SlideShare a Scribd company logo
HST stud anchor
65
Features:
- high loading capacity
- force- controlled expansion
- suitable for tension zone
- suitable for shock loading
- fire prevention assessment
- pre-assembled with nut and washer → time saving
- cold formed
Material:
HST: - carbon steel, zinc plated to min. 5 µm
HST-R: - stainless steel; A4; 1.4401; EN 10088
HST-HCR: - stainless steel; 1.4529
HST / HST-R / HST-HCR
A4
316
Concrete
Tension
zone
Shock
Close
edge
distance/
spacing
Corrosion
resistance
HCR
Basic loading data (for a single anchor): HST
All data on this page applies to
• concrete: as specified in the table
• no edge distance and spacing influence
• correct setting (See setting operations page 85)
• steel failure
For detailed design method, see pages 86 - 91.
Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRu,m 16.6 22.3 35.2 48.7 76.0 86.1 10.3 11.6 21.9 31.1 44.9 60.2
Shear VRu,m 23.0 26.5 44.2 72.2 119.1 125.0 22.8 24.4 47.5 67.6 107.4 116.4
Characteristic resistance, Rk [kN]: concrete ≅ C20/25
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRk 9.0 16.0 20.0 35.0 50.0 60.0 5.0 9.0 12.0 20.0 30.0 40.0
Shear VRk 13.0 20.0 30.0 50.0 55.0 94.0 13.0 20.0 30.0 50.0 55.0 94.0
Following values according to the:
Concrete Capacity Method
Design resistance, Rd [kN]: concrete fck,cube = 25 N/mm2
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRd 5.0 10.7 13.3 23.3 33.3 40.0 2.8 6.0 8.0 13.3 20.0 26.7
Shear VRd 10.4 16.0 24.0 40.0 41.4 62.7 10.4 16.0 24.0 40.0 41.4 62.7
Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRec 3.6 7.6 9.5 16.7 23.8 28.6 2.0 4.3 5.7 9.5 14.3 19.0
Shear VRec 7.4 11.4 17.1 28.6 29.6 44.8 7.4 11.4 17.1 28.6 29.6 44.8
highMo
High
corrosion
resistance
Fire
resistance
Hilti Anchor
programme
non-cracked concrete cracked concrete
HST stud anchor
66
Basic loading data (for a single anchor): HST-R
All data on this section applies to
• concrete: as specified in the table
• no edge distance and spacing influence
• correct setting (See setting operations page 85)
• steel failure
For detailed design method, see pages 86 – 91.
non-cracked concrete cracked concrete
Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRu,m 18.1 26.7 35.1 49.8 77.4 79.1 12.7 18.4 20.1 36.0 55.1 70.5
Shear VRu,m 22.8 31.9 50.3 84.0 136.0 151.4 20.6 31.9 45.5 84.0 106.6 151.4
Characteristic resistance, Rk [kN]: concrete ≅ C20/25
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRk 9.0 16.0 20.0 35.0 50.0 60.0 5.0 9.0 12.0 25.0 30.0 40.0
Shear VRk 13.0 20.0 30.0 50.0 80.0 115.0 13.0 20.0 30.0 50.0 80.0 115.0
Following values according to the:
Concrete Capacity Method
Design resistance, Rd [kN]: concrete fck,cube = 25 N/mm2
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRd 6.0 10.7 13.3 23.3 33.3 40.0 3.3 6.0 8.0 16.7 20.0 26.7
Shear VRd 10.4 16.0 24.0 38.5 55.6 79.9 10.4 16.0 24.0 38.5 55.6 79.9
Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2
Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24
Tensile NRec 4.3 7.6 9.5 16.6 23.8 28.6 2.4 4.3 5.7 11.9 14.2 19.0
Shear VRec 7.4 11.4 17.1 27.5 39.7 57.1 7.4 11.4 17.1 27.5 39.7 57.1
Basic loading data (for a single anchor): HST-HCR
All data on this section applies to
• concrete: as specified in the table
• no edge distance and spacing influence
• correct setting (See setting operations page 85)
• steel failure
For detailed design method, see pages 86 - 91.
cracked concretenon-cracked concrete
Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25
Anchor size M8 M10 M12 M16 M8 M10 M12 M16
Tensile NRu,m 15.2 22.7 32.4 45.5 13.8 16.2 21.5 32.4
Shear VRu,m 14.0 21.6 32.4 59.4 14.0 21.6 32.4 59.4
HST stud anchor
68
Characteristic resistance, Rk [kN]: concrete ≅ C20/25
Anchor size M8 M10 M12 M16 M8 M10 M12 M16
Tensile NRk 9.0 16.0 20.0 35.0 5.0 9.0 12.0 25.0
Shear VRk 13.0 20.0 30.0 55.0 13.0 20.0 30.0 55.0
Following values according to the:
Concrete Capacity Method
Design resistance, Rd [kN]: concrete fck,cube = 25 N/mm2
Anchor size M8 M10 M12 M16 M8 M10 M12 M16
Tensile NRd 5.0 8.9 11.1 19.4 2.8 5.0 6.7 13.8
Shear VRd 10.4 16.0 24.0 44.0 10.4 16.0 24.0 44.0
Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2
Anchor size M8 M10 M12 M16 M8 M10 M12 M16
Tensile NRec 3.6 6.4 7.9 13.9 2.0 3.6 4.8 9.9
Shear VRec 7.4 11.4 17.1 31.4 7.4 11.4 17.1 31.4
Setting details
Anchor size
Setting Details
M8 M10 M12 M16
do [mm] Nominal dia. of drill bit 8 10 12 16
HST 20 45 60 110
Tinst [Nm] Rec. tighten-
ing torque HST-R
HST-HCR
20 40 60 110
SW [mm] Width across nut flats 13 17 19 24
df [mm] Clearance hole diameter 9 12 14 18
h1 [mm] Min. depth of drill hole 65 80 95 115
hef [mm] Effective embed. depth 47 60 70 82
Min. fasten.thickness 2 2 2 2
tfix [mm]
Max. fasten.thickness 195 200 200 200
hmin [mm] Min. concrete thickness 100 120 140 160
Drill bit TE-CX-8 TE-CX-10 TE-CX-12 TE-C-16 or TE-Y-
hef tfix
hmin
h1
Marking
d0
df
Tinst
HST stud anchor
68
Anchor size
Setting Details
M20 M24
do [mm] Nominal dia. of drill bit 20 24
