This document discusses algorithm analysis and complexity. It defines key terms like algorithm, asymptotic complexity, Big-O notation, and time complexity. It provides examples of analyzing simple algorithms like summing array elements. The running time is expressed as a function of input size n. Common complexities like constant, linear, quadratic, and exponential time are introduced. Nested loops and sequences of statements are analyzed. The goal of analysis is to classify algorithms into complexity classes to understand how input size affects runtime.