SlideShare a Scribd company logo
Progress Report (20180425 水曜日):
Fei Liu 劉非
Department of Socio-Cultural Environmental Studies
Graduate School of Frontier Sciences
the University of Tokyo, Chiba, Japan
• Sewer Pipe Model
(Complete Dynamic Wave Model)
Sewer pipe model
- Dynamic wave model
𝜕𝑄
𝜕𝑥
+
𝜕𝐴
𝜕𝑡
= 0
𝜕𝑄
𝜕𝑡
+
𝜕(𝑄2/𝐴)
𝜕𝑥
+ 𝑔𝐴(
𝜕 𝑦
𝜕𝑥
+ 𝑆𝑓 − 𝑆 ) = 0
Governing Equations:
Assumptions for St. Venant Equations:
1. Flow is one-dimensional
2. Hydrostatic pressure prevails and vertical accelerations are
negligible
3. Streamline curvature is small
4. Bottom slope of the channel is small
5. Manning’s equation is used to describe resistance effects
6. The fluid is incompressible
Steady, uniform flow
Steady, non-uniform flow
Unsteady, non-uniform flow
1
Sewer pipe model
- Dynamic wave model
Finite Difference Formulation with Preissmann 4-Point Implicit Scheme:
Space derivatives:
𝜕𝐴
𝜕𝑡
= 0.5
𝐴𝑖+1
𝑗+1
− 𝐴𝑖+1
𝑗
∆𝑡
+ 0.5
𝐴𝑖
𝑗+1
− 𝐴𝑖
𝑗+1
∆𝑡
𝜕𝑄
𝜕𝑡
= 0.5
𝑄𝑖+1
𝑗+1
− 𝑄𝑖+1
𝑗
∆𝑡
+ 0.5
𝑄𝑖
𝑗+1
− 𝑄𝑖
𝑗+1
∆𝑡
Time derivatives:
𝜕𝑄
𝜕𝑥
= 𝜃
𝑄𝑖+1
𝑗+1
− 𝑄𝑖
𝑗+1
∆𝑥
+ (1 − 𝜃)
𝑄𝑖+1
𝑗
− 𝑄𝑖
𝑗
∆𝑥
𝜕𝑦
𝜕𝑥
= 𝜃
𝑦𝑖+1
𝑗+1
− 𝑦𝑖
𝑗+1
∆𝑥
+ (1 − 𝜃)
𝑦𝑖+1
𝑗
− 𝑦𝑖
𝑗
∆𝑥
𝜕(
𝑄2
𝐴)
𝜕𝑥
= 𝜃
(
𝑄2
𝐴)𝑖+1
𝑗+1
−(
𝑄2
𝐴)𝑖
𝑗+1
∆𝑥
+
(1 − 𝜃)
(
𝑄2
𝐴)𝑖+1
𝑗
−(
𝑄2
𝐴)𝑖
𝑗
∆𝑥
Constant terms:
𝑆𝑓 = 𝜃𝑆𝑓 𝑖+1/2
𝑗+1
+ (1 − 𝜃)𝑆𝑓 𝑖+1/2
𝑗
𝐴 = 𝜃
𝐴𝑖+1
𝑗+1
+ 𝐴𝑖
𝑗+1
2
+ 1 − 𝜃
𝐴𝑖+1
𝑗
+ 𝐴𝑖
𝑗
2
= θ𝐴𝑖
𝑗+1
+ (1 − 𝜃)𝐴𝑖
𝑗
(𝑆𝑓)
𝑖+
1
2
=
𝑛𝑖
2
𝑄𝑖 𝑄𝑖
𝐾2 𝐴𝑖
2
𝑅𝑖
4
3
𝐴𝑖 =
𝐴𝑖 + 𝐴𝑖+1
2
2
𝑄𝑖 =
𝑄𝑖 + 𝑄𝑖+1
2
𝑅𝑖 =
𝐴𝑖
𝐵𝑖
Sewer pipe model
- Dynamic wave model
Initial condition:
1. Specify as input
2. Uniform Flow 𝑆 = 𝑆𝑓
( Manning formula)
3. Steady Gradually Varied Flow
Boundary condition
1. Critical flow
2. Weir-type flow
3. Overfall
4. Rating curves
…
Upstream
Downstream
1. Discharge hydrograph
2. Stage or depth hydrograph
Relation between Q and y
𝜕
𝑄2
𝐴
𝜕𝑥
+ 𝑔𝐴(
𝜕 𝑦
𝜕𝑥
+ 𝑆𝑓 − 𝑆 ) = 0
3
Sewer pipe model
- Dynamic wave model
Solving technique:
Newton Iterative Algorithm
𝐹𝑖 𝑥1, 𝑥2, 𝑥3, … , 𝑥2𝑁 = 0,
i = 1,2,3, … , 2N
𝐹𝑖 𝑥 + 𝛿 𝑥 = 𝐹𝑖 𝑥 +
𝑘=1
2𝑁
𝜕𝐹𝑖
𝜕x 𝑘
𝜕𝑥𝑗 + 𝑂 𝜕 𝑥2
,
i = 1,2,3, … , 2N
𝐽 =
𝜕𝐹𝑖
𝜕x 𝑘
𝐹 𝑥 + 𝛿 𝑥 = 𝐹 𝑥 + 𝐽 ∙ 𝜕 𝑥 + 𝑂 𝜕 𝑥2
𝐽 ∙ 𝜕 𝑥 = − 𝐹
𝑥 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + 𝜕 𝑥
(Gaussian Elimination to
Solve the Linear Equations)
4
Sewer pipe model
- Dynamic wave model
𝜕𝐶1
𝜕𝑄1
𝜕𝐶1
𝜕ℎ1
𝜕𝑀1
𝜕𝑄1
𝜕𝑀1
𝜕ℎ1
𝜕𝐶1
𝜕𝑄2
𝜕𝐶1
𝜕ℎ2
𝜕𝑀1
𝜕𝑄2
𝜕𝑀1