Tinst [Nm] Rec.tightening torque 240 300
SW [mm] Width across nut flats 30 36
df [mm] Clearance hole diameter 22 26
h1 [mm] Min. depth of drill hole 140 170
hef [mm] Effective embed. depth 101 125
Min. fasten. thickness 2 2
tfix [mm]
Max. fasten. thickness 305 330
hmin [mm] Min. concrete thickness 200 250
Drill bit
TE-C-S 20
TE-Y 20
TE-C-S 24
TE-Y 24
HST-HCR is available up to M16.
Installation equipment
Rotary hammer (TE1, TE 2, TE5, TE6, TE6A, TE15, TE15-C, TE18-M, TE 35, TE 55, TE 76), drill bit, blow-out
pump, torque wrench, appropriate size hexagon drive socket for correct setting.
Setting operations
Drill hole with drill bit. Blow out dust and fragments. Install anchor. Apply tightening torque.
Mechanical properties of anchor bolt
Anchor size M8 M10 M12 M16 M20 M24
HST 800 800 800 680 550 530
fuk [N/mm
2
] Nominal tensile strength HST-R 700 700 700 650 700 700
HST-HCR 700 700 700 700 - -
HST 640 640 640 480 400 450
fyk [N/mm
2
] min. Yield strength HST-R 500 500 500 500 500 500
HST-HCR 450 450 450 450 - -
As [mm
2
] Stressed cross-section in taper 24.2 41.3 57.4 105.7 167.4 240.5
As [mm
2
] Stressed cross-section in thread 36.6 58 84.3 157 245 353
Wel [mm
3
] Elastic moment of resistance 31.2 62.3 109 277 541 935
HST 24.0 47.8 83.7 159.6 259.7 475.7
MRd,s [Nm] Design bending moment
1)
HST-R 18.7 37.4 65.4 166.2 324.6 561
HST-HCR 16.8 33.5 58.7 161.1 - -
1)
The design bending moment is calculated from MRd,s = 1.2⋅Wel⋅fuk/γMs where the partial safety factor γMs varies with anchor type and size.
HST stud anchor
69
Detailed design method - Hilti CC
TENSION
The tensile design resistance of a single anchor
is the lower of,
NRd,p : concrete pull-out resistance
NRd,c : concrete cone resistance
NRd,s : steel resistance
NRd,p : Pull-out resistance
B
o
p,Rdp,Rd fNN ⋅=
N0
Rd,p : Design pull-out resistance
• Concrete compressive strength fck,cube(150) = 25 N/mm2
Anchor size M8 M10 M12 M16 M20 M24
HST 5.0 10.7 13.3 23.3 33.3 40.0
HST-R 6.0 10.7 13.3 23.3 33.3 40.0N
0
Rd,p
1)
[kN] non-cracked concrete
HST-HCR 5.0 8.9 11.1 19.4 - -
HST 2.8 6.0 8.0 13.3 20.0 26.7
HST-R 3.3 6.0 8.0 16.7 20.0 26.7N
0
Rd,p
1)
[kN] cracked concrete
HST-HCR 2.8 5.0 6.7 13.8 - -
1)
The tensile design resistance is calculated from the tensile characteristic resistance N
o
Rk,p by N
o
Rd,p= N
o
Rk,p/γMp where the partial safety
factor γMp varies with anchor type and size (as per relevant approval).
NRd,c : Concrete cone resistance
RNANB
o
c,Rdc,Rd fffNN ⋅⋅⋅=
N0
Rd,c : Design concrete cone resistance
• Concrete compressive strength fck,cube(150) = 25 N/mm2
Anchor size M8 M10 M12 M16 M20 M24
N
0
Rd,c
1)
[kN] non-cracked concrete 9.0 15.6 19.7 24.9 34.1 47.0
N
0
Rd,c
1)
[kN] cracked concrete 6.4 11.2 14.1 17.8 24.4 33.5
efh [mm] effective embedment depth 47 60 70 82 101 125
1)
The tensile design resistance is calculated from the tensile characteristic resistance N
o
Rk,c by N
o
Rd,c= N
o
Rk,c/γMc,N, where the partial safety
factor γMc,N varies with anchor type and size (as per relevant approval).
(The Hilti CC-Method is a simplified Version of ETAG Annex C)
N
c
s
h
rec,p/c/s
HST stud anchor
70
fB :Influence of concrete strength
Concrete strength
designation
(ENV 206)
Cylinder compressive
strength
fck,cyl [N/mm²]
Cube compressive
strength
fck,cube [N/mm²]
fB
C20/25 20 25 1.0
C25/30 25 30 1.1
C30/37 30 37 1.22
C35/45 35 45 1.34
C40/50 40 50 1.41
C45/55 45 55 1.48
C50/60 50 60 1.55
25
f
f cube,ck
B =
Limits:
25 N/mm2
≤ fck,cube(150) ≤ 60 N/mm2
Concrete cylinder:
height 30cm, 15cm
diameter
Concrete cube:
side length 15cm
Concrete test specimen geometry
fAN :Influence of anchor spacing
Anchor spacing anchor size
s [mm] M8 M10 M12 M16 M20 M24
60 0.71 0.64
70 0.75 0.69 0.67 0.64
90 0.82 0.75 0.71 0.68
110 0.89 0.81 0.76 0.72 0.68
130 0.96 0.86 0.81 0.76 0.71 0.67
150 0.92 0.86 0.80 0.75 0.70
170 0.97 0.90 0.85 0.78 0.73
190 0.95 0.89 0.81 0.75
210 1.00 0.93 0.85 0.78
230 0.97 0.88 0.81
250 1.00 0.91 0.83
270 0.95 0.86
290 0.98 0.89
310 1.00 0.91
330 0.94
350 0.97
380 1.00
ef
AN
h6
s
5.0f
⋅
+=
Limits:
N,crmin sss ≤≤
smin varies with edge distance, see
table “minimum spacing & minimum
edge distance“, next page
efN,cr h3s ⋅=
fRN :Influence of edge distance
Edge distance anchor size
c [mm] M8 M10 M12 M16 M20 M24
55 0.84 0.71 0.64
60 0.89 0.75 0.68
70 0.99 0.83 0.75 0.68
80 0.92 0.82 0.74
90 1.00 0.89 0.80
100 0.96 0.86
110 0.92
120 0.98
130
140 0.94
150 0.99 0.85
160 0.89
170 0.93
180 0.97
ef
RN
h
c
5.025.0f ⋅+=
Limits:
N,crmin ccc ≤≤
cmin varies with spacing, see
table “minimum spacing &
minimum edge distance“, next
page
efN,cr h5.1c ⋅=
Note:
If more than 3 edges are smaller than
ccr,N consult the Hilti Technical Advisory
Service
HST stud anchor
71
HST M8 M10 M12 M16 M20 M24
smin [mm] 60 55 60 70 100 125
Minimum spacing
for c ≥ [mm] 50 80 85 110 225 255
cmin [mm] 50 55 55 85 140 170
Minimum edge distance
for s ≥ [mm] 60 115 145 150 270 295
HST-R M8 M10 M12 M16 M20 M24
smin [mm] 60 55 60 70 100 125
