Grab some
coffee and
enjoy the
pre-­show
banter
before the
top of the
hour!
The Briefing Room
The Perfect Fit: Scalable Graph for Big Data
Twitter Tag: #briefr The Briefing Room
Welcome
Host:
Eric Kavanagh
eric.kavanagh@bloorgroup.com
@eric_kavanagh
Twitter Tag: #briefr The Briefing Room
  Reveal the essential characteristics of enterprise
software, good and bad
  Provide a forum for detailed analysis of today s innovative
technologies
  Give vendors a chance to explain their product to savvy
analysts
  Allow audience members to pose serious questions... and
get answers!
Mission
Twitter Tag: #briefr The Briefing Room
Topics
June: INNOVATORS
July: SQL INNOVATION
August: REAL-TIME DATA
Twitter Tag: #briefr The Briefing Room
When You’re Hot…
Ø  Biggest Web engines use
graph
Ø  Very powerful for finding
relationships
Ø  More versatile than other
DB formats
Ø  Great for unwinding
complex scenarios
Twitter Tag: #briefr The Briefing Room
Analyst: Robin Bloor
Robin Bloor is
Chief Analyst at
The Bloor Group
robin.bloor@bloorgroup.com
@robinbloor
Twitter Tag: #briefr The Briefing Room
SYSTAP
  SYSTAP builds highly-scalable open source solutions for big
graphs
  Its flagship product is Blazegraph, a platform that supports
semantic web and graph database APIs. It features fault
tolerant storage & query capabilities and online backup &
failover.
Blazegraph achieves its scale and high throughput by
leveraging GPU acceleration via its Mapgraph technology
Twitter Tag: #briefr The Briefing Room
Guest: Brad Bebee
Brad Bebee is the CEO and Managing Partner at
SYSTAP, LLC. Brad leads the efforts to use SYSTAP
technologies for high performance graph databases
and analytics to delivery solutions for multiple
business and mission areas. Over the course of his
career, he has served as a CTO, CFO, managed
operating divisions, and performed advanced
technology development for commercial and
government customers. He is an active contributor to
SYSTAP’s open source software projects. His
technology experience ranges from early work in
modeling methodologies and knowledge
representation dating back to precursors of DARPA’s
DAML program to more recent work with large scale
data analytics using the Hadoop ecosystem,
Accumulo, and related technologies. He has extensive
experience in architecture and software modeling
methodologies, where he has lead and collaborated
upon multiple publications receiving recognition for
his research.
http://blazegraph.com/
The	
  Perfect	
  Fit:	
  Scalable	
  Graph	
  for	
  
Big	
  Data	
  
June	
  30,	
  2015	
  
Bloor	
  Group	
  Briefing	
  Room	
  
http://blazegraph.com/
11
Big	
  Data	
  Startup	
  Award	
  Winner:	
  	
  
2015	
  Big	
  Data	
  InnovaBons	
  Summit	
  
	
  
Helping	
  customers	
  achieve	
  their	
  business	
  
objecBves	
  with	
  graph	
  data	
  is	
  our	
  vision,	
  
mission,	
  and	
  the	
  essence	
  of	
  our	
  soJware	
  
soluBons.	
  
Today,	
  we	
  serve	
  Fortune	
  500	
  companies,	
  
startups,	
  governments,	
  and	
  research	
  
organizaBons	
  with	
  technology	
  to	
  power	
  
their	
  graphs.	
  
	
  
http://blazegraph.com/
Graph Databases Grew at Over 500% in the Last
Two Years
Popularity changes per category – March 2015
PopularityChanges
Graph
Databases
12
http://blazegraph.com/
The Amount of Graph Data is Exploding
Billion+ Edges
13
SYSTAP™, LLC
© 2006-2015 All Rights Reserved
http://blazegraph.com/
SYSTAP™, LLC
© 2006-2015 All Rights Reserved 14
Graph Applications are Everywhere
•  Community
Detection / Clustering
•  Recommendation
Systems
•  Fault Prediction
in Industrial and
Internet of
Things (IoT)
•  Drug Discovery /
Repurposing
•  Precision Medicine /
Genomics
•  Fraud Detection
•  Time Series,
Compliance
•  Cyber
•  Defense / Security
http://blazegraph.com/
Graphs	
  are	
  different.	
  	
