SlideShare a Scribd company logo
Temporal Databases (Managing time varying data) Rob Squire - UK Consulting
Temporal Databases Am I a good guy or a bad guy?
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object]
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What are temporal databases? ,[object Object],[object Object],[object Object],[object Object]
What are temporal databases? ,[object Object],[object Object],[object Object],[object Object]
What are temporal databases? Valid  (stated) Time Transaction  (logged) Time The 2 dimensions of time
What are temporal databases? Valid  (stated) Time Transaction  (logged) Time Granularity of the time axis Chronons  can be days, Seconds, milliseconds depending on the application domain
What are temporal databases? The moving point ‘now’ Valid  (stated) Time Transaction  (logged) Time
What are temporal databases? ,[object Object],[object Object],[object Object],[object Object]
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What is time varying data? ,[object Object],[object Object],[object Object],[object Object],[object Object]
What is time varying data? ,[object Object],[object Object],[object Object]
What is time varying data? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What is time varying data? ,[object Object]
What is time varying data? ,[object Object],[object Object],[object Object]
What is time varying data? ,[object Object]
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Implementation Approaches ,[object Object],[object Object],[object Object],[object Object]
Implementation Approaches ,[object Object],[object Object]
Implementation Approaches ,[object Object],[object Object]
Implementation Approaches ,[object Object],[object Object],[object Object],[object Object],[object Object]
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why now? ,[object Object],[object Object],[object Object]
Why now? ,[object Object],[object Object],[object Object]
Temporal Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Demonstration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Demonstration Fix  Valid  Time Now   SUPPLIER
Demonstration Fix  Valid  Time Timestamp or  Now + 2 days  SUPPLIER
Demonstration SUPPLIER Fix  Transaction  Time Now
Demonstration SUPPLIER Fix  Transaction  Time Timestamp or Now - 2 days
Demonstration Fix  Transaction  and  Valid  Time SUPPLIER
Demonstration Demo 01 Generating, populating and querying TNF
Demonstration SUPPLIER SUPPLIER PART Non Temporal Schema (SP) TNF  Temporal Schema (TSP) Example schema taken from Temporal Data and the Relational Model by CJ Date, H Darwin, NA Lorentzos (2003)
Demonstration SUPPLIER SUPPLIER PART Non Temporal Schema (SP) TNF  Temporal Schema (TSP) SUPPLIER SUPPLIER PART Generate
Demonstration Record Timestamp 1 03-NOV-05 15.45.23.125990000
Demonstration SUPPLIER SUPPLIER PART Non Temporal Schema (SP) TNF  Temporal Schema (TSP) SUPPLIER SUPPLIER PART Populate Insert as  Select * from
DEMO 1 t0(now) Transaction time = now
DEMO 1 t1(now) S1 S2 S4 S3 S5 Transaction time = now
Demonstration Fix  Valid  Time timestamp1 SUPPLIER
DEMO 1 t2(timestamp1) S1 S2 S4 S3 S5 Transaction time = now
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 1 t3 (now) S1 S2 S4 S3 S5 Transaction time = now
Demonstration Fix  Valid  Time Now + 2 days  SUPPLIER
DEMO 1 t4 (now+2days) S1 S2 S4 S3 S5 Transaction time = now
DEMO 1 delete S1 S2 S4 S3 S5 Transaction time = now
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 1 t5 (now) S1 S2 S4 S3 S5 Transaction time = now
DEMO 1 S1 S2 S4 S3 S5 eovt Transaction time = now
DEMO 1 t6 (now) S1 S2 S4 S3 S5 Transaction time = now
Demonstration Record Timestamp 2 03-NOV-05 15.57.04.334588000
Demonstration Fix  Valid  Time Now + 30 seconds SUPPLIER
DEMO 1 t7(now+30 seconds) S2 S4 S3 S5 S1 Transaction time = now
DEMO 1 delete S1 S2 S4 S3 S5 Transaction time = now
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 1 t8(now) S1 S2 S4 S3 S5 Transaction time = now
DEMO 1 t9(now) S1 S2 S4 S3 S5 Transaction time = now
Demonstration Demo 02 Fixing transaction time
DEMO 2 t10(now) S1 S2 S4 S3 S5 33 Transaction time = now
DEMO 2 t11(now) S1 S2 S4 S3 S5 45 Transaction time = now
DEMO 2 t12(now) S1 S2 S4 S3 S5 65 Transaction time = now
Demonstration SUPPLIER Fix  Transaction  Time Timestamp 2
DEMO 2 S2 S4 S3 S5 S1 171000 t13(now) Transaction time < t7
DEMO 2 S2 S4 S3 S5 S1 170900 t14(now) Transaction time < t7
DEMO 2 S2 S4 S3 S5 S1 170800 t15(now) Transaction time < t7
DEMO 2 S2 S4 S3 S5 S1 Lifetime >2 days Transaction time < t7
Demonstration SUPPLIER UnFix  Transaction  Time Now
DEMO 2 S2 S4 S3 S5 S1 Lifetime 1 hour Transaction time = now t16(now)
Demonstration Demo 03 (part1) DML not allowed when transaction time is fixed
Demonstration Fix  Transaction  Time Current Timestamp SUPPLIER
DEMO 3 t17(now) Transaction time <> now  ORA-20001: S: Cannot insert while system Y time is set.
Demonstration SUPPLIER UnFix  Transaction  Time Now