𝜕ℎ2
𝜕𝑈𝐵
𝜕𝑄1
𝜕𝑈𝐵
𝜕ℎ1
𝜕𝐶𝑖
𝜕𝑄𝑖
𝜕𝐶𝑖
𝜕ℎ𝑖
𝜕𝑀𝑖
𝜕𝑄𝑖
𝜕𝑀𝑖
𝜕ℎ𝑖
𝜕𝐶𝑖
𝜕𝑄𝑖+1
𝜕𝐶𝑖
𝜕ℎ𝑖+1
𝜕𝑀𝑖
𝜕𝑄𝑖+1
𝜕𝑀𝑖
𝜕ℎ𝑖+1
𝜕𝐶 𝑁−1
𝜕𝑄 𝑁−1
𝜕𝐶 𝑁−1
𝜕ℎ 𝑁−1
𝜕𝑀 𝑁−1
𝜕𝑄 𝑁−1
𝜕𝑀 𝑁−1
𝜕ℎ 𝑁−1
𝜕𝐶 𝑁−1
𝜕𝑄 𝑁
𝜕𝐶 𝑁−1
𝜕ℎ 𝑁
𝜕𝑀 𝑁−1
𝜕𝑄 𝑁
𝜕𝑀 𝑁−1
𝜕ℎ 𝑁
𝜕𝐷𝐵
𝜕𝑄 𝑁
𝜕𝐷𝐵
𝜕ℎ 𝑁
⋱
𝛿𝑄1
𝛿ℎ1
𝛿𝑄2
⋮
𝛿𝑄𝑖
𝛿ℎ𝑖
⋮
𝛿ℎ 𝑁−1
𝛿𝑄 𝑁
𝛿ℎ 𝑁
=
−𝑅𝑈𝐵
−𝑅𝐶1
−𝑅𝑀1
⋮
−𝑅𝐶𝑖
−𝑅𝑀𝑖
⋮
−𝑅𝐶 𝑁−1
−𝑅𝑀 𝑁−1
−𝑅𝐷𝐵
Partial derivatives:
Forward Finite Difference
Approximation
𝜕𝑓
𝜕𝑥
=
𝑓 𝑥 + 𝑒𝑝𝑠 − 𝑓(𝑥)
𝑒𝑝𝑠
Gaussian Elimination to
solve the linear equations
𝐽 ∙ 𝜕 𝑥 = − 𝐹
𝑥 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + 𝜕 𝑥
⋱
5
Sewer pipe model
- Dynamic wave model
Solution of finite difference equations:
𝑈𝐵 𝑄1, ℎ1 = 0
𝐶1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0
𝑀1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0
…
𝐶𝑖 𝑄𝑖, ℎ𝑖, 𝑄𝑖+1, ℎ𝑖+1 = 0
𝑀𝑖 𝑄𝑖, ℎ𝑖, 𝑄𝑖+1, ℎ𝑖+1 = 0
…
𝐶 𝑁−1 𝑄 𝑁−1, ℎ 𝑁−1, 𝑄 𝑁, ℎ 𝑁 = 0
𝑀 𝑁−1 𝑄 𝑁−1, ℎ 𝑁−1, 𝑄 𝑁, ℎ 𝑁 = 0
𝐷𝐵 𝑄 𝑁, ℎ 𝑁 = 0
j=0
i=1 i=4i=3i=2
𝑄1
0
, ℎ1
0
𝑄2
0
, ℎ2
0
𝑄3
0
, ℎ3
0 𝑄4
0
, ℎ4
0
j=1
i=1 i=4i=3i=2
𝑄1
1
, ℎ1
1
𝑄2
1
, ℎ2
1
𝑄3
1
, ℎ3
1 𝑄4
1
, ℎ4
1
𝐶1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0
𝑀1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0
Unknows:
𝐶2 𝑄2, ℎ2, 𝑄3, ℎ3 = 0
𝑀2 𝑄2, ℎ2, 𝑄3, ℎ3 = 0
𝐶3 𝑄3, ℎ3, 𝑄4, ℎ4 = 0
𝑀3 𝑄3, ℎ3, 𝑄4, ℎ4 = 0
𝑈𝐵 𝑄1, ℎ1 = 0 D𝐵 𝑄4, ℎ4 = 0
6
main.f90
mod_input1.f90
mod_input2.f90
mod_input3.f90
mod_funcv.f90
mod_par.f90
mod_newton.f90
Sewer pipe model
- Program structure
mod_steady.f90
mod_intrpl.f90
7
Sewer pipe model
- Flow Chart
Call mod_input1
Call mod_input2
Call mod_input3
Compute initial
conditions
(steady GVF)
last time
step ?
Call mod_funcv
Call mod_newton
(solve matrix)
Check
convergence
Yes
No No
END
Yes
Choose DBC
8
Sewer pipe model
- Sensitivity analysis on ∆𝑥 𝑎𝑛𝑑 ∆𝑡
Fixed time step ? Or variable time step
On ∆𝑡
𝐿 = 100 𝑚
𝑏 = 1 𝑚
19 reaches (N =20)
∆𝑥 = 100/19 𝑚
𝑆0 = 0.012
Manning Roughness coefficient (n) = 0.013
Initial Condition:
Steady Gradually Varied Flow
𝑏 = 1 𝑚
upstream downstream
𝑄1, ℎ1 𝑄 𝑁, ℎ 𝑁
i=1 i=N
Downstream Boundary Condition:
Critical Flow
𝐹𝑟 =
𝑣
𝑔
𝐴
𝐵
= 1, 𝑄 = 𝑣𝐴
Upstream Boundary Condition:
Discharge Hydrograph
0
0.5
1
1.5
2
2.5
3
0:00 3:00 6:00 9:00 12:0015:0018:0021:00 0:00
FLow(m^3/s)
Time (hh:mm)
Input Discharge Hydrograph
A Rectangular Section
Sewer Pipe:
On ∆x
𝐿 = 100 𝑚
𝑏 = 1 𝑚
∆𝑡 = 20𝑠
𝑆0 = 0.012
Manning Roughness coefficient (n) = 0.013