  You	
  need	
  the	
  
right	
  paradigm	
  and	
  hardware	
  to	
  scale	
  
https://datatake.files.wordpress.com/2015/09/latency.png
Graph Cache Thrash
The CPU just waits for
graph data from main
memory...
TypeofCacheorMemory
Access Latency Per Clock Cycle
SYSTAP™, LLC
© 2006-2015 All Rights Reserved
15
http://blazegraph.com/
Solutions to the Graph Scaling Problem Using
Graph Databases and GPUs
●  Embedded
●  High Availability
●  Scale-out
●  GPU Acceleration
●  100s of Times Faster
than CPU main
memory-based systems
●  Up to 40X Cheaper
●  10,000X Faster than
disk-based technologies
http://blazegraph.com/
Uncovering influence links in molecular knowledge networks to streamline personalized medicine |
Shin, Dmitriy et al.Journal of Biomedical Informatics , Volume 52 , 394 - 405
Finding	
  the	
  Next	
  Cure	
  for	
  Cancer	
  is	
  a	
  	
  
Billion+	
  Edge	
  Graph	
  Challenge	
  
17
http://blazegraph.com/
Graph is BIG and changing

(Trillion+ Edges)
18
http://blazegraph.com/
Graphs Enable People to Find Knowledge
A Bunch of Pages An Answer
19
http://blazegraph.com/
Graphs Enable Enterprises to Manage
Metadata
•  Data	
  outlives	
  specific	
  system	
  implementaBons.	
  
•  Data	
  outlives	
  applicaBons.	
  
•  Achieve	
  Metadata	
  independence	
  using	
  declaraBve	
  standards	
  
to	
  manage	
  metadata	
  and	
  express	
  transformaBons.	
  
Data Sources
Data Providers
Knowledge Graph: Instance Data + Ontology (RDF + OWL)
ACLs
Query Catalog
Constraints Rules Events Mappings Widgets Views
20
http://blazegraph.com/
Knowledge	
  Base	
  of	
  Biology	
  (KaBOB)	
  
Open	
  Biomedical	
  Ontologies	
  
biomedical	
  	
  
data	
  &	
  
informaBon	
  
applicaBon	
  
data	
  
biomedical	
  
knowledge	
  
Entrez	
  
Gene	
  
17	
  databases	
  
DIP	
  
UniProt	
  
GOA	
  
GAD	
  
HGNC	
  
InterPro	
  
Gene	
  
Ontology	
  
Sequence	
  
Ontology	
  
Cell	
  Type	
  
Ontology	
  
ChEBI	
  
NCBI	
  
Taxonomy	
  
Protein	
  
Ontology	
  
12	
  ontologies	
  
…
…
21
http://blazegraph.com/
Powering	
  Their	
  Graphs	
  with	
  
Blazegraph™	
  
SYSTAP™, LLC
© 2006-2015 All Rights Reserved
Information Management /
Retrieval
Genomics / Precision
Medicine
Defense, Intel, Cyber
22
http://blazegraph.com/
The	
  right	
  scaling	
  approach	
  
depends	
  on	
  the	
  business	
  need	
  
SYSTAP™, LLC
© 2006-2015 All Rights Reserved
Single	
  GPU	
  
(500+M)	
  
MulB-­‐GPU	
  
Clusters	
  
(100+B)	
  
23
Fast	
   Fastest	
  Speed	
  
Data	
  Scale	
  (Edges)	
  
Scale	
  Out	
  
(1T+)	
  
High	
  
Availability	
  
(50B)	
  
JVM	
  
Journal	
  
Embedded	
  
Single	
  Server	
  
(50B)	
  
Millions	
  
Billions	
  
Trillions	
  
http://blazegraph.com/
Blazegraph™	
  stands	
  out!	
  
•  Wikimedia	
  EvaluaBon:	
  	
  
hfps://docs.google.com/a/systap.com/spreadsheets/d/
1MXikljoSUVP77w7JKf9EXN40OB-­‐ZkMqT8Y5b2NYVKbU/edit#gid=0	
  	
  
SYSTAP™, LLC
© 2006-2015 All Rights Reserved 24
http://blazegraph.com/
Blazegraph™:	
  	
  Embedded	
  and	
  Single	
  Server	
  
•  High	
  performance,	
  Scalable	
  
–  50B	
  edges/node	
  
–  RDF/SPARQL	
  level	
  query	
  language	
  
–  Efficient	
  Graph	
  Traversal	
  
–  High	
  9s	
  soluBon	
  
•  Property	
  graphs	
  
–  Blueprints,	
  gremlin,	
  rextser	
  
•  REST	
  API	
  (NSS)	
  
•  Extension	
  points	
  
–  Stored	
  queries	
  for	
  custom	
  applicaBon	
  logic	
  on	
  
the	
  server.	
  