Demonstration Demo 03 (part 2) Updating in TNF
Demonstration Fix  Valid  Time Now – 10 days SUPPLIER
DEMO 3 t18(now-10days) London Paris London Paris Athens Transaction time = now
Demonstration Fix  Valid  Time Now – 8 days SUPPLIER
DEMO 3 t19(now-8days) London Lyons London Athens Transaction time = now Paris Paris Lyons
Demonstration Fix  Valid  Time Now – 6 days SUPPLIER
DEMO 3 t20(now-6days) London Lyons London Corinth Transaction time = now Paris Paris Lyons Athens
Demonstration Fix  Valid  Time Now – 4 days SUPPLIER
DEMO 3 t21(now-4days) Lyons Manchester Corinth Transaction time = now Paris Paris Lyons Athens London London Manchester
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 3 t22(now) Lyons Manchester Corinth Transaction time = now Paris Paris Lyons Athens London London Manchester
DEMO 3 Lyons Manchester Corinth Transaction time = now Paris Paris Lyons Athens London London Manchester t18 t19 t20 t21
Demonstration Demo 04 (part1) Maintaining Referential Integrity
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 4 S Transaction time = now SP ORA-20001: :Integrity Constraint violated  –  parent key not found   (showing one S relvar) t23(now)
DEMO 4 S Transaction time = now SP (showing one S relvar) t23(now)
DEMO 4 S Transaction time = now SP (showing one S relvar) t23(now)
Demonstration Demo 04 (part2) Foreign Key Rules for TNF
Demonstration Fix  Valid  Time Now – 10 days SUPPLIER
DEMO 4 S1 Transaction time = now (showing one S relvar) t24(now-10days)
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 4 S1 Transaction time = now (showing one S relvar) t25(now)
Demonstration Fix  Valid  Time Now – 5 days SUPPLIER
DEMO 4 S1 Transaction time = now (showing one S relvar) t26(now-5days) ORA-20001: :Integrity Constraint violated  –  parent key not found   S1,P1
DEMO 4 S1 Transaction time = now (showing one S relvar) t26(now-5days) Delete rule on foreign key constraint SP_S_FK   is RESTRICT S1,P1 delete restrict
DEMO 4 S1 Transaction time = now (showing one S relvar) t26(now-5days) Delete rule on foreign key constraint SP_S_FK   is CASCADE S1,P1 delete cascade
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 4 S1 Transaction time = now (showing one S relvar) t27(now) S1,P1
Demonstration Demo 05 A more complex example
Demonstration SUPPLIER UnFix  Transaction  Time Now
Demonstration Fix  Valid  Time Now – 100 days SUPPLIER
DEMO 5 S1,P2 Transaction time = now (showing all SP relvars) S1,P3 S2,P4 S2,P5 S2,P6 S3,P1 S3,P3 S3,P6 S1,P4 S1,P5 S1,P1
DEMO 5 S1,P2 Transaction time = now (showing all SP relvars) S1,P3 S2,P4 S2,P5 S2,P6 S3,P1 S3,P3 S3,P6 S1,P4 S1,P5 S1,P1 QUERY A – Page 74 List of dates each supplier was  able  to supply at least one part S1 S1 S3 S2
DEMO 5 Transaction time = now (showing all SP relvars) S2,P4 S2,P5 S2,P6 S3,P1 S3,P3 S3,P6 S1,P4 S1,P5 QUERY B – Page 75 List of dates each supplier was  unable  to supply at least one part S1,P2 S1,P3 S1,P1 S1 S1 S1 S2 S2 S3 S3
Demonstration Demo 06 (part1) The classic Employee Department schema example
Demonstration Un Fix  Valid  Time SUPPLIER Now
Demonstration SUPPLIER UnFix  Transaction  Time Now
DEMO 6 Dept 10, Sales, New York Transaction time = now (showing Dept relvar) t28(now)
DEMO 6 Dept 10, Sales, New York Transaction time = now (showing Dept relvars) Dept 20, Finance, New York t29(now)
DEMO 6 Dept 10, Sales, New York Transaction time = now (showing Dept/Emp relvars) Dept 20, Finance, New York t30(now) Emp 1, John, Clerk,…,Dept 10
Demonstration Fix  Valid  Time Now + 20 days SUPPLIER
DEMO 6 Dept 10, Sales, New York Transaction time = now Dept 20, Finance, New York t31(now+20) Emp 1, John, Clerk,…,Dept 10 (showing Dept/Emp relvars)
Demonstration Un Fix  Valid  Time SUPPLIER Now
DEMO 6 Dept 10, Sales, New York Transaction time = now Dept 20, Finance, New York t32(now) Emp 1, John, Clerk,…,Dept 10 ORA-20001: :Integrity Constraint violated  –  parent key not found   delete restrict (showing Dept/Emp relvars)
DEMO 6 Dept 10, Sales, New York Transaction time = now Dept 20, Finance, New York t33(now) Emp 1, John, Clerk,…,Dept 20 delete cascade (showing Dept/Emp relvars)
Demonstration Demo 06 (part2) Non Transferable foreign keys
DEMO 6 Dept 10, Sales, New York Transaction time = now Dept 20, Finance, New York t33(now) Emp 1, John, Clerk,…,Dept 20 transferable (showing Dept/Emp relvars)
DEMO 6 Dept 10, Sales, New York Transaction time = now Dept 20, Finance, New York t34(now) Emp 1, John, Clerk,…,Dept 20 Non transferable ORA-20001: :Illegal attempt to modify non-transferable foreign key. (showing Dept/Emp relvars)
DEMO 6 Dept 10, Sales, New York Transaction time = now Dept 20, Finance, New York t34(now) Emp 1, John, Clerk,…,Dept 20 Non transferable (showing Dept/Emp relvars)
Demonstration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Demonstration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A Q & Q U E S T I O N S A N S W E R S Rob Squire UK Consulting [email_address]