(
𝑄2
𝐴
)𝑖+1−
𝑄2
𝐴 𝑖
+ 𝑔𝐴𝑖(ℎ𝑖+1 − ℎ𝑖 + 𝑆 𝑓 𝑖
∆𝑥) = 0
9
Sewer pipe model
- Sensitivity analysis on ∆𝑡
∆𝑡 = 1𝑠 ∆𝑡 = 5𝑠 ∆𝑡 = 10𝑠 ∆𝑡 = 20𝑠 ∆𝑡 = 60𝑠
∆𝑡 = 120𝑠 ∆𝑡 = 300𝑠 ∆𝑡 = 900𝑠 ∆𝑡 = 1800𝑠 ∆𝑡 = 3600𝑠
depth
10
Sewer pipe model
- Sensitivity analysis on ∆𝑡
∆𝑡 = 1𝑠 ∆𝑡 = 5𝑠 ∆𝑡 = 10𝑠 ∆𝑡 = 20𝑠 ∆𝑡 = 60𝑠
∆𝑡 = 120𝑠 ∆𝑡 = 300𝑠 ∆𝑡 = 900𝑠 ∆𝑡 = 1800𝑠 ∆𝑡 = 3600𝑠
flow
11
Sewer pipe model
- Sensitivity analysis on ∆𝑥
∆𝑡 = 20𝑠
12
Sewer pipe model
- Comparison between Models
0
0.5
1
1.5
2
2.5
3
0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
FLow(m^3/s)
Time (hh:mm)
Input Discharge Hydrograph
𝐿 = 100 𝑚
𝑏 = 1 𝑚
𝑆0 = 0.012
n = 0.013
Initial Condition: steady flow equation
DBC: Critical Flow
∆𝑡 = 20𝑠
N = 20
𝐿 = 100 𝑚
𝑏 = 1 𝑚
𝑆0 = 0.012
n = 0.013
Initial Condition: cannot choose
DBC: free outfall
Dynamic Wave Model
Routing ∆𝑡 = 60𝑠
Reporting time step = 15 min
N = cannot choose
In this Model In EPA Model (SWMM)
A Rectangular section sewer pipe:
13
Sewer pipe model
- Comparison between Models
rect
∆𝑡 = 20𝑠
N = 20
14
Sewer pipe model
- Comparison between Models
0
0.5
1
1.5
2
2.5
3
0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
FLow(m^3/s)
Time (hh:mm)
Input Discharge Hydrograph
𝐿 = 100 𝑚
𝑏 = 1.5 𝑚
𝑆0 = 0.012
n = 0.013
Initial Condition: steady flow equation
DBC: Critical Flow
∆𝑡 = 20𝑠
N = 20
𝐿 = 100 𝑚
𝑏 = 1.5 𝑚
𝑆0 = 0.012
n = 0.013
Initial Condition: cannot choose
DBC: free outfall
Dynamic Wave Model
Routing ∆𝑡 = 60𝑠
Reporting time step = 15 min
N = cannot choose
In this Model In EPA Model (SWMM)
A Circular section sewer pipe:
15
Sewer pipe model
- Comparison between Models
Circular
∆𝑡 = 20𝑠
N = 20
16
𝜕𝑄
𝜕𝑥
+
𝜕𝐴
𝜕𝑡
= 0
𝜕𝑄
𝜕𝑡
+
𝜕(𝑄2/𝐴)
𝜕𝑥
+ 𝑔𝐴(
𝜕 𝑦
𝜕𝑥
+ 𝑆𝑓 − 𝑆 ) = 0
Governing Equations:
Dampening of Inertial Terms:
A weighting factor SIGMA between 0 and 1 is computed that
damps out the contribution of the inertial terms as the Froude
number (Fr) gets closer to 1.0 and ignores them completely when
Fr>1.0 (i.e., supercritical flow). The equation for SIGMA is:
𝑆𝐼𝐺𝑀𝐴 = 1.0, 𝐹𝑂𝑅 𝐹𝑟 < 0.5
𝑆𝐼𝐺𝑀𝐴 = 2 1 − 𝐹𝑟 , 𝐹𝑂𝑅 0.5 ≤ 𝐹𝑟 ≤ 1.0
𝑆𝐼𝐺𝑀𝐴 = 0, 𝐹𝑂𝑅 𝐹𝑟 > 1.0
Fr is computed based on the midpoint depth in the conduit.
𝜕𝑄
𝜕𝑥
+
𝜕𝐴
𝜕𝑡
= 0
𝑆𝐼𝐺𝑀𝐴 ∗ (
𝜕𝑄
𝜕𝑡
+
𝜕
𝑄2
𝐴
𝜕𝑥
) + 𝑔𝐴(
𝜕 𝑦
𝜕𝑥
+ 𝑆𝑓 − 𝑆 ) = 0
17
Thank you!
5564443124@edu.k.u-tokyo.ac.jp
fei.liu@whu.edu.cn