Minimum spacing
for c ≥ [mm] 60 70 80 110 195 205
cmin [mm] 60 50 55 70 140 150
Minimum edge distance
for s ≥ [mm] 60 115 145 160 210 235
HST-HCR M8 M10 M12 M16
smin [mm] 60 55 60 70
Minimum spacing
for c ≥ [mm] 60 70 80 110
cmin [mm] 60 55 55 70
Minimum edge distance
for s ≥ [mm] 60 115 145 160
Intermediatate values by interpolation.
NRd,s : Steel design tensile resistance
Anchor size M8 M10 M12 M16 M20 M24
HST 12.8 21.3 28.7 50.0 46.9 90.1
HST-R 11.3 18.7 26.7 44.2 63.0 90.2NRd,s
1)
[kN]
HST-HCR 12.9 21.5 30.5 56.3 - -
1)
The design tensile resistance is calculated from the characteristic tensile resistance, NRk,s , using
NRd,s= NRk,s /γMs, where the partial safety factor γMs varies with anchor type and size (as per relevant
approval).
NRd : System design tensile resistance
NRd = lower of NRd,p , NRd,c and NRd,s
Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).
Detailed design method – Hilti CC
(The Hilti CC-Method is a simplified Version of ETAG Annex C)
V
c
s
rec,c/sc >1.5c
2
c >1.5c
2
h>1.5c
SHEAR
The design shear resistance of a single anchor
is the lower of,
VRd,c : concrete edge resistance
VRd,s : steel resistance
Note: If the conditions regarding h and c2 are not met,
consult your Hilti technical advisory service.
HST stud anchor
72
VRd,c : Concrete edge design resistance
The lowest concrete edge resistance must be calculated. All nearby edges must be checked, (not only the
edge in the direction of shear). Shear direction is accounted for by the factor fβ,V.
V,ARV,B
o
c,Rdc,Rd fffVV ⋅⋅⋅= β
V0
Rd,c : Concrete edge design resistance
• Concrete compressive strength fck,cube(150) = 25 N/mm2
• at a minimum edge distance minc
HST Anchor size M8 M10 M12 M16 M20 M24
V
0
Rd,c
1)
[kN] non-cracked concrete 3.0 3.9 4.2 9.1 21.5 31.7
V
0
Rd,c
1)
[kN] cracked concrete 2.1 2.8 3.0 6.5 15.4 22.7
cmin [mm] min. edge distance 50 55 55 85 140 170
for s≥ [mm] min. spacing distance 60 115 145 150 270 295
HST-R / HCR Anchor size M8 M10 M12 M16 M20 M24
V
0
Rd,c
1)
[kN] non-cracked concrete 3.9 3.4 4.2 6.8 21.5 26.3
V
0
Rd,c
1)
[kN] cracked concrete 2.8 2.4 3.0 4.9 15.4 18.8
cmin [mm] min. edge distance 60 50 55 70 140 150
for s≥ [mm] min. spacing distance 60 115 145 160 210 235
HST-R / HCR Anchor size M8 M10 M12 M16
V
0
Rd,c
1)
[kN] non-cracked concrete 3.9 3.9 4.2 6.8
V
0
Rd,c
1)
[kN] cracked concrete 2.8 2.8 3.0 4.9
cmin [mm] min. edge distance 60 55 55 70
for s≥ [mm] min. spacing distance 60 115 145 160
1)
The shear design resistance is calculated from the shear characteristic resistance V
o
Rk,c by V
o
Rd,c= V
o
Rk,c/γMc,V, where the partial
safety factor γMc,V is equal to 1.5.
fB : Influence of concrete strength
Concrete strength
designation
(ENV 206)
Cylinder compressive
strength
fck,cyl [N/mm²]
Cube compressive
strength
fck,cube [N/mm²]
fB
C20/25 20 25 1.0
C25/30 25 30 1.1
C30/37 30 37 1.22
C35/45 35 45 1.34
C40/50 40 50 1.41
C45/55 45 55 1.48
C50/60 50 60 1.55
25
f
f cube,ck
B =
Limits:
25 N/mm2
≤ fck,cube(150) ≤ 60 N/mm2
Concrete cylinder:
height 30cm, 15cm
diameter
Concrete cube:
side length 15cm
Concrete test specimen geometry
HST stud anchor
73
fβ,V : Influence of shear load direction
Angle β [°] fβ,V
0 to 55 1
60 1.1
70 1.2
80 1.5
90 to 180 2
Formulae:
1f V, =β
β+β
=β
sin5.0cos
1
f V,
2f V, =β
for 0° ≤ β ≤ 55°
for 55° < β ≤ 90°
for 90° < β ≤ 180°
fAR,V : Influence of spacing and edge distance
Formula for single anchor fastening
influenced only by edge
minmin
V,AR
c
c
c
c
f =
Formula for anchor pair valid for s < 3c
minmin
V,AR
c
c
c6
sc3
f
+
=
General formula for n anchors (edge plus n-1 spacing)
only valid where s1 to sn-1 are all < 3c and c2 > 1.5c
minmin
1n21
V,AR
c
c
nc3
s...ssc3
f ⋅
++++
= −
cc
s
s
s
2,2
1
2
3
n-1s
c2,1
h >1,5 c
Note: It is assumed that only the row of anchors closest to
the free concrete edge carries the centric shear load
fAR.V c/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Single anchor with
edge influence 1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
s/cmin 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 5.05 5.40 5.75 6.10 6.47 6.83
9.0 5.20 5.55 5.90 6.26 6.63 7.00
9.5 5.69 6.05 6.42 6.79 7.17
10.0 6.21 6.58 6.95 7.33
10.5 6.74 7.12 7.50
11.0 7.28 7.67
11.5 7.83
12.0 8.00
SHEAR
results
tabulated
below
V ... applied shear force
β
These results are for a two-.
Anchor fastening.
For fastening made with more
than 2 anchors, use the
general formulae for n
anchors at the top of the page.
HST stud anchor
74
VRd,s : Steel design shear resistance
Anchor size M8 M10 M12 M16 M20 M24
HST 10.4 16.0 24.0 40.0 41.4 62.7
HST-R 10.4 16.0 24.0 38.5 55.6 79.9VRd,s [kN]
HST-HCR 10.4 16.0 24.0 44.0 - -
1)
The design shear resistance is calculated from the characteristic shear resistance, VRk,s ,
using VRd,s= VRk,s /γMs, where the partial safety factor γMs varies with anchor type and size
(as per relevant approval).
VRd : System design shear resistance
VRd = lower of VRd,c and VRd,s
Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).