–  Custom	
  services	
  &	
  indices	
  
–  Custom	
  funcBons	
  
–  Vertex-­‐centric	
  programs	
  
•  Embedded	
  Server	
  
•  Standalone	
  Server	
  
JVM	
  
Journal	
  
WAR	
  
Journal	
  
25
http://blazegraph.com/
Blazegraph™:	
  	
  High	
  Availability	
  
•  Shared	
  nothing	
  architecture	
  
–  Same	
  data	
  on	
  each	
  node	
  
–  Coordinate	
  only	
  at	
  commit	
  
–  Transparent	
  load	
  balancing	
  
•  Scaling	
  
–  50	
  billion	
  triples	
  or	
  quads	
  
–  Query	
  throughput	
  scales	
  linearly	
  
•  Self	
  healing	
  
–  AutomaBc	
  failover	
  
–  AutomaBc	
  resync	
  aJer	
  disconnect	
  
–  Online	
  single	
  node	
  disaster	
  recovery	
  
•  Online	
  Backup	
  
–  Online	
  snapshots	
  (full	
  backups)	
  
–  HA	
  Logs	
  (incremental	
  backups)	
  
•  Point	
  in	
  Bme	
  recovery	
  (offline)	
  
HAService	
  
Quorum	
  
k=3	
  
size=3	
  
follower	
  
leader	
  
HAService	
  
HAService	
  
26
http://blazegraph.com/
Blazegraph™:	
  	
  Scale-­‐out	
  
•  Shard-­‐based	
  horizontal	
  scale-­‐
out	
  to	
  support	
  1	
  Trillion+	
  
Edge	
  Graphs	
  
•  Fast	
  parallel	
  load	
  
	
  
•  Efficient	
  Query	
  Through	
  
CoordinaBon	
  Between	
  Data	
  
Services	
  
•  Coming	
  soon!	
  Support	
  for	
  
HDFS	
  for	
  failover.	
  
27
http://blazegraph.com/
How	
  do	
  I	
  use	
  GPUs	
  to	
  scale	
  graphs?	
  
●  Parallel Processing on
GPU Clusters for
Trillion+ Edge Graphs
●  High-Level API
●  Partitioning and
Overlapping
Communications
●  HPC and DARPA
Pedigree
28
http://blazegraph.com/
Blazegraph GPU: Ridiculously
Fast for Graphs
Blazegraph™ plug-in for GPU Acceleration
with familiar graph APIs
Graph	
  
DB	
  
29
http://blazegraph.com/
Mapgraph HPC with NVIDIA GPUs
$16K / GTEP (K40 - Today)
$4K / GTEP (Pascal 2016)
Blazegraph	
  MulB-­‐GPU:	
  	
  Extreme	
  
Scale,	
  40X	
  more	
  Affordable!	
  
Cray XMT-2
$~180K / GTEP
Large Hadoop Cluster
$~18M / GTEP
Future Blazegraph SaaS
On-demand
1 GTEP = 1 Billion
Traversed Edges Per
Second
40X!
10X!
30
Twitter Tag: #briefr The Briefing Room
Perceptions & Questions
Analyst:
Robin Bloor
Of Graphs and Networks
Robin Bloor, PhD
Johnny-Come-Lately
Aside from the three letter agencies,
until recently, nobody cared much
about graphs…
WHY?
Reasons for Graph Apathy…
1  Unfamiliarity (it’s obscure
because it’s obscure)
2  RDBMS do not store graphs
well and SQL is inadequate
for querying graphs
3  No common BI applications,
it’s mainly analytics
4  Semantic technology has
taken a lifetime to evolve
Reasons to Care
u  Graphs express very
different (and important)
data relationships
u  Graphs are largely
unexplored
u  Graphs are ideal for MDM
u  Graphs express semantic
relationships
Semantics: The Type 0 Language
Colorless green ideas sleep furiously
Colorless green
sleep
furiously
ideas
The Net Net
The ultimate goal is INFERENCING:
Knowledge discovery
(rather than pattern discovery)
through graph processing
u  What are the “low hanging fruit” graphical
applications – in your company’s experience?
u  Does your company find itself competing
with Hadoop Giraph? What are the
compelling differences?
u  Is Blazegraph a triple-store at the physical
level (i.e., a pure RDF implementation) or
does it implement a variety of physical
structures?
u  At what level of data volume/workload is
hardware acceleration a necessity?
u  What is the largest amount of data currently
under management with any of your customers?
u  Which companies/technologies do you compete
with directly?
Twitter Tag: #briefr The Briefing Room
Twitter Tag: #briefr The Briefing Room
Upcoming Topics
www.insideanalysis.com
June: INNOVATORS
July: SQL INNOVATION
August: REAL-TIME DATA
Twitter Tag: #briefr The Briefing Room
THANK YOU
for your
ATTENTION!
Some images provided courtesy of Wikimedia Commons