More Related Content

What's hot

EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
yeisyynojos
 
PROBLEMA 3
PROBLEMA 3 PROBLEMA 3
PROBLEMA 3
yeisyynojos
 
Determination of co efficient of consolidation method
Determination of co efficient of consolidation methodDetermination of co efficient of consolidation method
Determination of co efficient of consolidation methodParth Joshi
 
Diapositivas ecuación de continuidad
Diapositivas ecuación de continuidadDiapositivas ecuación de continuidad
Diapositivas ecuación de continuidad
ErikCalvopia
 
A two equation VLES turbulence model with near-wall delayed behaviour
A two equation VLES turbulence model with near-wall delayed behaviourA two equation VLES turbulence model with near-wall delayed behaviour
A two equation VLES turbulence model with near-wall delayed behaviour
Applied CCM Pty Ltd
 
Ecuación de continuidad
Ecuación de continuidad Ecuación de continuidad
Ecuación de continuidad
ErikCalvopia
 
Fn methods em08
Fn methods em08Fn methods em08
Fn methods em08
Shu Wei Goh
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
Florencio Nuñez
 
AINL 2016: Goncharov
AINL 2016: GoncharovAINL 2016: Goncharov
AINL 2016: Goncharov
Lidia Pivovarova
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
Malika khalil
 
Presentation 7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
Presentation  7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEngPresentation  7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
Presentation 7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
World University of Bangladesh
 
Irregular Particle Tracking and Lunar Dust Remo
Irregular Particle Tracking and Lunar Dust RemoIrregular Particle Tracking and Lunar Dust Remo
Irregular Particle Tracking and Lunar Dust Remo
pmghadge
 
Timefitting curve
Timefitting curveTimefitting curve
Timefitting curve
Riya2001998
 
Consolidation
ConsolidationConsolidation
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
World University of Bangladesh
 
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
World University of Bangladesh
 
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10
World University of Bangladesh
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
World University of Bangladesh
 
Ejercicio 2. analisis dimensional
Ejercicio 2. analisis dimensionalEjercicio 2. analisis dimensional
Ejercicio 2. analisis dimensional
yeisyynojos
 

What's hot (20)

EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
 
PROBLEMA 3
PROBLEMA 3 PROBLEMA 3
PROBLEMA 3
 
Determination of co efficient of consolidation method
Determination of co efficient of consolidation methodDetermination of co efficient of consolidation method
Determination of co efficient of consolidation method
 
Diapositivas ecuación de continuidad
Diapositivas ecuación de continuidadDiapositivas ecuación de continuidad
Diapositivas ecuación de continuidad
 
A two equation VLES turbulence model with near-wall delayed behaviour
A two equation VLES turbulence model with near-wall delayed behaviourA two equation VLES turbulence model with near-wall delayed behaviour
A two equation VLES turbulence model with near-wall delayed behaviour
 
Ecuación de continuidad
Ecuación de continuidad Ecuación de continuidad
Ecuación de continuidad
 
Fn methods em08
Fn methods em08Fn methods em08
Fn methods em08
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
 
AINL 2016: Goncharov
AINL 2016: GoncharovAINL 2016: Goncharov
AINL 2016: Goncharov
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
 
Presentation 7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
Presentation  7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEngPresentation  7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
Presentation 7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
 
Irregular Particle Tracking and Lunar Dust Remo
Irregular Particle Tracking and Lunar Dust RemoIrregular Particle Tracking and Lunar Dust Remo
Irregular Particle Tracking and Lunar Dust Remo
 
Timefitting curve
Timefitting curveTimefitting curve
Timefitting curve
 
10 rans
10 rans10 rans
10 rans
 
Consolidation
ConsolidationConsolidation
Consolidation
 
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
 
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
 
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 10
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
 
