1,1 2 2 x 2 + 25 (q) 5x = 2 x2 – 10x + 25 = 0 …………1 (x-5)(x-5)=0……………….1 x=5 ………………………..1 2 p +5 (o) =p 6 p2– 6p + 5 = 0 ………….1 (p– 1)(p+5) = 0 …………..1 p=1 p = -5……………..1,1 − 3(5x − 1) (q) 4(5x – 1) = x 2 20x – 11x -3 = 0 ……….1 (5x+ 1)(4x-3) = 0 ………..1 1 1 x=- x= ………….1,1 5 4
  • 9.
    PPR Maths nbk 7 − 6d (q) d = d d2+ 6d -7 = 0 ………..1 (d– 1)(d+7) = 0 ………1 x=1 x = -7 ……….1,1 2 2m + 5m (r) =2 m +1 2m2+ 3m -2 = 0 ……….1 (2m– 1)(m+1) = 0………1 1 x = -2 x= ………….1,1 2 3m(m − 1) (s) =2 m +1 3m2- 5m -2 = 0 …………..1 (3m+1)(m-2) = 0 ………….1 1 x=2 x=- …………1,1 3 (u) y2 + 9y – 1 = 3(y – 2) y2+ 6y+5 = 0 ……………1 (y+1)(y+5) = 0 ………….1 x = -1 x = -5 ………….1,1