More Related Content

What's hot

Etabs steel-design
Etabs steel-designEtabs steel-design
Etabs steel-design
Muhammad Iqbal
 
Chapter02.structural design using staad pro
Chapter02.structural design using staad proChapter02.structural design using staad pro
Chapter02.structural design using staad pro
devaraj pavan kumar
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
Yousuf Dinar
 
Wind Actions According To EC1
Wind Actions According To  EC1Wind Actions According To  EC1
Wind Actions According To EC1
Alessandro Palmeri
 
01 bai giang btct 2
01 bai giang btct 201 bai giang btct 2
01 bai giang btct 2
An Nam Education
 
Etabs concrete-design
Etabs concrete-designEtabs concrete-design
Etabs concrete-design
mamilli
 
Reinforcement welding in civil engineering
Reinforcement welding in civil engineeringReinforcement welding in civil engineering
Reinforcement welding in civil engineering
Amardeep Singh
 
ABAQUS Lecture Part I
ABAQUS Lecture Part IABAQUS Lecture Part I
ABAQUS Lecture Part I
chimco.net
 
Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating Machines
Kee H. Lee, P.Eng.
 
Liên kết trong kết cấu thép
Liên kết trong kết cấu thépLiên kết trong kết cấu thép
Liên kết trong kết cấu thép
GTVT
 
22 tcn 18 79 (chuong 2, tai trong va he so tai trong)
22 tcn 18 79 (chuong 2, tai trong va he so tai trong)22 tcn 18 79 (chuong 2, tai trong va he so tai trong)
22 tcn 18 79 (chuong 2, tai trong va he so tai trong)GTVT
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
Jawad Shaukat
 
Manual for Detailing Reinforced Concrete Structures to EC2
Manual for Detailing Reinforced Concrete Structures to EC2Manual for Detailing Reinforced Concrete Structures to EC2
Manual for Detailing Reinforced Concrete Structures to EC2
0984
 
Some common defects in steel structural erection at site
Some common defects in steel structural erection at site Some common defects in steel structural erection at site
Some common defects in steel structural erection at site
PRABIR DATTA
 
TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018
TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018
TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018
VOBAOTOAN
 
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
ahsanrabbani
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE
 
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
Eduardo H. Pare
 
Thuyet minh be nuoc ngam
Thuyet minh be nuoc ngamThuyet minh be nuoc ngam
Thuyet minh be nuoc ngam
Hắc PI
 
IS 1893 part 1-2016
IS 1893 part 1-2016IS 1893 part 1-2016
IS 1893 part 1-2016
shankar kumar
 

What's hot (20)

Etabs steel-design
Etabs steel-designEtabs steel-design
Etabs steel-design
 
Chapter02.structural design using staad pro
Chapter02.structural design using staad proChapter02.structural design using staad pro
Chapter02.structural design using staad pro
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
 
Wind Actions According To EC1
Wind Actions According To  EC1Wind Actions According To  EC1
Wind Actions According To EC1
 
01 bai giang btct 2
01 bai giang btct 201 bai giang btct 2
01 bai giang btct 2
 
Etabs concrete-design
Etabs concrete-designEtabs concrete-design
Etabs concrete-design
 
Reinforcement welding in civil engineering
Reinforcement welding in civil engineeringReinforcement welding in civil engineering
Reinforcement welding in civil engineering
 
ABAQUS Lecture Part I
ABAQUS Lecture Part IABAQUS Lecture Part I
ABAQUS Lecture Part I
 
Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating Machines
 
Liên kết trong kết cấu thép
Liên kết trong kết cấu thépLiên kết trong kết cấu thép
Liên kết trong kết cấu thép
 
22 tcn 18 79 (chuong 2, tai trong va he so tai trong)
22 tcn 18 79 (chuong 2, tai trong va he so tai trong)22 tcn 18 79 (chuong 2, tai trong va he so tai trong)
22 tcn 18 79 (chuong 2, tai trong va he so tai trong)
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
 
Manual for Detailing Reinforced Concrete Structures to EC2
Manual for Detailing Reinforced Concrete Structures to EC2Manual for Detailing Reinforced Concrete Structures to EC2
Manual for Detailing Reinforced Concrete Structures to EC2
 
Some common defects in steel structural erection at site
Some common defects in steel structural erection at site Some common defects in steel structural erection at site
Some common defects in steel structural erection at site
 
TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018
TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018
TÍNH CHIỀU DÀI NEO THÉP THEO TCVN 5574-2018
 
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
 
Thuyet minh be nuoc ngam
Thuyet minh be nuoc ngamThuyet minh be nuoc ngam
Thuyet minh be nuoc ngam
 
IS 1893 part 1-2016
IS 1893 part 1-2016IS 1893 part 1-2016
IS 1893 part 1-2016
 

Similar to Thong so hilti

FM 753
FM 753FM 753
FM 753
seoripple
 
phase 2ppt.pptx
phase 2ppt.pptxphase 2ppt.pptx
phase 2ppt.pptx
Gokul408032
 
Truline Plastic Piling Specifications 2014
Truline Plastic Piling Specifications 2014Truline Plastic Piling Specifications 2014
Truline Plastic Piling Specifications 2014
The Hammerman Equipment Plastic Piling Co. Ltd
 
Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...
NUR
 
Autodesk robot structural analysis professional 2013
Autodesk robot structural analysis professional 2013Autodesk robot structural analysis professional 2013
Autodesk robot structural analysis professional 2013
Mr. Nguyễn Văn Như
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
sufiyan shaikh
 
M2 cv-rc-d-005(anchor bolt details)
M2 cv-rc-d-005(anchor bolt details)M2 cv-rc-d-005(anchor bolt details)
M2 cv-rc-d-005(anchor bolt details)
neeraj dubey
 
Rc detailing-to-ec2
Rc detailing-to-ec2Rc detailing-to-ec2
Rc detailing-to-ec2
Luan Truong Van
 
Ship design project Final presentation
Ship design project Final presentationShip design project Final presentation
Ship design project Final presentation
Kifayath Chowdhury
 
Anchor bolt design
Anchor bolt designAnchor bolt design
Anchor bolt design
Varadaraj Ck
 
A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...
A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...
A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...
IRJET Journal
 
Design of Connections in Tubular Structure
Design of Connections in Tubular StructureDesign of Connections in Tubular Structure
Design of Connections in Tubular Structure
IRJET Journal
 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
VictoriawanMuhammad
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3
Kifayath Chowdhury
 
Gantry girder Analyse & design
Gantry girder Analyse & designGantry girder Analyse & design
Gantry girder Analyse & design
Ghawsudin
 
post tensioning slabs
post tensioning slabspost tensioning slabs
post tensioning slabs
gopichand's
 
Bo Shan_Glubam and Concrete composite beams
Bo Shan_Glubam and Concrete composite beamsBo Shan_Glubam and Concrete composite beams
Bo Shan_Glubam and Concrete composite beams
International Bamboo and Rattan Organisation
 
Design of Structures Chapter2.pdf
Design of Structures Chapter2.pdfDesign of Structures Chapter2.pdf
Design of Structures Chapter2.pdf
UmarSaba1
 
Design & Development of Rotating Work-piece Holding Mechanism for EDM Process
Design & Development of Rotating Work-piece Holding Mechanism for EDM ProcessDesign & Development of Rotating Work-piece Holding Mechanism for EDM Process
Design & Development of Rotating Work-piece Holding Mechanism for EDM Process
Sahil Dev
 
V-belt drive Design Procedure
V-belt drive   Design ProcedureV-belt drive   Design Procedure
V-belt drive Design Procedure
VARUN BABUNELSON
 

Similar to Thong so hilti (20)

FM 753
FM 753FM 753
FM 753
 
phase 2ppt.pptx
phase 2ppt.pptxphase 2ppt.pptx
phase 2ppt.pptx
 
Truline Plastic Piling Specifications 2014
Truline Plastic Piling Specifications 2014Truline Plastic Piling Specifications 2014
Truline Plastic Piling Specifications 2014
 
Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...
 
Autodesk robot structural analysis professional 2013
Autodesk robot structural analysis professional 2013Autodesk robot structural analysis professional 2013
Autodesk robot structural analysis professional 2013
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
M2 cv-rc-d-005(anchor bolt details)
M2 cv-rc-d-005(anchor bolt details)M2 cv-rc-d-005(anchor bolt details)
M2 cv-rc-d-005(anchor bolt details)
 
Rc detailing-to-ec2
Rc detailing-to-ec2Rc detailing-to-ec2
Rc detailing-to-ec2
 
Ship design project Final presentation
Ship design project Final presentationShip design project Final presentation
Ship design project Final presentation
 
Anchor bolt design
Anchor bolt designAnchor bolt design
Anchor bolt design
 
A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...
A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...
A COMPARATIVE STUDY ON RIGID CONNECTION DESIGN OF FRAMED MULTI STOREYED STEEL...
 
Design of Connections in Tubular Structure
Design of Connections in Tubular StructureDesign of Connections in Tubular Structure
Design of Connections in Tubular Structure
 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3
 
Gantry girder Analyse & design
Gantry girder Analyse & designGantry girder Analyse & design
Gantry girder Analyse & design
 
post tensioning slabs
post tensioning slabspost tensioning slabs
post tensioning slabs
 
Bo Shan_Glubam and Concrete composite beams
Bo Shan_Glubam and Concrete composite beamsBo Shan_Glubam and Concrete composite beams
Bo Shan_Glubam and Concrete composite beams
 
Design of Structures Chapter2.pdf
Design of Structures Chapter2.pdfDesign of Structures Chapter2.pdf
Design of Structures Chapter2.pdf
 
Design & Development of Rotating Work-piece Holding Mechanism for EDM Process
Design & Development of Rotating Work-piece Holding Mechanism for EDM ProcessDesign & Development of Rotating Work-piece Holding Mechanism for EDM Process
Design & Development of Rotating Work-piece Holding Mechanism for EDM Process
 
V-belt drive Design Procedure
V-belt drive   Design ProcedureV-belt drive   Design Procedure
V-belt drive Design Procedure
 

Recently uploaded

Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
enizeyimana36
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 

Recently uploaded (20)

Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 

Thong so hilti

  • 1. HST stud anchor 65 Features: - high loading capacity - force- controlled expansion - suitable for tension zone - suitable for shock loading - fire prevention assessment - pre-assembled with nut and washer → time saving - cold formed Material: HST: - carbon steel, zinc plated to min. 5 µm HST-R: - stainless steel; A4; 1.4401; EN 10088 HST-HCR: - stainless steel; 1.4529 HST / HST-R / HST-HCR A4 316 Concrete Tension zone Shock Close edge distance/ spacing Corrosion resistance HCR Basic loading data (for a single anchor): HST All data on this page applies to • concrete: as specified in the table • no edge distance and spacing influence • correct setting (See setting operations page 85) • steel failure For detailed design method, see pages 86 - 91. Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRu,m 16.6 22.3 35.2 48.7 76.0 86.1 10.3 11.6 21.9 31.1 44.9 60.2 Shear VRu,m 23.0 26.5 44.2 72.2 119.1 125.0 22.8 24.4 47.5 67.6 107.4 116.4 Characteristic resistance, Rk [kN]: concrete ≅ C20/25 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRk 9.0 16.0 20.0 35.0 50.0 60.0 5.0 9.0 12.0 20.0 30.0 40.0 Shear VRk 13.0 20.0 30.0 50.0 55.0 94.0 13.0 20.0 30.0 50.0 55.0 94.0 Following values according to the: Concrete Capacity Method Design resistance, Rd [kN]: concrete fck,cube = 25 N/mm2 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRd 5.0 10.7 13.3 23.3 33.3 40.0 2.8 6.0 8.0 13.3 20.0 26.7 Shear VRd 10.4 16.0 24.0 40.0 41.4 62.7 10.4 16.0 24.0 40.0 41.4 62.7 Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRec 3.6 7.6 9.5 16.7 23.8 28.6 2.0 4.3 5.7 9.5 14.3 19.0 Shear VRec 7.4 11.4 17.1 28.6 29.6 44.8 7.4 11.4 17.1 28.6 29.6 44.8 highMo High corrosion resistance Fire resistance Hilti Anchor programme non-cracked concrete cracked concrete
  • 2. HST stud anchor 66 Basic loading data (for a single anchor): HST-R All data on this section applies to • concrete: as specified in the table • no edge distance and spacing influence • correct setting (See setting operations page 85) • steel failure For detailed design method, see pages 86 – 91. non-cracked concrete cracked concrete Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRu,m 18.1 26.7 35.1 49.8 77.4 79.1 12.7 18.4 20.1 36.0 55.1 70.5 Shear VRu,m 22.8 31.9 50.3 84.0 136.0 151.4 20.6 31.9 45.5 84.0 106.6 151.4 Characteristic resistance, Rk [kN]: concrete ≅ C20/25 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRk 9.0 16.0 20.0 35.0 50.0 60.0 5.0 9.0 12.0 25.0 30.0 40.0 Shear VRk 13.0 20.0 30.0 50.0 80.0 115.0 13.0 20.0 30.0 50.0 80.0 115.0 Following values according to the: Concrete Capacity Method Design resistance, Rd [kN]: concrete fck,cube = 25 N/mm2 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRd 6.0 10.7 13.3 23.3 33.3 40.0 3.3 6.0 8.0 16.7 20.0 26.7 Shear VRd 10.4 16.0 24.0 38.5 55.6 79.9 10.4 16.0 24.0 38.5 55.6 79.9 Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2 Anchor size M8 M10 M12 M16 M20 M24 M8 M10 M12 M16 M20 M24 Tensile NRec 4.3 7.6 9.5 16.6 23.8 28.6 2.4 4.3 5.7 11.9 14.2 19.0 Shear VRec 7.4 11.4 17.1 27.5 39.7 57.1 7.4 11.4 17.1 27.5 39.7 57.1 Basic loading data (for a single anchor): HST-HCR All data on this section applies to • concrete: as specified in the table • no edge distance and spacing influence • correct setting (See setting operations page 85) • steel failure For detailed design method, see pages 86 - 91. cracked concretenon-cracked concrete Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25 Anchor size M8 M10 M12 M16 M8 M10 M12 M16 Tensile NRu,m 15.2 22.7 32.4 45.5 13.8 16.2 21.5 32.4 Shear VRu,m 14.0 21.6 32.4 59.4 14.0 21.6 32.4 59.4
  • 3. HST stud anchor 68 Characteristic resistance, Rk [kN]: concrete ≅ C20/25 Anchor size M8 M10 M12 M16 M8 M10 M12 M16 Tensile NRk 9.0 16.0 20.0 35.0 5.0 9.0 12.0 25.0 Shear VRk 13.0 20.0 30.0 55.0 13.0 20.0 30.0 55.0 Following values according to the: Concrete Capacity Method Design resistance, Rd [kN]: concrete fck,cube = 25 N/mm2 Anchor size M8 M10 M12 M16 M8 M10 M12 M16 Tensile NRd 5.0 8.9 11.1 19.4 2.8 5.0 6.7 13.8 Shear VRd 10.4 16.0 24.0 44.0 10.4 16.0 24.0 44.0 Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2 Anchor size M8 M10 M12 M16 M8 M10 M12 M16 Tensile NRec 3.6 6.4 7.9 13.9 2.0 3.6 4.8 9.9 Shear VRec 7.4 11.4 17.1 31.4 7.4 11.4 17.1 31.4 Setting details Anchor size Setting Details M8 M10 M12 M16 do [mm] Nominal dia. of drill bit 8 10 12 16 HST 20 45 60 110 Tinst [Nm] Rec. tighten- ing torque HST-R HST-HCR 20 40 60 110 SW [mm] Width across nut flats 13 17 19 24 df [mm] Clearance hole diameter 9 12 14 18 h1 [mm] Min. depth of drill hole 65 80 95 115 hef [mm] Effective embed. depth 47 60 70 82 Min. fasten.thickness 2 2 2 2 tfix [mm] Max. fasten.thickness 195 200 200 200 hmin [mm] Min. concrete thickness 100 120 140 160 Drill bit TE-CX-8 TE-CX-10 TE-CX-12 TE-C-16 or TE-Y- hef tfix hmin h1 Marking d0 df Tinst