Ejercicio 2. analisis dimensional
Ejercicio 2. analisis dimensionalEjercicio 2. analisis dimensional
Ejercicio 2. analisis dimensional
 

Similar to Storm water pipe system modeling

Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
EngMyKer
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
Dr. Ezzat Elsayed Gomaa
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
cfisicaster
 
Surface runoff
Surface runoffSurface runoff
Surface runoff
Mohsin Siddique
 
Ejercicios sobre flujo permanente no uniforme
Ejercicios sobre flujo permanente no uniformeEjercicios sobre flujo permanente no uniforme
Ejercicios sobre flujo permanente no uniforme
FiorbelaGutierrez
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
ChintanModi26
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
happycocoman
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
Edhole.com
 
Extrapolation of Stage Discharge Rating Curve
Extrapolation of Stage Discharge Rating CurveExtrapolation of Stage Discharge Rating Curve
Extrapolation of Stage Discharge Rating Curve
Biswajit Dey
 
Study of different flows over typical bodies by Fluent
Study of different flows over typical bodies by FluentStudy of different flows over typical bodies by Fluent
Study of different flows over typical bodies by Fluent
Rajibul Alam
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
MohammedRazzaqSalman
 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
MuhammadUsman1795
 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes
MAULIKM1
 
Lecture22012.pptx
Lecture22012.pptxLecture22012.pptx
Lecture22012.pptx
Dr. Gazala pravin
 
lecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxlecture 2 courseII (4).pptx
lecture 2 courseII (4).pptx
AYMENGOODKid
 
wk1_Introduction.pdf
wk1_Introduction.pdfwk1_Introduction.pdf
wk1_Introduction.pdf
SalamudinSadat1
 
SImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D FloodSImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D Flood
Putika Ashfar Khoiri
 
Modeling of transient fluid flow in the simple pipeline system
Modeling of transient fluid flow in the simple pipeline systemModeling of transient fluid flow in the simple pipeline system
Modeling of transient fluid flow in the simple pipeline system
jeet707
 
pipe lines lec 1.pptx
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptx
amirashraf61
 
UNIT-II FMM
UNIT-II FMMUNIT-II FMM
UNIT-II FMM
Aravind Ra
 

Similar to Storm water pipe system modeling (20)

Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
Surface runoff
Surface runoffSurface runoff
Surface runoff
 
Ejercicios sobre flujo permanente no uniforme
Ejercicios sobre flujo permanente no uniformeEjercicios sobre flujo permanente no uniforme
Ejercicios sobre flujo permanente no uniforme
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
 
Extrapolation of Stage Discharge Rating Curve
Extrapolation of Stage Discharge Rating CurveExtrapolation of Stage Discharge Rating Curve
Extrapolation of Stage Discharge Rating Curve
 
Study of different flows over typical bodies by Fluent
Study of different flows over typical bodies by FluentStudy of different flows over typical bodies by Fluent
Study of different flows over typical bodies by Fluent
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes
 
Lecture22012.pptx
Lecture22012.pptxLecture22012.pptx
Lecture22012.pptx
 
lecture 2 courseII (4).pptx
lecture 2 courseII (4).pptxlecture 2 courseII (4).pptx
lecture 2 courseII (4).pptx
 
wk1_Introduction.pdf
wk1_Introduction.pdfwk1_Introduction.pdf
wk1_Introduction.pdf
 
SImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D FloodSImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D Flood
 
Modeling of transient fluid flow in the simple pipeline system
Modeling of transient fluid flow in the simple pipeline systemModeling of transient fluid flow in the simple pipeline system
Modeling of transient fluid flow in the simple pipeline system
 
pipe lines lec 1.pptx
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptx
 
UNIT-II FMM
UNIT-II FMMUNIT-II FMM
UNIT-II FMM
 

Recently uploaded

AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
top1002
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 

Recently uploaded (20)

AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 

Storm water pipe system modeling

  • 1. Progress Report (20180425 水曜日): Fei Liu 劉非 Department of Socio-Cultural Environmental Studies Graduate School of Frontier Sciences the University of Tokyo, Chiba, Japan • Sewer Pipe Model (Complete Dynamic Wave Model)
  • 2. Sewer pipe model - Dynamic wave model 𝜕𝑄 𝜕𝑥 + 𝜕𝐴 𝜕𝑡 = 0 𝜕𝑄 𝜕𝑡 + 𝜕(𝑄2/𝐴) 𝜕𝑥 + 𝑔𝐴( 𝜕 𝑦 𝜕𝑥 + 𝑆𝑓 − 𝑆 ) = 0 Governing Equations: Assumptions for St. Venant Equations: 1. Flow is one-dimensional 2. Hydrostatic pressure prevails and vertical accelerations are negligible 3. Streamline curvature is small 4. Bottom slope of the channel is small 5. Manning’s equation is used to describe resistance effects 6. The fluid is incompressible Steady, uniform flow Steady, non-uniform flow Unsteady, non-uniform flow 1
  • 3. Sewer pipe model - Dynamic wave model Finite Difference Formulation with Preissmann 4-Point Implicit Scheme: Space derivatives: 𝜕𝐴 𝜕𝑡 = 0.5 𝐴𝑖+1 𝑗+1 − 𝐴𝑖+1 𝑗 ∆𝑡 + 0.5 𝐴𝑖 𝑗+1 − 𝐴𝑖 𝑗+1 ∆𝑡 𝜕𝑄 𝜕𝑡 = 0.5 𝑄𝑖+1 𝑗+1 − 𝑄𝑖+1 𝑗 ∆𝑡 + 0.5 𝑄𝑖 𝑗+1 − 𝑄𝑖 𝑗+1 ∆𝑡 Time derivatives: 𝜕𝑄 𝜕𝑥 = 𝜃 𝑄𝑖+1 𝑗+1 − 𝑄𝑖 𝑗+1 ∆𝑥 + (1 − 𝜃) 𝑄𝑖+1 𝑗 − 𝑄𝑖 𝑗 ∆𝑥 𝜕𝑦 𝜕𝑥 = 𝜃 𝑦𝑖+1 𝑗+1 − 𝑦𝑖 𝑗+1 ∆𝑥 + (1 − 𝜃) 𝑦𝑖+1 𝑗 − 𝑦𝑖 𝑗 ∆𝑥 𝜕( 𝑄2 𝐴) 𝜕𝑥 = 𝜃 ( 𝑄2 𝐴)𝑖+1 𝑗+1 −( 𝑄2 𝐴)𝑖 𝑗+1 ∆𝑥 + (1 − 𝜃) ( 𝑄2 𝐴)𝑖+1 𝑗 −( 𝑄2 𝐴)𝑖 𝑗 ∆𝑥 Constant terms: 𝑆𝑓 = 𝜃𝑆𝑓 𝑖+1/2 𝑗+1 + (1 − 𝜃)𝑆𝑓 𝑖+1/2 𝑗 𝐴 = 𝜃 𝐴𝑖+1 𝑗+1 + 𝐴𝑖 𝑗+1 2 + 1 − 𝜃 𝐴𝑖+1 𝑗 + 𝐴𝑖 𝑗 2 = θ𝐴𝑖 𝑗+1 + (1 − 𝜃)𝐴𝑖 𝑗 (𝑆𝑓) 𝑖+ 1 2 = 𝑛𝑖 2 𝑄𝑖 𝑄𝑖 𝐾2 𝐴𝑖 2 𝑅𝑖 4 3 𝐴𝑖 = 𝐴𝑖 + 𝐴𝑖+1 2 2 𝑄𝑖 = 𝑄𝑖 + 𝑄𝑖+1 2 𝑅𝑖 = 𝐴𝑖 𝐵𝑖
  • 4. Sewer pipe model - Dynamic wave model Initial condition: 1. Specify as input 2. Uniform Flow 𝑆 = 𝑆𝑓 ( Manning formula) 3. Steady Gradually Varied Flow Boundary condition 1. Critical flow 2. Weir-type flow 3. Overfall 4. Rating curves … Upstream Downstream 1. Discharge hydrograph 2. Stage or depth hydrograph Relation between Q and y 𝜕 𝑄2 𝐴 𝜕𝑥 + 𝑔𝐴( 𝜕 𝑦 𝜕𝑥 + 𝑆𝑓 − 𝑆 ) = 0 3
  • 5. Sewer pipe model - Dynamic wave model Solving technique: Newton Iterative Algorithm 𝐹𝑖 𝑥1, 𝑥2, 𝑥3, … , 𝑥2𝑁 = 0, i = 1,2,3, … , 2N 𝐹𝑖 𝑥 + 𝛿 𝑥 = 𝐹𝑖 𝑥 + 𝑘=1 2𝑁 𝜕𝐹𝑖 𝜕x 𝑘 𝜕𝑥𝑗 + 𝑂 𝜕 𝑥2 , i = 1,2,3, … , 2N 𝐽 = 𝜕𝐹𝑖 𝜕x 𝑘 𝐹 𝑥 + 𝛿 𝑥 = 𝐹 𝑥 + 𝐽 ∙ 𝜕 𝑥 + 𝑂 𝜕 𝑥2 𝐽 ∙ 𝜕 𝑥 = − 𝐹 𝑥 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + 𝜕 𝑥 (Gaussian Elimination to Solve the Linear Equations) 4