More Related Content

What's hot

Temporal Pattern Mining
Temporal Pattern MiningTemporal Pattern Mining
Temporal Pattern Mining
Prakhar Dhama
 
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
Thomas Gottron
 
IRJET- Mining Frequent Itemset on Temporal data
IRJET-  	  Mining  Frequent Itemset on Temporal dataIRJET-  	  Mining  Frequent Itemset on Temporal data
IRJET- Mining Frequent Itemset on Temporal data
IRJET Journal
 
Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014
Raja Chiky
 
5.1 mining data streams
5.1 mining data streams5.1 mining data streams
5.1 mining data streams
Krish_ver2
 
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams   Esteban DonatoEvaluating Classification Algorithms Applied To Data Streams   Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams Esteban DonatoEsteban Donato
 
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
Faculty of Computer Science - Free University of Bozen-Bolzano
 
18 Data Streams
18 Data Streams18 Data Streams
18 Data Streams
Pier Luca Lanzi
 
Database , 8 Query Optimization
Database , 8 Query OptimizationDatabase , 8 Query Optimization
Database , 8 Query OptimizationAli Usman
 

What's hot (9)

Temporal Pattern Mining
Temporal Pattern MiningTemporal Pattern Mining
Temporal Pattern Mining
 
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
 
IRJET- Mining Frequent Itemset on Temporal data
IRJET-  	  Mining  Frequent Itemset on Temporal dataIRJET-  	  Mining  Frequent Itemset on Temporal data
IRJET- Mining Frequent Itemset on Temporal data
 
Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014
 
5.1 mining data streams
5.1 mining data streams5.1 mining data streams
5.1 mining data streams
 
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams   Esteban DonatoEvaluating Classification Algorithms Applied To Data Streams   Esteban Donato
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
 
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
 
18 Data Streams
18 Data Streams18 Data Streams
18 Data Streams
 
Database , 8 Query Optimization
Database , 8 Query OptimizationDatabase , 8 Query Optimization
Database , 8 Query Optimization
 

Viewers also liked

Miroslav Šimulčík: Temporálne databázy
Miroslav Šimulčík: Temporálne databázyMiroslav Šimulčík: Temporálne databázy
Miroslav Šimulčík: Temporálne databázy
Jano Suchal
 
Parallel Database
Parallel DatabaseParallel Database
Parallel Database
VESIT/University of Mumbai
 
Tracking your data across the fourth dimension
Tracking your data across the fourth dimensionTracking your data across the fourth dimension
Tracking your data across the fourth dimension
Jeremy Cook
 