The Perfect Fit: Scalable Graph for Big Data

  • 1.
    Grab some coffee and enjoythe pre-­show banter before the top of the hour!
  • 2.
    The Briefing Room ThePerfect Fit: Scalable Graph for Big Data
  • 3.
    Twitter Tag: #briefrThe Briefing Room Welcome Host: Eric Kavanagh eric.kavanagh@bloorgroup.com @eric_kavanagh
  • 4.
    Twitter Tag: #briefrThe Briefing Room   Reveal the essential characteristics of enterprise software, good and bad   Provide a forum for detailed analysis of today s innovative technologies   Give vendors a chance to explain their product to savvy analysts   Allow audience members to pose serious questions... and get answers! Mission
  • 5.
    Twitter Tag: #briefrThe Briefing Room Topics June: INNOVATORS July: SQL INNOVATION August: REAL-TIME DATA
  • 6.
    Twitter Tag: #briefrThe Briefing Room When You’re Hot… Ø  Biggest Web engines use graph Ø  Very powerful for finding relationships Ø  More versatile than other DB formats Ø  Great for unwinding complex scenarios
  • 7.
    Twitter Tag: #briefrThe Briefing Room Analyst: Robin Bloor Robin Bloor is Chief Analyst at The Bloor Group robin.bloor@bloorgroup.com @robinbloor
  • 8.
    Twitter Tag: #briefrThe Briefing Room SYSTAP   SYSTAP builds highly-scalable open source solutions for big graphs   Its flagship product is Blazegraph, a platform that supports semantic web and graph database APIs. It features fault tolerant storage & query capabilities and online backup & failover. Blazegraph achieves its scale and high throughput by leveraging GPU acceleration via its Mapgraph technology
  • 9.
    Twitter Tag: #briefrThe Briefing Room Guest: Brad Bebee Brad Bebee is the CEO and Managing Partner at SYSTAP, LLC. Brad leads the efforts to use SYSTAP technologies for high performance graph databases and analytics to delivery solutions for multiple business and mission areas. Over the course of his career, he has served as a CTO, CFO, managed operating divisions, and performed advanced technology development for commercial and government customers. He is an active contributor to SYSTAP’s open source software projects. His technology experience ranges from early work in modeling methodologies and knowledge representation dating back to precursors of DARPA’s DAML program to more recent work with large scale data analytics using the Hadoop ecosystem, Accumulo, and related technologies. He has extensive experience in architecture and software modeling methodologies, where he has lead and collaborated upon multiple publications receiving recognition for his research.
  • 10.
    http://blazegraph.com/ The  Perfect  Fit:  Scalable  Graph  for   Big  Data   June  30,  2015   Bloor  Group  Briefing  Room  
  • 11.
    http://blazegraph.com/ 11 Big  Data  Startup  Award  Winner:     2015  Big  Data  InnovaBons  Summit     Helping  customers  achieve  their  business   objecBves  with  graph  data  is  our  vision,   mission,  and  the  essence  of  our  soJware   soluBons.   Today,  we  serve  Fortune  500  companies,   startups,  governments,  and  research   organizaBons  with  technology  to  power   their  graphs.    
  • 12.
    http://blazegraph.com/ Graph Databases Grewat Over 500% in the Last Two Years Popularity changes per category – March 2015 PopularityChanges Graph Databases 12
  • 13.
    http://blazegraph.com/ The Amount ofGraph Data is Exploding Billion+ Edges 13 SYSTAP™, LLC © 2006-2015 All Rights Reserved
  • 14.