  • 6. Sewer pipe model - Dynamic wave model 𝜕𝐶1 𝜕𝑄1 𝜕𝐶1 𝜕ℎ1 𝜕𝑀1 𝜕𝑄1 𝜕𝑀1 𝜕ℎ1 𝜕𝐶1 𝜕𝑄2 𝜕𝐶1 𝜕ℎ2 𝜕𝑀1 𝜕𝑄2 𝜕𝑀1 𝜕ℎ2 𝜕𝑈𝐵 𝜕𝑄1 𝜕𝑈𝐵 𝜕ℎ1 𝜕𝐶𝑖 𝜕𝑄𝑖 𝜕𝐶𝑖 𝜕ℎ𝑖 𝜕𝑀𝑖 𝜕𝑄𝑖 𝜕𝑀𝑖 𝜕ℎ𝑖 𝜕𝐶𝑖 𝜕𝑄𝑖+1 𝜕𝐶𝑖 𝜕ℎ𝑖+1 𝜕𝑀𝑖 𝜕𝑄𝑖+1 𝜕𝑀𝑖 𝜕ℎ𝑖+1 𝜕𝐶 𝑁−1 𝜕𝑄 𝑁−1 𝜕𝐶 𝑁−1 𝜕ℎ 𝑁−1 𝜕𝑀 𝑁−1 𝜕𝑄 𝑁−1 𝜕𝑀 𝑁−1 𝜕ℎ 𝑁−1 𝜕𝐶 𝑁−1 𝜕𝑄 𝑁 𝜕𝐶 𝑁−1 𝜕ℎ 𝑁 𝜕𝑀 𝑁−1 𝜕𝑄 𝑁 𝜕𝑀 𝑁−1 𝜕ℎ 𝑁 𝜕𝐷𝐵 𝜕𝑄 𝑁 𝜕𝐷𝐵 𝜕ℎ 𝑁 ⋱ 𝛿𝑄1 𝛿ℎ1 𝛿𝑄2 ⋮ 𝛿𝑄𝑖 𝛿ℎ𝑖 ⋮ 𝛿ℎ 𝑁−1 𝛿𝑄 𝑁 𝛿ℎ 𝑁 = −𝑅𝑈𝐵 −𝑅𝐶1 −𝑅𝑀1 ⋮ −𝑅𝐶𝑖 −𝑅𝑀𝑖 ⋮ −𝑅𝐶 𝑁−1 −𝑅𝑀 𝑁−1 −𝑅𝐷𝐵 Partial derivatives: Forward Finite Difference Approximation 𝜕𝑓 𝜕𝑥 = 𝑓 𝑥 + 𝑒𝑝𝑠 − 𝑓(𝑥) 𝑒𝑝𝑠 Gaussian Elimination to solve the linear equations 𝐽 ∙ 𝜕 𝑥 = − 𝐹 𝑥 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + 𝜕 𝑥 ⋱ 5
  • 7. Sewer pipe model - Dynamic wave model Solution of finite difference equations: 𝑈𝐵 𝑄1, ℎ1 = 0 𝐶1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0 𝑀1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0 … 𝐶𝑖 𝑄𝑖, ℎ𝑖, 𝑄𝑖+1, ℎ𝑖+1 = 0 𝑀𝑖 𝑄𝑖, ℎ𝑖, 𝑄𝑖+1, ℎ𝑖+1 = 0 … 𝐶 𝑁−1 𝑄 𝑁−1, ℎ 𝑁−1, 𝑄 𝑁, ℎ 𝑁 = 0 𝑀 𝑁−1 𝑄 𝑁−1, ℎ 𝑁−1, 𝑄 𝑁, ℎ 𝑁 = 0 𝐷𝐵 𝑄 𝑁, ℎ 𝑁 = 0 j=0 i=1 i=4i=3i=2 𝑄1 0 , ℎ1 0 𝑄2 0 , ℎ2 0 𝑄3 0 , ℎ3 0 𝑄4 0 , ℎ4 0 j=1 i=1 i=4i=3i=2 𝑄1 1 , ℎ1 1 𝑄2 1 , ℎ2 1 𝑄3 1 , ℎ3 1 𝑄4 1 , ℎ4 1 𝐶1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0 𝑀1 𝑄1, ℎ1, 𝑄2, ℎ2 = 0 Unknows: 𝐶2 𝑄2, ℎ2, 𝑄3, ℎ3 = 0 𝑀2 𝑄2, ℎ2, 𝑄3, ℎ3 = 0 𝐶3 𝑄3, ℎ3, 𝑄4, ℎ4 = 0 𝑀3 𝑄3, ℎ3, 𝑄4, ℎ4 = 0 𝑈𝐵 𝑄1, ℎ1 = 0 D𝐵 𝑄4, ℎ4 = 0 6
  • 9. Sewer pipe model - Flow Chart Call mod_input1 Call mod_input2 Call mod_input3 Compute initial conditions (steady GVF) last time step ? Call mod_funcv Call mod_newton (solve matrix) Check convergence Yes No No END Yes Choose DBC 8
  • 10. Sewer pipe model - Sensitivity analysis on ∆𝑥 𝑎𝑛𝑑 ∆𝑡 Fixed time step ? Or variable time step On ∆𝑡 𝐿 = 100 𝑚 𝑏 = 1 𝑚 19 reaches (N =20) ∆𝑥 = 100/19 𝑚 𝑆0 = 0.012 Manning Roughness coefficient (n) = 0.013 Initial Condition: Steady Gradually Varied Flow 𝑏 = 1 𝑚 upstream downstream 𝑄1, ℎ1 𝑄 𝑁, ℎ 𝑁 i=1 i=N Downstream Boundary Condition: Critical Flow 𝐹𝑟 = 𝑣 𝑔 𝐴 𝐵 = 1, 𝑄 = 𝑣𝐴 Upstream Boundary Condition: Discharge Hydrograph 0 0.5 1 1.5 2 2.5 3 0:00 3:00 6:00 9:00 12:0015:0018:0021:00 0:00 FLow(m^3/s) Time (hh:mm) Input Discharge Hydrograph A Rectangular Section Sewer Pipe: On ∆x 𝐿 = 100 𝑚 𝑏 = 1 𝑚 ∆𝑡 = 20𝑠 𝑆0 = 0.012 Manning Roughness coefficient (n) = 0.013 ( 𝑄2 𝐴 )𝑖+1− 𝑄2 𝐴 𝑖 + 𝑔𝐴𝑖(ℎ𝑖+1 − ℎ𝑖 + 𝑆 𝑓 𝑖 ∆𝑥) = 0 9