Morrisons summary
Morrisons summaryMorrisons summary
Morrisons summaryJCDecauxUK
 
Maximising revenue via mobile
Maximising revenue via mobileMaximising revenue via mobile
Maximising revenue via mobile
Alex Sbardella
 
Morrisons case study v2
Morrisons case study v2Morrisons case study v2
Morrisons case study v2
Daniela8827
 
Morrisons session 1
Morrisons session 1Morrisons session 1
Morrisons session 1philg2
 
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Databricks
 
The Business Environment
The Business EnvironmentThe Business Environment
The Business Environment
University of East Anglia/CCN
 
Dbms sixth chapter_part-1_2011
Dbms sixth chapter_part-1_2011Dbms sixth chapter_part-1_2011
Dbms sixth chapter_part-1_2011
sumit_study
 
Mobile Database
Mobile DatabaseMobile Database
Mobile Database
Thanh Le
 
Mobile database security threats
Mobile database security threatsMobile database security threats
Mobile database security threatsAkhil Kumar
 
JupyterHub for Interactive Data Science Collaboration
JupyterHub for Interactive Data Science CollaborationJupyterHub for Interactive Data Science Collaboration
JupyterHub for Interactive Data Science Collaboration
Carol Willing
 
Mobile Database ,alrazgi
Mobile Database ,alrazgiMobile Database ,alrazgi
Mobile Database ,alrazgi
alrazgi
 
Emerging DB Technologies
Emerging DB TechnologiesEmerging DB Technologies
Emerging DB Technologies
Talal Alsubaie
 

Viewers also liked (16)

Miroslav Šimulčík: Temporálne databázy
Miroslav Šimulčík: Temporálne databázyMiroslav Šimulčík: Temporálne databázy
Miroslav Šimulčík: Temporálne databázy
 
Parallel Database
Parallel DatabaseParallel Database
Parallel Database
 
Tracking your data across the fourth dimension
Tracking your data across the fourth dimensionTracking your data across the fourth dimension
Tracking your data across the fourth dimension
 
Morrisons summary
Morrisons summaryMorrisons summary
Morrisons summary
 
Maximising revenue via mobile
Maximising revenue via mobileMaximising revenue via mobile
Maximising revenue via mobile
 
Morrisons case study v2
Morrisons case study v2Morrisons case study v2
Morrisons case study v2
 
Morrisons session 1
Morrisons session 1Morrisons session 1
Morrisons session 1
 
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
 
The Business Environment
The Business EnvironmentThe Business Environment
The Business Environment
 
Dbms sixth chapter_part-1_2011
Dbms sixth chapter_part-1_2011Dbms sixth chapter_part-1_2011
Dbms sixth chapter_part-1_2011
 
Ocado
OcadoOcado
Ocado
 
Mobile Database
Mobile DatabaseMobile Database
Mobile Database
 
Mobile database security threats
Mobile database security threatsMobile database security threats
Mobile database security threats
 
JupyterHub for Interactive Data Science Collaboration
JupyterHub for Interactive Data Science CollaborationJupyterHub for Interactive Data Science Collaboration
JupyterHub for Interactive Data Science Collaboration
 
Mobile Database ,alrazgi
Mobile Database ,alrazgiMobile Database ,alrazgi
Mobile Database ,alrazgi
 
Emerging DB Technologies
Emerging DB TechnologiesEmerging DB Technologies
Emerging DB Technologies
 

Similar to Temporal

129471717 unit-v
129471717 unit-v129471717 unit-v
129471717 unit-v
homeworkping8
 
Teradata Tutorial for Beginners
Teradata Tutorial for BeginnersTeradata Tutorial for Beginners
Teradata Tutorial for Beginners
rajkamaltibacademy
 
tempDB.ppt
tempDB.ppttempDB.ppt
tempDB.ppt
GopiBala5
 
Teradata 13.10
Teradata 13.10Teradata 13.10
Teradata 13.10
Teradata
 
SQL Server 2016 novelties
SQL Server 2016 noveltiesSQL Server 2016 novelties
SQL Server 2016 novelties
MSDEVMTL
 
Save the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTimeSave the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTime
Safe Software
 
Understanding System Performance
Understanding System PerformanceUnderstanding System Performance
Understanding System Performance
Teradata
 
Temporal databases
Temporal databasesTemporal databases
Temporal databases
Dabbal Singh Mahara
 
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaaPerfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Cuneyt Goksu
 