    http://blazegraph.com/ SYSTAP™, LLC © 2006-2015All Rights Reserved 14 Graph Applications are Everywhere •  Community Detection / Clustering •  Recommendation Systems •  Fault Prediction in Industrial and Internet of Things (IoT) •  Drug Discovery / Repurposing •  Precision Medicine / Genomics •  Fraud Detection •  Time Series, Compliance •  Cyber •  Defense / Security
  • 15.
    http://blazegraph.com/ Graphs  are  different.    You  need  the   right  paradigm  and  hardware  to  scale   https://datatake.files.wordpress.com/2015/09/latency.png Graph Cache Thrash The CPU just waits for graph data from main memory... TypeofCacheorMemory Access Latency Per Clock Cycle SYSTAP™, LLC © 2006-2015 All Rights Reserved 15
  • 16.
    http://blazegraph.com/ Solutions to theGraph Scaling Problem Using Graph Databases and GPUs ●  Embedded ●  High Availability ●  Scale-out ●  GPU Acceleration ●  100s of Times Faster than CPU main memory-based systems ●  Up to 40X Cheaper ●  10,000X Faster than disk-based technologies
  • 17.
    http://blazegraph.com/ Uncovering influence linksin molecular knowledge networks to streamline personalized medicine | Shin, Dmitriy et al.Journal of Biomedical Informatics , Volume 52 , 394 - 405 Finding  the  Next  Cure  for  Cancer  is  a     Billion+  Edge  Graph  Challenge   17
  • 18.
    http://blazegraph.com/ Graph is BIGand changing
 (Trillion+ Edges) 18
  • 19.
    http://blazegraph.com/ Graphs Enable Peopleto Find Knowledge A Bunch of Pages An Answer 19
  • 20.
    http://blazegraph.com/ Graphs Enable Enterprisesto Manage Metadata •  Data  outlives  specific  system  implementaBons.   •  Data  outlives  applicaBons.   •  Achieve  Metadata  independence  using  declaraBve  standards   to  manage  metadata  and  express  transformaBons.   Data Sources Data Providers Knowledge Graph: Instance Data + Ontology (RDF + OWL) ACLs Query Catalog Constraints Rules Events Mappings Widgets Views 20
  • 21.
    http://blazegraph.com/ Knowledge  Base  of  Biology  (KaBOB)   Open  Biomedical  Ontologies   biomedical     data  &   informaBon   applicaBon   data   biomedical   knowledge   Entrez   Gene   17  databases   DIP   UniProt   GOA   GAD   HGNC   InterPro   Gene   Ontology   Sequence   Ontology   Cell  Type   Ontology   ChEBI   NCBI   Taxonomy   Protein   Ontology   12  ontologies   … … 21
  • 22.
    http://blazegraph.com/ Powering  Their  Graphs  with   Blazegraph™   SYSTAP™, LLC © 2006-2015 All Rights Reserved Information Management / Retrieval Genomics / Precision Medicine Defense, Intel, Cyber 22
  • 23.
    http://blazegraph.com/ The  right  scaling  approach   depends  on  the  business  need   SYSTAP™, LLC © 2006-2015 All Rights Reserved Single  GPU   (500+M)   MulB-­‐GPU   Clusters   (100+B)   23 Fast   Fastest  Speed   Data  Scale  (Edges)   Scale  Out   (1T+)   High   Availability   (50B)   JVM   Journal   Embedded   Single  Server   (50B)   Millions   Billions   Trillions  
  • 24.
    http://blazegraph.com/ Blazegraph™  stands  out!   •  Wikimedia  EvaluaBon:     hfps://docs.google.com/a/systap.com/spreadsheets/d/ 1MXikljoSUVP77w7JKf9EXN40OB-­‐ZkMqT8Y5b2NYVKbU/edit#gid=0     SYSTAP™, LLC © 2006-2015 All Rights Reserved 24
  • 25.
    http://blazegraph.com/ Blazegraph™:    Embedded  and  Single  Server   •  High  performance,  Scalable   –  50B  edges/node   –  RDF/SPARQL  level  query  language   –  Efficient  Graph  Traversal   –  High  9s  soluBon   •  Property  graphs   –  Blueprints,  gremlin,  rextser   •  REST  API  (NSS)   •  Extension  points   –  Stored  queries  for  custom  applicaBon  logic  on   the  server.   –  Custom  services  &  indices   –  Custom  funcBons   –  Vertex-­‐centric  programs   •  Embedded  Server   •  Standalone  Server   JVM   Journal   WAR   Journal   25