  • 4. HST stud anchor 68 Anchor size Setting Details M20 M24 do [mm] Nominal dia. of drill bit 20 24 Tinst [Nm] Rec.tightening torque 240 300 SW [mm] Width across nut flats 30 36 df [mm] Clearance hole diameter 22 26 h1 [mm] Min. depth of drill hole 140 170 hef [mm] Effective embed. depth 101 125 Min. fasten. thickness 2 2 tfix [mm] Max. fasten. thickness 305 330 hmin [mm] Min. concrete thickness 200 250 Drill bit TE-C-S 20 TE-Y 20 TE-C-S 24 TE-Y 24 HST-HCR is available up to M16. Installation equipment Rotary hammer (TE1, TE 2, TE5, TE6, TE6A, TE15, TE15-C, TE18-M, TE 35, TE 55, TE 76), drill bit, blow-out pump, torque wrench, appropriate size hexagon drive socket for correct setting. Setting operations Drill hole with drill bit. Blow out dust and fragments. Install anchor. Apply tightening torque. Mechanical properties of anchor bolt Anchor size M8 M10 M12 M16 M20 M24 HST 800 800 800 680 550 530 fuk [N/mm 2 ] Nominal tensile strength HST-R 700 700 700 650 700 700 HST-HCR 700 700 700 700 - - HST 640 640 640 480 400 450 fyk [N/mm 2 ] min. Yield strength HST-R 500 500 500 500 500 500 HST-HCR 450 450 450 450 - - As [mm 2 ] Stressed cross-section in taper 24.2 41.3 57.4 105.7 167.4 240.5 As [mm 2 ] Stressed cross-section in thread 36.6 58 84.3 157 245 353 Wel [mm 3 ] Elastic moment of resistance 31.2 62.3 109 277 541 935 HST 24.0 47.8 83.7 159.6 259.7 475.7 MRd,s [Nm] Design bending moment 1) HST-R 18.7 37.4 65.4 166.2 324.6 561 HST-HCR 16.8 33.5 58.7 161.1 - - 1) The design bending moment is calculated from MRd,s = 1.2⋅Wel⋅fuk/γMs where the partial safety factor γMs varies with anchor type and size.
  • 5. HST stud anchor 69 Detailed design method - Hilti CC TENSION The tensile design resistance of a single anchor is the lower of, NRd,p : concrete pull-out resistance NRd,c : concrete cone resistance NRd,s : steel resistance NRd,p : Pull-out resistance B o p,Rdp,Rd fNN ⋅= N0 Rd,p : Design pull-out resistance • Concrete compressive strength fck,cube(150) = 25 N/mm2 Anchor size M8 M10 M12 M16 M20 M24 HST 5.0 10.7 13.3 23.3 33.3 40.0 HST-R 6.0 10.7 13.3 23.3 33.3 40.0N 0 Rd,p 1) [kN] non-cracked concrete HST-HCR 5.0 8.9 11.1 19.4 - - HST 2.8 6.0 8.0 13.3 20.0 26.7 HST-R 3.3 6.0 8.0 16.7 20.0 26.7N 0 Rd,p 1) [kN] cracked concrete HST-HCR 2.8 5.0 6.7 13.8 - - 1) The tensile design resistance is calculated from the tensile characteristic resistance N o Rk,p by N o Rd,p= N o Rk,p/γMp where the partial safety factor γMp varies with anchor type and size (as per relevant approval). NRd,c : Concrete cone resistance RNANB o c,Rdc,Rd fffNN ⋅⋅⋅= N0 Rd,c : Design concrete cone resistance • Concrete compressive strength fck,cube(150) = 25 N/mm2 Anchor size M8 M10 M12 M16 M20 M24 N 0 Rd,c 1) [kN] non-cracked concrete 9.0 15.6 19.7 24.9 34.1 47.0 N 0 Rd,c 1) [kN] cracked concrete 6.4 11.2 14.1 17.8 24.4 33.5 efh [mm] effective embedment depth 47 60 70 82 101 125 1) The tensile design resistance is calculated from the tensile characteristic resistance N o Rk,c by N o Rd,c= N o Rk,c/γMc,N, where the partial safety factor γMc,N varies with anchor type and size (as per relevant approval). (The Hilti CC-Method is a simplified Version of ETAG Annex C) N c s h rec,p/c/s
  • 6. HST stud anchor 70 fB :Influence of concrete strength Concrete strength designation (ENV 206) Cylinder compressive strength fck,cyl [N/mm²] Cube compressive strength fck,cube [N/mm²] fB C20/25 20 25 1.0 C25/30 25 30 1.1 C30/37 30 37 1.22 C35/45 35 45 1.34 C40/50 40 50 1.41 C45/55 45 55 1.48 C50/60 50 60 1.55 25 f f cube,ck B = Limits: 25 N/mm2 ≤ fck,cube(150) ≤ 60 N/mm2 Concrete cylinder: height 30cm, 15cm diameter Concrete cube: side length 15cm Concrete test specimen geometry fAN :Influence of anchor spacing Anchor spacing anchor size s [mm] M8 M10 M12 M16 M20 M24 60 0.71 0.64 70 0.75 0.69 0.67 0.64 90 0.82 0.75 0.71 0.68 110 0.89 0.81 0.76 0.72 0.68 130 0.96 0.86 0.81 0.76 0.71 0.67 150 0.92 0.86 0.80 0.75 0.70 170 0.97 0.90 0.85 0.78 0.73 190 0.95 0.89 0.81 0.75 210 1.00 0.93 0.85 0.78 230 0.97 0.88 0.81 250 1.00 0.91 0.83 270 0.95 0.86 290 0.98 0.89 310 1.00 0.91 330 0.94 350 0.97 380 1.00 ef AN h6 s 5.0f ⋅ += Limits: N,crmin sss ≤≤ smin varies with edge distance, see table “minimum spacing & minimum edge distance“, next page efN,cr h3s ⋅= fRN :Influence of edge distance Edge distance anchor size c [mm] M8 M10 M12 M16 M20 M24 55 0.84 0.71 0.64 60 0.89 0.75 0.68 70 0.99 0.83 0.75 0.68 80 0.92 0.82 0.74 90 1.00 0.89 0.80 100 0.96 0.86 110 0.92 120 0.98 130 140 0.94 150 0.99 0.85 160 0.89 170 0.93 180 0.97 ef RN h c 5.025.0f ⋅+= Limits: N,crmin ccc ≤≤ cmin varies with spacing, see table “minimum spacing & minimum edge distance“, next page efN,cr h5.1c ⋅= Note: If more than 3 edges are smaller than ccr,N consult the Hilti Technical Advisory Service
  • 7. HST stud anchor 71 HST M8 M10 M12 M16 M20 M24 smin [mm] 60 55 60 70 100 125 Minimum spacing for c ≥ [mm] 50 80 85 110 225 255 cmin [mm] 50 55 55 85 140 170 Minimum edge distance for s ≥ [mm] 60 115 145 150 270 295 HST-R M8 M10 M12 M16 M20 M24 smin [mm] 60 55 60 70 100 125 Minimum spacing for c ≥ [mm] 60 70 80 110 195 205 cmin [mm] 60 50 55 70 140 150 Minimum edge distance for s ≥ [mm] 60 115 145 160 210 235 HST-HCR M8 M10 M12 M16 smin [mm] 60 55 60 70 Minimum spacing for c ≥ [mm] 60 70 80 110 cmin [mm] 60 55 55 70 Minimum edge distance for s ≥ [mm] 60 115 145 160 Intermediatate values by interpolation. NRd,s : Steel design tensile resistance Anchor size M8 M10 M12 M16 M20 M24 HST 12.8 21.3 28.7 50.0 46.9 90.1 HST-R 11.3 18.7 26.7 44.2 63.0 90.2NRd,s 1) [kN] HST-HCR 12.9 21.5 30.5 56.3 - - 1) The design tensile resistance is calculated from the characteristic tensile resistance, NRk,s , using NRd,s= NRk,s /γMs, where the partial safety factor γMs varies with anchor type and size (as per relevant approval). NRd : System design tensile resistance NRd = lower of NRd,p , NRd,c and NRd,s Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”). Detailed design method – Hilti CC (The Hilti CC-Method is a simplified Version of ETAG Annex C) V c s rec,c/sc >1.5c 2 c >1.5c 2 h>1.5c SHEAR The design shear resistance of a single anchor is the lower of, VRd,c : concrete edge resistance VRd,s : steel resistance Note: If the conditions regarding h and c2 are not met, consult your Hilti technical advisory service.