Cs 568 Spring 10 Lecture 5 Estimation
Cs 568 Spring 10  Lecture 5 EstimationCs 568 Spring 10  Lecture 5 Estimation
Cs 568 Spring 10 Lecture 5 Estimation
Lawrence Bernstein
 
Oracle 12c Application development
Oracle 12c Application developmentOracle 12c Application development
Oracle 12c Application development
pasalapudi123
 
Database change deployments: Performance matters
Database change deployments: Performance mattersDatabase change deployments: Performance matters
Database change deployments: Performance matters
vbarun01
 
Save the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTimeSave the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTime
Safe Software
 
Parallel Processing in TM1 - QueBIT Consulting
Parallel Processing in TM1 - QueBIT ConsultingParallel Processing in TM1 - QueBIT Consulting
Parallel Processing in TM1 - QueBIT Consulting
QueBIT Consulting
 
Adapting data warehouse architecture to benefit from agile methodologies
Adapting data warehouse architecture to benefit from agile methodologiesAdapting data warehouse architecture to benefit from agile methodologies
Adapting data warehouse architecture to benefit from agile methodologies
Tom Breur
 
Nesma event June '23 - NEN Practice Guideline - NPR.pdf
Nesma event June '23 - NEN Practice Guideline - NPR.pdfNesma event June '23 - NEN Practice Guideline - NPR.pdf
Nesma event June '23 - NEN Practice Guideline - NPR.pdf
Nesma
 
Data Warehouse Project Report
Data Warehouse Project Report Data Warehouse Project Report
Data Warehouse Project Report
Tom Donoghue
 
introduction to datawarehouse
introduction to datawarehouseintroduction to datawarehouse
introduction to datawarehousekiran14360
 
Togaf 9 template architecture change request
Togaf 9 template  architecture change requestTogaf 9 template  architecture change request
Togaf 9 template architecture change request
Sandeep Sharma IIMK Smart City,IoT,Bigdata,Cloud,BI,DW
 

Similar to Temporal (20)

129471717 unit-v
129471717 unit-v129471717 unit-v
129471717 unit-v
 
Teradata Tutorial for Beginners
Teradata Tutorial for BeginnersTeradata Tutorial for Beginners
Teradata Tutorial for Beginners
 
tempDB.ppt
tempDB.ppttempDB.ppt
tempDB.ppt
 
Teradata 13.10
Teradata 13.10Teradata 13.10
Teradata 13.10
 
SQL Server 2016 novelties
SQL Server 2016 noveltiesSQL Server 2016 novelties
SQL Server 2016 novelties
 
Save the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTimeSave the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTime
 
Understanding System Performance
Understanding System PerformanceUnderstanding System Performance
Understanding System Performance
 
Temporal databases
Temporal databasesTemporal databases
Temporal databases
 
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaaPerfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
 
Cs 568 Spring 10 Lecture 5 Estimation
Cs 568 Spring 10  Lecture 5 EstimationCs 568 Spring 10  Lecture 5 Estimation
Cs 568 Spring 10 Lecture 5 Estimation
 
Oracle 12c Application development
Oracle 12c Application developmentOracle 12c Application development
Oracle 12c Application development
 
Database change deployments: Performance matters
Database change deployments: Performance mattersDatabase change deployments: Performance matters
Database change deployments: Performance matters
 
Save the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTimeSave the Date for Quality Data: Making Use of DateTime
Save the Date for Quality Data: Making Use of DateTime
 
Black Box
Black BoxBlack Box
Black Box
 
Parallel Processing in TM1 - QueBIT Consulting
Parallel Processing in TM1 - QueBIT ConsultingParallel Processing in TM1 - QueBIT Consulting
Parallel Processing in TM1 - QueBIT Consulting
 
Adapting data warehouse architecture to benefit from agile methodologies
Adapting data warehouse architecture to benefit from agile methodologiesAdapting data warehouse architecture to benefit from agile methodologies
Adapting data warehouse architecture to benefit from agile methodologies
 
Nesma event June '23 - NEN Practice Guideline - NPR.pdf
Nesma event June '23 - NEN Practice Guideline - NPR.pdfNesma event June '23 - NEN Practice Guideline - NPR.pdf
Nesma event June '23 - NEN Practice Guideline - NPR.pdf
 
Data Warehouse Project Report
Data Warehouse Project Report Data Warehouse Project Report
Data Warehouse Project Report
 
introduction to datawarehouse
introduction to datawarehouseintroduction to datawarehouse
introduction to datawarehouse
 
Togaf 9 template architecture change request
Togaf 9 template  architecture change requestTogaf 9 template  architecture change request
Togaf 9 template architecture change request
 

Recently uploaded

Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 

Recently uploaded (20)

Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 

Temporal