  • 11. Sewer pipe model - Sensitivity analysis on ∆𝑡 ∆𝑡 = 1𝑠 ∆𝑡 = 5𝑠 ∆𝑡 = 10𝑠 ∆𝑡 = 20𝑠 ∆𝑡 = 60𝑠 ∆𝑡 = 120𝑠 ∆𝑡 = 300𝑠 ∆𝑡 = 900𝑠 ∆𝑡 = 1800𝑠 ∆𝑡 = 3600𝑠 depth 10
  • 12. Sewer pipe model - Sensitivity analysis on ∆𝑡 ∆𝑡 = 1𝑠 ∆𝑡 = 5𝑠 ∆𝑡 = 10𝑠 ∆𝑡 = 20𝑠 ∆𝑡 = 60𝑠 ∆𝑡 = 120𝑠 ∆𝑡 = 300𝑠 ∆𝑡 = 900𝑠 ∆𝑡 = 1800𝑠 ∆𝑡 = 3600𝑠 flow 11
  • 13. Sewer pipe model - Sensitivity analysis on ∆𝑥 ∆𝑡 = 20𝑠 12
  • 14. Sewer pipe model - Comparison between Models 0 0.5 1 1.5 2 2.5 3 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 FLow(m^3/s) Time (hh:mm) Input Discharge Hydrograph 𝐿 = 100 𝑚 𝑏 = 1 𝑚 𝑆0 = 0.012 n = 0.013 Initial Condition: steady flow equation DBC: Critical Flow ∆𝑡 = 20𝑠 N = 20 𝐿 = 100 𝑚 𝑏 = 1 𝑚 𝑆0 = 0.012 n = 0.013 Initial Condition: cannot choose DBC: free outfall Dynamic Wave Model Routing ∆𝑡 = 60𝑠 Reporting time step = 15 min N = cannot choose In this Model In EPA Model (SWMM) A Rectangular section sewer pipe: 13
  • 15. Sewer pipe model - Comparison between Models rect ∆𝑡 = 20𝑠 N = 20 14
  • 16. Sewer pipe model - Comparison between Models 0 0.5 1 1.5 2 2.5 3 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 FLow(m^3/s) Time (hh:mm) Input Discharge Hydrograph 𝐿 = 100 𝑚 𝑏 = 1.5 𝑚 𝑆0 = 0.012 n = 0.013 Initial Condition: steady flow equation DBC: Critical Flow ∆𝑡 = 20𝑠 N = 20 𝐿 = 100 𝑚 𝑏 = 1.5 𝑚 𝑆0 = 0.012 n = 0.013 Initial Condition: cannot choose DBC: free outfall Dynamic Wave Model Routing ∆𝑡 = 60𝑠 Reporting time step = 15 min N = cannot choose In this Model In EPA Model (SWMM) A Circular section sewer pipe: 15
  • 17. Sewer pipe model - Comparison between Models Circular ∆𝑡 = 20𝑠 N = 20 16
  • 18. 𝜕𝑄 𝜕𝑥 + 𝜕𝐴 𝜕𝑡 = 0 𝜕𝑄 𝜕𝑡 + 𝜕(𝑄2/𝐴) 𝜕𝑥 + 𝑔𝐴( 𝜕 𝑦 𝜕𝑥 + 𝑆𝑓 − 𝑆 ) = 0 Governing Equations: Dampening of Inertial Terms: A weighting factor SIGMA between 0 and 1 is computed that damps out the contribution of the inertial terms as the Froude number (Fr) gets closer to 1.0 and ignores them completely when Fr>1.0 (i.e., supercritical flow). The equation for SIGMA is: 𝑆𝐼𝐺𝑀𝐴 = 1.0, 𝐹𝑂𝑅 𝐹𝑟 < 0.5 𝑆𝐼𝐺𝑀𝐴 = 2 1 − 𝐹𝑟 , 𝐹𝑂𝑅 0.5 ≤ 𝐹𝑟 ≤ 1.0 𝑆𝐼𝐺𝑀𝐴 = 0, 𝐹𝑂𝑅 𝐹𝑟 > 1.0 Fr is computed based on the midpoint depth in the conduit. 𝜕𝑄 𝜕𝑥 + 𝜕𝐴 𝜕𝑡 = 0 𝑆𝐼𝐺𝑀𝐴 ∗ ( 𝜕𝑄 𝜕𝑡 + 𝜕 𝑄2 𝐴 𝜕𝑥 ) + 𝑔𝐴( 𝜕 𝑦 𝜕𝑥 + 𝑆𝑓 − 𝑆 ) = 0 17