  • 8. HST stud anchor 72 VRd,c : Concrete edge design resistance The lowest concrete edge resistance must be calculated. All nearby edges must be checked, (not only the edge in the direction of shear). Shear direction is accounted for by the factor fβ,V. V,ARV,B o c,Rdc,Rd fffVV ⋅⋅⋅= β V0 Rd,c : Concrete edge design resistance • Concrete compressive strength fck,cube(150) = 25 N/mm2 • at a minimum edge distance minc HST Anchor size M8 M10 M12 M16 M20 M24 V 0 Rd,c 1) [kN] non-cracked concrete 3.0 3.9 4.2 9.1 21.5 31.7 V 0 Rd,c 1) [kN] cracked concrete 2.1 2.8 3.0 6.5 15.4 22.7 cmin [mm] min. edge distance 50 55 55 85 140 170 for s≥ [mm] min. spacing distance 60 115 145 150 270 295 HST-R / HCR Anchor size M8 M10 M12 M16 M20 M24 V 0 Rd,c 1) [kN] non-cracked concrete 3.9 3.4 4.2 6.8 21.5 26.3 V 0 Rd,c 1) [kN] cracked concrete 2.8 2.4 3.0 4.9 15.4 18.8 cmin [mm] min. edge distance 60 50 55 70 140 150 for s≥ [mm] min. spacing distance 60 115 145 160 210 235 HST-R / HCR Anchor size M8 M10 M12 M16 V 0 Rd,c 1) [kN] non-cracked concrete 3.9 3.9 4.2 6.8 V 0 Rd,c 1) [kN] cracked concrete 2.8 2.8 3.0 4.9 cmin [mm] min. edge distance 60 55 55 70 for s≥ [mm] min. spacing distance 60 115 145 160 1) The shear design resistance is calculated from the shear characteristic resistance V o Rk,c by V o Rd,c= V o Rk,c/γMc,V, where the partial safety factor γMc,V is equal to 1.5. fB : Influence of concrete strength Concrete strength designation (ENV 206) Cylinder compressive strength fck,cyl [N/mm²] Cube compressive strength fck,cube [N/mm²] fB C20/25 20 25 1.0 C25/30 25 30 1.1 C30/37 30 37 1.22 C35/45 35 45 1.34 C40/50 40 50 1.41 C45/55 45 55 1.48 C50/60 50 60 1.55 25 f f cube,ck B = Limits: 25 N/mm2 ≤ fck,cube(150) ≤ 60 N/mm2 Concrete cylinder: height 30cm, 15cm diameter Concrete cube: side length 15cm Concrete test specimen geometry
  • 9. HST stud anchor 73 fβ,V : Influence of shear load direction Angle β [°] fβ,V 0 to 55 1 60 1.1 70 1.2 80 1.5 90 to 180 2 Formulae: 1f V, =β β+β =β sin5.0cos 1 f V, 2f V, =β for 0° ≤ β ≤ 55° for 55° < β ≤ 90° for 90° < β ≤ 180° fAR,V : Influence of spacing and edge distance Formula for single anchor fastening influenced only by edge minmin V,AR c c c c f = Formula for anchor pair valid for s < 3c minmin V,AR c c c6 sc3 f + = General formula for n anchors (edge plus n-1 spacing) only valid where s1 to sn-1 are all < 3c and c2 > 1.5c minmin 1n21 V,AR c c nc3 s...ssc3 f ⋅ ++++ = − cc s s s 2,2 1 2 3 n-1s c2,1 h >1,5 c Note: It is assumed that only the row of anchors closest to the free concrete edge carries the centric shear load fAR.V c/cmin 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 Single anchor with edge influence 1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00 s/cmin 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33 1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50 2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67 2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83 3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00 3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17 4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33 4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50 5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67 5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83 6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00 6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17 7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33 7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50 8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67 8.5 5.05 5.40 5.75 6.10 6.47 6.83 9.0 5.20 5.55 5.90 6.26 6.63 7.00 9.5 5.69 6.05 6.42 6.79 7.17 10.0 6.21 6.58 6.95 7.33 10.5 6.74 7.12 7.50 11.0 7.28 7.67 11.5 7.83 12.0 8.00 SHEAR results tabulated below V ... applied shear force β These results are for a two-. Anchor fastening. For fastening made with more than 2 anchors, use the general formulae for n anchors at the top of the page.
  • 10. HST stud anchor 74 VRd,s : Steel design shear resistance Anchor size M8 M10 M12 M16 M20 M24 HST 10.4 16.0 24.0 40.0 41.4 62.7 HST-R 10.4 16.0 24.0 38.5 55.6 79.9VRd,s [kN] HST-HCR 10.4 16.0 24.0 44.0 - - 1) The design shear resistance is calculated from the characteristic shear resistance, VRk,s , using VRd,s= VRk,s /γMs, where the partial safety factor γMs varies with anchor type and size (as per relevant approval). VRd : System design shear resistance VRd = lower of VRd,c and VRd,s Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).