  • 26.
    http://blazegraph.com/ Blazegraph™:    High  Availability   •  Shared  nothing  architecture   –  Same  data  on  each  node   –  Coordinate  only  at  commit   –  Transparent  load  balancing   •  Scaling   –  50  billion  triples  or  quads   –  Query  throughput  scales  linearly   •  Self  healing   –  AutomaBc  failover   –  AutomaBc  resync  aJer  disconnect   –  Online  single  node  disaster  recovery   •  Online  Backup   –  Online  snapshots  (full  backups)   –  HA  Logs  (incremental  backups)   •  Point  in  Bme  recovery  (offline)   HAService   Quorum   k=3   size=3   follower   leader   HAService   HAService   26
  • 27.
    http://blazegraph.com/ Blazegraph™:    Scale-­‐out   •  Shard-­‐based  horizontal  scale-­‐ out  to  support  1  Trillion+   Edge  Graphs   •  Fast  parallel  load     •  Efficient  Query  Through   CoordinaBon  Between  Data   Services   •  Coming  soon!  Support  for   HDFS  for  failover.   27
  • 28.
    http://blazegraph.com/ How  do  I  use  GPUs  to  scale  graphs?   ●  Parallel Processing on GPU Clusters for Trillion+ Edge Graphs ●  High-Level API ●  Partitioning and Overlapping Communications ●  HPC and DARPA Pedigree 28
  • 29.
    http://blazegraph.com/ Blazegraph GPU: Ridiculously Fastfor Graphs Blazegraph™ plug-in for GPU Acceleration with familiar graph APIs Graph   DB   29
  • 30.
    http://blazegraph.com/ Mapgraph HPC withNVIDIA GPUs $16K / GTEP (K40 - Today) $4K / GTEP (Pascal 2016) Blazegraph  MulB-­‐GPU:    Extreme   Scale,  40X  more  Affordable!   Cray XMT-2 $~180K / GTEP Large Hadoop Cluster $~18M / GTEP Future Blazegraph SaaS On-demand 1 GTEP = 1 Billion Traversed Edges Per Second 40X! 10X! 30
  • 31.
    Twitter Tag: #briefrThe Briefing Room Perceptions & Questions Analyst: Robin Bloor
  • 32.
    Of Graphs andNetworks Robin Bloor, PhD
  • 33.
    Johnny-Come-Lately Aside from thethree letter agencies, until recently, nobody cared much about graphs… WHY?
  • 34.
    Reasons for GraphApathy… 1  Unfamiliarity (it’s obscure because it’s obscure) 2  RDBMS do not store graphs well and SQL is inadequate for querying graphs 3  No common BI applications, it’s mainly analytics 4  Semantic technology has taken a lifetime to evolve
  • 35.
    Reasons to Care u Graphs express very different (and important) data relationships u  Graphs are largely unexplored u  Graphs are ideal for MDM u  Graphs express semantic relationships
  • 36.
    Semantics: The Type0 Language Colorless green ideas sleep furiously Colorless green sleep furiously ideas
  • 37.
    The Net Net Theultimate goal is INFERENCING: Knowledge discovery (rather than pattern discovery) through graph processing
  • 38.
    u  What arethe “low hanging fruit” graphical applications – in your company’s experience? u  Does your company find itself competing with Hadoop Giraph? What are the compelling differences? u  Is Blazegraph a triple-store at the physical level (i.e., a pure RDF implementation) or does it implement a variety of physical structures?
  • 39.
    u  At whatlevel of data volume/workload is hardware acceleration a necessity? u  What is the largest amount of data currently under management with any of your customers? u  Which companies/technologies do you compete with directly?
  • 40.
    Twitter Tag: #briefrThe Briefing Room
  • 41.
    Twitter Tag: #briefrThe Briefing Room Upcoming Topics www.insideanalysis.com June: INNOVATORS July: SQL INNOVATION August: REAL-TIME DATA
  • 42.
    Twitter Tag: #briefrThe Briefing Room THANK YOU for your ATTENTION! Some images provided courtesy of Wikimedia Commons